
M A R C E . F I U C Z Y N S K I

better tools for
kernel evolution,
please!
Dr. Marc E. Fiuczynski is a research scientist in the
Computer Science department at Princeton
University and a member of the PlanetLab R&D
team.

mef@cs.princeton.edu

T H I S A R T I C L E S U M M A R I Z E S A F O R AY
into the land of Linux, revealing the soft
underbelly of the animal called kernel. This
voracious animal is eagerly eating up
others, but how much longer can it do so
before its belly bursts?

Analogies aside, to many users Linux is great—it is
cheap (free in many cases) and often works quite well
for the intended purposes. Generally, such users treat
Linux as a black box by using an unmodified distribu-
tion such as Fedora, SuSE, etc. For users for whom a
conventional distribution is insufficient, Linux, as one
of the quintessential open source projects, offers un-
limited flexibility for customization. Moreover, vari-
ous kernel extensions released as patch sets, or simply
patches, offer unique and useful features not available
in the mainline version of the kernel.

Unfortunately, maintaining a customized kernel can
be challenging, particularly when it is necessary to
keep track of security updates, bug fixes, and general
enhancements to the mainline kernel. The reason is
that externally developed kernel extensions are often
available as patches that typically apply only to the
vanilla mainline kernel. While these patches some-
times apply to the latest mainline kernel, often they
do not and so require integration work.

While such integration (merging) may be trivial at
times, it can quickly get out of hand. Why? Even
when these patches apply cleanly to the latest release
from kernel.org, they often do not to the latest releas-
es from distributions such as Fedora or SuSE. These
distributions, to set themselves apart from others, in-
troduce their own value-added modifications to the
kernel and, in some cases, tend to be ahead of the sta-
ble 2.6 release by integrating features from the unsta-
ble kernel.org releases. Consequently, for those using
a customized kernel in a production setting, the job
of keeping on top with the latest and greatest kernel
can become a tedious one that is pure overhead.

This has been my experience while maintaining the
Linux kernel used for PlanetLab (http://www
.planet-lab.org). PlanetLab is a geographically distrib-
uted overlay platform designed to support the deploy-
ment and evaluation of planetary-scale network ser-
vices. As of August 2005, it consists of over 580
machines at 275 sites in 30 countries, and it has sup-
ported over 450 research projects. PlanetLab contin-
ues to grow at a rate of approximately five sites and
10 machines per month. Each machine runs a cus-
tomized version of Linux to support a “virtual private
server” (VPS) model, which is used to isolate separate
research projects running on a single machine from

8 ; L O G I N : V O L . 3 0 , N O . 5

; LO G I N : O C TO B E R 2 0 0 5 B E T TE R TO O LS F O R K E R N E L EVO LUTI O N , P L EA S E ! 9

each other. At one point the kernel for PlanetLab was
modified by 28 patches—both externally developed
and homegrown. The kernel was so tedious to main-
tain that at one point it lagged eight minor releases
behind the 2.4 mainline kernel release. Upon switch-
ing to the 2.6 kernel release, we focused on reducing
the patch count to a minimum with the goal of keep-
ing close to the latest mainline kernel release. None-
theless, our kernel still uses several large patches to
support performance isolation and namespace isola-
tion for said VPS support.

At this point, you, likely a Linux user, may be think-
ing, “Hey man, quit the whining. This problem only
affects a small group that have a vested interest in
maintaining a highly customized kernel.” I humbly
disagree. With the rampant success of Linux, this
“small” group is growing by leaps and bounds. Be-
sides well-known players like RedHat, SuSE, and
IBM, there is a growing number of corporations (e.g.,
PalmSource, Wind River Systems, Panasonic, NEC,
NTT DoCoMo, to name just a few) and government
agencies worldwide that are putting a tremendous
amount of effort into the Linux kernel. The happy
days of the Linux phenomenon probably are num-
bered. Why? Rather than working toward the general
good, corporate kernel programmers will try as hard
as possible to push their “modifications” into the
Linux kernel in pursuit of their own agendas. It is just
a matter of time before the soft underbelly bursts.

When this happens, significant infighting will ensue,
leading to fragmentation or who knows what—noth-
ing that’s good for any community. What can be done
about this? Will Linus Torvalds keep everything
under control so that the rest of us can continue to
obliviously toil along with Linux? No! To address this
problem it is not prudent to rely on a bazaar, cabala,
cathedral, benevolent pope, or any sociopolitical
model. No one truly understands or can predict the
long-term outcome of such models. As engineers we
have two choices: (1) blissfully ignore the problem
and hope the day of reckoning will never arrive, or
(2) turn it into a technological problem that we can
attempt to solve—i.e., find better ways to evolve the
kernel proper with kernel extensions.

My position paper titled “patch(1) Considered Harm-
ful,” presented at this year’s Workshop on Hot Topics
in Operating Systems , outlines why patch is harmful
for the evolution of the kernel (see the HotOS sum-
maries in this issue of ;login:). In a nutshell, patch is
good for localized fixes but bad for kernel extensions
that introduce changes which crosscut many files
and/or functions. Analysis of patches revealed that
kernel extensions can easily cover a hundred existing
kernel files, even though it represents a logical unit,
expressing a single crosscutting concern. The crux of
the problem is that with today’s tools (patch, cvs, bk,

etc.) these changes need to be integrated into the ker-
nel proper, hence driving kernel programmers to
achieve the ultimate integration of their modification
into the mainline kernel managed by Torvalds. To
avoid this problem altogether, I am working with a
team spread across New York University, University of
Victoria, and Princeton University on a toolkit called
C4, for CrossCutting C Code.

As part of our work on C4, our analysis of various
patch sets reveals that kernel extensions primarily
make intramodule changes: a coherent collection of
modifications encapsulated within an existing mod-
ule. These changes may modify many of the functions
within a particular module, but they do not change
the externally visible interface. Clients of the module
do not need to change their code and usage patterns.
Please note the loose use of the word “module” to
mean any collection of components with a well-de-
fined external interface, including kernel subsystems.
In particular, a module is not limited to a single ker-
nel source file.

Some kernel extensions also make intermodule
changes: modifications that change intermodule in-
terfaces, or the visible semantics of an existing inter-
face, in fundamental ways. For instance, modifica-
tions of a function’s type or the field makeup of a data
structure (e.g., adding, deleting, or changing the type
of a field) are intermodule changes. Making such
changes can have far-reaching consequences: it can
require updating all modules that directly use the
changed code. This is prohibitive when the interface
changes are in the kernel proper or in the generic de-
vice driver framework and trigger corresponding
changes in specific device drivers—there might be
hundreds. Doing such updates manually is error-
prone and time-consuming.

Recognizing that intramodule and intermodule
changes are common to new kernel extensions for
Linux, our approach with C4 is to make them part of
the kernel’s architecture by leveraging aspect-oriented
programming (AOP) techniques. Whereas object-
oriented programming provides linguistic mechanisms
for structuring self-contained units of code, AOP pro-
vides linguistic mechanisms for structuring concerns
that naturally cut across primary modules of a system.
More specifically, our approach is to express intramod-
ule changes as semantic patches using aspects, which
provide a language-supported methodology for inte-
grating crosscutting concerns with a program.

The benefits of aspects are twofold. First, they pro-
vide a well-defined specification of domain-specific
features that is separate from baseline functionality,
yet can be automatically integrated with the kernel.
Second, we believe that aspects will enable tools to
perform automatic analysis of the implications of

Addison-Wesley/Prentice Hall PTR

AMD

Asian Development Bank

Cambridge Computer Services, Inc.

Delmar Learning

Electronic Frontier Foundation

Eli Research

Hewlett-Packard

IBM

Intel

Interhack

The Measurement Factory

Microsoft Research

NetApp

Oracle

OSDL

Perfect Order

Raytheon

Ripe NCC

Splunk

Sun Microsystems, Inc.

Taos

Tellme Networks

UUNET Technologies, Inc.

It is with the generous financial support of our supporting members that USENIX is able to fulfill its mission to:

• Foster technical excellence and innovation
• Support and disseminate research with a practical bias
• Provide a neutral forum for discussion of technical issues
• Encourage computing outreach into the community at large

We encourage your organization to become a supporting member. Send email to Catherine Allman, Sales Director,
sales@usenix.org, or phone her at 510-528-8649 extension 32. For more information about memberships, see
http://www.usenix.org/membership/classes.html.

Thanks to USENIX Supporting Members

10 ; L O G I N : V O L . 3 0 , N O . 5

composing several crosscutting concerns and there-
fore help identify true semantic conflicts, as opposed
to the line-by-line conflicts identified by patch.

Thus, a toolkit like C4 provides an opportunity to the
growing number of well-funded (and under-funded)
kernel developers to have their code included with
the latest mainline kernel. The automatic integration
of kernel extensions at build time will leave the ker-
nel proper largely unencumbered. In contrast, the ex-
isting model litters the kernel proper with unneces-
sary #include statements and code fragments that do
nothing until the corresponding CONFIG option is
enabled. More important, Torvalds et al. no longer
will need to decide what kernel extensions make it
onto the mainline kernel.org release. Rather, since the

extensions will be part of the mainline release, the
kernel.org folks can declare a preferred composition
of these extensions, but others will be truly free to
choose what they prefer—i.e., no longer will there be
a need to patch in code and resolve merge conflicts
between separate extensions.

Building a toolkit to solve this problem is a tall
order, and the C4 toolkit is just one approach. There
are undoubtedly others. For more information
and an initial release of the C4 toolkit, please see
http://c4.cs.princeton.edu.

