
M A S S I M I L I A N O  A D A M O  A N D  
M A U R O  T A B L Ò

Linux vs. OpenBSD

A F I R E W A L L  

P E R F O R M A N C E  T E S T

Massimiliano Adamo graduated in mathematics and
has been involved in network security for 10 years.
He is currently technology officer of the Institute for
Computing Applications “Mauro Picone” of the
Italian National Research Council (IAC-CNR).

adamo@iac.rm.cnr.it

Mauro Tablò graduated in computer science and is a
senior detective with the Italian Police Forces, where
he currently manages the ICT security. His interests
include Internet security and cybercrime.

tablo@iac.rm.cnr.it

S E C U R E , E F F I C I E N T, A N D  I N E X P E N -
sive firewalls can be implemented by
means of common PCs running an open
source operating system and a packet filter
tool, which restricts the type of packets
that pass through network interfaces
according to a set of rules.

A packet filter confronts a transit packet with a set of
rules: when a matching rule is found, the associated
decision for the packet is taken (generally, PASS or
NO PASS) [1, 3, 4, 5]. The processing time required
by the filter grows with the number of rules. 

In this article we report the results of a firewall per-
formance test in which we compare the packet pro-
cessing time of Linux and OpenBSD equipped with
their packet filter tools: iptables and PF (Packet Fil-
ter), respectively.

Our main goal was to evaluate the packet forwarding
speed in both cases and to determine how different
conditions affect performance. Therefore tests were
made under a variety of conditions and configura-
tions.

Note that a network firewall can pass packets like an
L3 device (which we call “routing-firewall”) or like an
L2 device (which we call “bridging-firewall”) [2].
Linux or OpenBSD–based firewalls are often used as
routing-firewalls, but they both also have the ability
to act as bridging-firewalls, so we tested and com-
pared them in that configuration too.

Testbed

The testbed is composed of three hosts, equipped
with Fast-Ethernet cards and connected, according to
RFC 2544 [6], as shown in Fig. 1, with two CAT5
UTP crossover cables. There were no other hosts or
devices connected to the testbed hosts, so nothing
else could influence their behavior. The only packets
traversing the wire were those generated by our test
hosts.

F I G U R E  1 : B A S I C  T E S T  C O N F I G U R A T I O N

; LO G I N : D E C E M B E R  2 0 0 5  L I N UX VS. O P E N B S D 35



test_client and test_server are two Intel Pentium 4 PC (clock speed = 1.5GHz,
RAM = 256MB, Network Interface Card = Realtek mod. RTL8139).

The test_node configuration is :

n CPU: AMD K6-2 
n clock speed: 333MHz 
n RAM: 64MB
n Network Interface Card 1: 3com mod. 905c
n Network Interface Card 2: Digital Fast Etherworks PCI mod. DE-500-BA
n OS: either Linux (RedHat 7.3, kernel 2.4.18-3) or OpenBSD (v. 3.3), depend-

ing on test session

We used low-performing hardware for host test_node (with a slower clock and
less RAM than test_client and test_server) to make sure it represented a bottle-
neck for the connection. This way, we increased communication delays between
client and server, with the purpose of obtaining more apparent differences in
measurements.

Efficiency Evaluation

In order to evaluate the firewall efficiency, we measured the delay that host
test_node caused in packet flow between test_server and test_client.

Such delay depends on the OS running on host test_node (Linux/OpenBSD), on
forwarding level (L3 for routing/L2 for bridging), and on “filter/no filter” activi-
ty that can be activated on the node.

Tests were performed to measure TCP and UDP throughput performance for dif-
ferent frame sizes and number of rules loaded. We chose four of the frame sizes
that are recommended for Ethernet in RFC 2544 [6]: 64, 256, 512, and 1024
bytes. For each of the frame sizes we repeated the test with different rule-set
sizes (20, 100, and 500 rules).

Goals

Below is a description of our main goals:

1. Our first goal was to compare performance, in term of throughput, of iptables,
a common firewall subsystem for Linux, and PF (Packet Filter), which is the
firewall subsystem in the OpenBSD OS. We tested these firewalls in different
configurations, with a variable number of filtering rules.

2. The OSes we chose for tests, Linux and OpenBSD, can act as routers or as
transparent bridges. For both OSes, we wanted to test whether the bridging is
more efficient than the routing feature.

3. Our third goal was to compare the delays that affect TCP packets and UDP
datagrams when they traverse a firewall which has rules destined to filter only a
single kind of (transport layer) packet (TCP or UDP). For this scope, we mea-
sured throughput on the node with the firewall configured with a number of
UDP filtering rules but traversed by a flow of TCP packets, and vice versa (UDP
traffic with TCP rules).

The Benchmark

To generate the traffic and to measure the throughput, we used Netperf, a net-
work performance benchmark by Hewlett-Packard, available at http://www
.netperf.org and designed with the basic client-server model in mind.

36 ; L O G I N : V O L . 3 0 , N O . 6



By executing the client Netperf on host test_client, a control connection was es-
tablished to the remote system test_server (running the server, Netserver) [9] to
be used to pass test configuration information and results to and from the re-
mote system. 

Once the control connection was up and the configuration information had
been passed, a separate connection was established for the actual measurement.
Netperf places no traffic on the control connection while a test is in progress [9].

We used Netperf to measure request/response performance. 

By executing Netperf from the command line, we could specify some options to
define the protocol (TCP or UDP), packet size for requests and responses, and
test length (in seconds). A transaction is defined as the exchange of a single re-
quest and a single response.

We carried out tests in four different configurations:

1. request and response size = 1024 bytes; protocol = TCP; test time = 120 s.

2. request and response size = 512 bytes; protocol = TCP; test time = 120 s.

3. request and response size = 256 bytes; protocol = TCP; test time = 120 s.

4. request and response size = 64 bytes; protocol = UDP; test time = 120 s.

Test Sessions

We ran nine test sessions. A session is defined as the set of tests made in a given
network configuration and systems setup.

In session 1 we connected hosts test_server and test_client by means of a
crossover UTP cable. In this session, test_client had IP address 10.0.0.3/24 and
test_server had 10.0.0.2/24.

Below, we refer to this configuration as the “direct configuration” (or “direct,”
for short), because the connection between hosts test_client and test_server is
obtained without intermediate devices (router, hub, bridge, switch, etc.).

All further tests (eight more sessions) were done by disposing hosts as in Fig. 1.
In this configuration, transactions generated (and measured) by Netperf be-
tween test_client and test_server flowed through test_node, which acted as a bot-
tleneck for the connection and introduced a delay: by making a throughput
comparison between this case and the “direct” case, we evaluated the delay in-
troduced by host test_node.

We repeated every test session three times, obtaining very similar results. For
each session, we report only the worst measurement.

F I G U R E  2 : T A B L E  O F  T E S T  S E S S I O N S  A N D  C O N F I G U R A T I O N S

; LO G I N : D E C E M B E R  2 0 0 5  L I N UX VS. O P E N B S D 37

SESSION O.S. FOR test_node CONFIGURATION

1 Direct

2 OpenBSD Router

3 OpenBSD Router + Firewall

4 OpenBSD Bridge

5 OpenBSD Bridge + Firewall

6 Linux Router

7 Linux Router + Firewall

8 Linux Bridge

9 Linux Bridge + Firewall



TH E  “ RO UTE R ” CO N F I G U R ATI O N

IP address for test_client = 10.0.1.2/24.

IP address for test_server = 10.0.0.2/24.

IP address for test_node:nic1 = 10.0.1.1/24.

IP address for test_node:nic2 = 10.0.0.1/24.

Host test_client needs an explicit rule for sending to test_node all packets
destined to host test_server. This is obtained by running the following:

test_client# route add 10.0.0.2 gw 10.0.1.1

Similarly, host test_server needs a routing rule for reaching host test_client:

test_server# route add 10.0.1.2 gw 10.0.0.1

To let host test_node act as a router, we have to activate IP forwarding on it. 

On OpenBSD this can be done as follows:

test_node# sysctl -w net.inet.ip.forwarding=1

Whereas on Linux:

test_node# sysctl -w net.ipv4.ip_forward=1

In the “Router” configuration, the node does not act as a firewall, so no packet-
filtering rule is set.

TH E  “ RO UTE R  +  F I R E WA L L” CO N F I G U R ATI O N

Without changing the network setup of the “router” configuration, we activated
the firewall functionality on the node using a packet filter (iptables on Linux
and PF on OpenBSD). Every packet that passed through test_node was examined
by the packet filter, which decided the action to perform (to drop or to pass it).

To enable packet filtering on OpenBSD [12,16], variable pf in /etc/rc.conf must
be set equal to YES:

pf=YES

Rules contained in /etc/pf.rules are loaded by running:

test_node# pfctl -ef /etc/pf.rules

and unloaded by running:

test_node# pfctl -d

Iptables [18] doesn’t need a configuration file for loading rules. Although filter-
ing rules can be typed manually one by one from a command prompt, it is better
to collect them in a script file.

The iptables filter table uses a linear search algorithm: the data structure is a list
of rules, and a packet is compared with each rule sequentially until a rule is
found that matches all relevant fields. PF uses a similar search algorithm but, by
default, the last matching rule (not the first) decides which action is taken.
However, if a rule in PF has the “quick” option set, this rule is considered the
last matching rule, and there is no evaluation of subsequent rules.

We started with a set of 20 filtering rules, each one blocking TCP packets des-
tined to a specific port on the server. None of the packets generated by Netperf
and exchanged between client and server in our test matched any such rules (a
complete description of the rules can be found at http://www.iac.rm.cnr.it/sec
/rules.htm). We forced the packet filter to confront every packet in transit with
the set of rules and eventually to let it pass. This way, we could measure the
delay introduced by the packet filter, which must process the entire list of rules.

38 ; L O G I N : V O L . 3 0 , N O . 6



We then repeated our tests using lists of 100 and 500 filtering rules for TCP
packets and, finally, a list of 500 rules for UDP datagrams.

TH E  “ B R I D G E ” CO N F I G U R ATI O N

After we tested the ‘router’ and “router + firewall” configurations, we set up host
test_node to act as a transparent bridge.

On OpenBSD [11, 17] this is obtained by running:

sysctl -w net.inet.ip.forwarding=0 (deactivates ip-forwarding)
ifconfig xl0 down
ifconfig xl1 down
brconfig bridge0 add xl0 add xl1 up
ifcongig xl0 up
ifconfig xl1 up

Linux requires more work[14, 15]. To check that you have bridging and bridge-
firewall support compiled into your kernel, go to the directory where your ker-
nel source is installed. For us (with the kernel 2.4.18-3), it is the following path:

test_node# cd /usr/src/linux-2.4

In this directory, run:

test_node# make menuconfig

By navigating through menu items, bring up the “Networking Options” screen
and scroll until you see the following:

<*> 802.1d Ethernet Bridging
[*] netfilter (firewalling) support

The asterisk to the left in brackets indicates that both options are built in. In
other words, our kernel 2.4.18-3 ships with built-in support for bridging and
bridge firewalling 

If not already available, bridge-firewall support patches for Linux kernels can be
obtained from http://bridge.sourceforge.net/download.html. Once downloaded,
the patch must be applied and the kernel recompiled.

The next step is to install bridging tools bridge-utils-0.9.3.rpm, downloaded
from http://bridge.sourceforge.net/.

Now, we can transform our Linux box in a transparent bridge simply by running:

sysctl -w net.ipv4.ip_forward=0   (deactivates ip-forwarding)
ifconfig eth0 down
ifconfig eth1 down
brctl addbr br0
brctl addif br0 eth0
brctl addif br0 eth1
ifconfig br0 0.0.0.0 up
ifconfig eth0 0.0.0.0 up
ifconfig eth1 0.0.0.0 up

To deactivate bridging, simply run:

ifconfig eth0 down
ifconfig eth1 down
ifconfig br0 down
brctl delif br0 eth1
brctl delif br0 eth0
brctl delbr br0

; LO G I N : D E C E M B E R  2 0 0 5  L I N UX VS. O P E N B S D 39



TH E  “ B R I D G E  +  F I R E WA L L” CO N F I G U R ATI O N

By activating a packet filter and loading filtering rules (the same way we did in
the “router + firewall” session), the bridge becomes a bridging-firewall.

Test Results

Results are reported as the number of transactions per second.

As expected, the presence of the node between client and server causes a signi-
ficant loss of throughput: the number of transactions when test_client and
test_server communicate by means of the intermediate host reduced by half 
the instances of direct communication in both configurations (“router” and
“bridge”).

Looking at the experimental results for Linux, we see clearly that the time to
classify a packet grows with the number of rules, regardless of the transport pro-
tocol (TCP or UDP) and the type of rules (TCP-specific or UDP-specific). 

As a matter of fact, iptables compares a packet to the rules, sequentially, starting
with the first rule, until a match is found. When a packet matches a rule, then

40 ; L O G I N : V O L . 3 0 , N O . 6

TCP  1024 4030,80

direct “ 512 6465,25

“ 256 9286,02

UDP     64 16020,07

configuration BRIDGE ROUTER

Linux OpenBSD Linux OpenBSD

TCP  1024 2112.32 2026.62 2120.23 2019.17

no filter “ 512 3395.63 3039.21 3430.71 3039.69

“ 256 4909.81 4059.98 4999.73 4057.27

UDP     64 8216.58 6089.54 8477.04 6089.47

TCP  1024 2087.24 1997.71 2111.53 1740.22

20 “ 512 3340.86 3040.66 3394.70 2514.19

“ 256 4784.87 4047.71 4941.71 3900.61

UDP     64 8050.35 6081.69 8347.05 6075.76

TCP  1024 2093.16 1739.71 2062.29 1739.69

100 “ 512 3346.76 2541.19 3278.08 2433.69

“ 256 4800.57 4023.15 4685.83 3116.01

UDP     64 7981.62 6082.07 7705.79 6078.91

TCP  1024 1765.26 1353.53 1744.48 1351.02

500 “ 512 2586.16 1766.63 2534.05 1739.72

“ 256 3383.04 2424.07 3300.93 2050.06

UDP     64 4809.77 6076.46 4590.34 6079.87

TCP  1024 1876.84 2021.07 1834.17 1744.79

500 UDP “ 512 2827.54 3036.42 2733.80 3031.48

“ 256 3803.13 4058.83 3642.47 4038.15

UDP     64 5532.02 3039.65 4966.07 3030.77



the traversal of rules is stopped and the verdict corresponding to that rule is re-
turned. Since none of the rules in our sets matches the packets that traverse the
firewall, in every session iptables compares all packets with N rules (where N is
the number of rules in the list) [4, 5, 10].

PF works in a different and more efficient way. When a rule-set is loaded, the
kernel traverses the set to calculate the so-called skip-steps. In each rule, for
each parameter, there is a pointer to the next rule that specifies a different value
for the parameter. During rule-set evaluation, if a packet does not match a rule
parameter, the pointer is used to skip to the next rule that could match, instead
of trying the next rule in the set [7]. Analyzing our results, we can see that when
the traffic is constituted by UDP datagrams only and all the rules are specific to
TCP packets (i.e., the proto option is set to tcp), we measured a constant
throughput for all rule sets (0, 20, 100, and 500 rules): the number of TCP rules
in the packet filter doesn’t affect the number of UDP transactions between client
and server. Similarly, the number of UDP rules in the packet filter doesn’t affect
the number of TCP transactions.

In general, Linux outperforms OpenBSD for all four configurations. Note that
while in OpenBSD the bridging-firewall mode is more efficient than the routing-
firewall mode, for Linux there are no significant differences in throughput be-
tween bridge-firewalling and router-firewalling.

Conclusion

Linux is, in general, more efficient than OpenBSD. In both router and bridge
configurations, it spends less time forwarding packets. Furthermore, iptables
filters packets more quickly than PF, with only one exception (in our testing): if
the transport-layer protocol of the transit packet, say, UDP, differs from the spec-
ified transport-protocol type of a sequence of rules—“protocol type” set to
“TCP”in this example—PF ignores those rules and confronts the packet only
with the rest of the set, acting more efficiently than Linux, which confronts the
packet with all the rules in the set.

This feature of PF is very interesting. UDP-based attacks are very insidious, and
most firewalls have rules to prevent many types of UDP datagram from accessing
the network. Nevertheless, most traffic from and to a protected network is made
up of TCP streams (protocols such as HTTP, SMTP, and FTP all use TCP). In
such a case, PF may be more effective: it does not spend processing time com-
paring TCP packets with the set of rules destined to block UDP datagrams,
avoiding delay in processing legitimate packets.

Finally, unlike iptables, PF performs automatic optimization of the rule set,
processing it in multiple linked lists [7, 8]. A way to optimize the search on the
rule set for iptables is to resort to the “jump” parameter [18] for jumping to a
subset of rules (i.e., a chain) reserved for TCP or UDP packets, depending on
protocol type. 

REFERENCES
[1] Thomas A. Limoncelli, Tricks You Can Do If Your Firewall Is a Bridge, Proceedings of the
1st Conference on Network Administration, USENIX, April 1999, pp. 47–58.

[2] Angelos D. Keromytis and Jason L. Wright, Transparent Network Security Policy En-
forcement, Proceedings of the USENIX Annual Technical Conference, June 2000, pp. 215–226.

[3] Errin W. Fulp and Stephen J. Tarsa, “Network Firewall Policy Tries,” Technical Re-
port, Computer Science Department, Wake Forest University, 2004:
http://www.cs.wfu.edu/ ~fulp/Papers/ewftrie.pdf.

[4] Ranganath Venkatesh Prasad and Daniel Andresen, “A Set-Based Approach to Packet
Classification,” Parallel and Distributed Computing and Systems (PDCS) 2003:
http://www.cis.ksu.edu/~rvprasad/publications/pdcs03.ps.

; LO G I N : D E C E M B E R  2 0 0 5  L I N UX VS. O P E N B S D 41



[5] Errin W. Fulp, “Optimization of Network Firewalls Policies Using Directed Acyclical
Graphs,” Proceedings of the IEEE Internet Management Conference, 2005:
http://www.cs.wfu.edu/~fulp/Papers/ewflist.pdf.

[6] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network Interconnect
Devices, RFC 2544,” 1999.

[7] Daniel Hartmeier, “Design and Performance of the OpenBSD Stateful Packet Filter
(pf),” Proceedings of 2002 USENIX Annual Technical Conference, June 2002, pp. 171–180.

[8] Jeremy Andrews, Interview: Daniel Hartmeier, 2002: http://kerneltrap.org/node/477.

[9] Information Network Division of the Hewlett-Packard Company, “Netperf: A Network
Performance Benchmark,” Revision 2.1, February 1996: http://www.netperf.org/netperf/
training/Netperf.html.

[10] Performance Test Overview for nf-HiPAC, September 2002: http://www.hipac.org.

[11] Brendan Conoboy, Erik Fichtner, IP Filter-Based Firewalls Howto, 2001:
http://www.obfuscation.org/ipf/ipf-howto.txt.

[12] Wouter Coene, The OpenBSD Packet Filter Howto, April 2002: http://www
.inebriated.demon.nl/pf-howto/pf-howto.txt.

[13] Rusty Russell, Linux netfilter Hacking Howto, Revision v. 1.14, July 2002:
http://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html.

[14] Nils Radtke, Ethernet Bridge + netfilter Howto, Revision v. 0.2, October 2002:
http://www.linux.org/docs/ldp/howto/Ethernet-Bridge-netfilter-HOWTO.html.

[15] Uwe Böhme and Lennert Buytenhenk, Linux Bridge-STP Howto, Revision v. 0.04,
January 2001: http://www.linux.org/docs/ldp/howto/BRIDGE-STP-HOWTO/.

[16] The OpenBSD Documentation, PF: The OpenBSD Packet Filter, Revision v. 1.23,
February 2005: http://www.openbsd.org/faq/pf/.

[17] The OpenBSD Documentation, Manual Page for brconfig(8).

[18] The Linux Documentation, Manual page for iptables(8).

42 ; L O G I N : V O L . 3 0 , N O . 6




