PETER BAER GALVIN

Solaris 10
containers

Peter Baer Galvin is the chief technologist for
Corporate Technologies, Inc., a systems integrator
and VAR, and was the systems manager for Brown
University’s Computer Science Department. He is
currently contributing editor for SysAdmin Magazine,
where he manages the Solaris Corner, and is co-
author of the Operating Systems Concepts and

THE CONCEPT IS SIMPLE: ALLOW
multiple copies of Solaris to run within one
physical system. Indeed, creating and using
Solaris zones is simple for experienced sys-
tem administrators. But then why are there
so many questions surrounding this new
Solaris feature? Just what is a container?
How do you upgrade it? How can you limit
its resource use? Does it work like VMware?
And so on. In this article | describe the theo-
1y of Solaris 10 containers, and the facts be-
hind creating, managing, and using them.

Applied Operating Systems Concepts textbooks.

Overview

B pbg@petergalvin.info

;LOGIN: OCTOBER 2005

Solaris 10 containers are a new feature of Solaris. A
container is a virtualized copy of Solaris 10, running
within a Solaris 10 system. While this is similar in
concept to VMware, for example, it is more of a dis-
tant relative than a blood brother. Perhaps its closest
relative is BSD jails. Containers have a different pur-
pose from VMware (and other operating system
virtualization software, such as Xen). Those tools
create a virtual layer on which multiple operating
systems can run. Containers run within Solaris 10,
act only as Solaris 10 environments, and only run So-
laris applications.

Before I delve further into containers, a clarification is
needed. Solaris 10 has the concepts of “zones” and
“containers.” Simply, a container is a zone with re-
source management (including fair-share scheduling)
added. Mostly the terms are used interchangeably, but
where needed I will point out differences.

Given that limited Solaris 10 view of virtualization, of
what use are containers? Consider the following set
of features that containers add to Solaris 10:

= Up to 8192 containers can exist on the same sys-
tem. The “global zone” is what would normally be
called “the operating system.” All other containers
are referred to as “non-global.”

= Containers can share resources with the global
zone, including binaries and libraries, to reduce
disk-space requirements. An average container
takes 60MB of disk space or less. A container shar-
ing files with the global zone is known as a “sparse
container” and is created via a sparse install.

= Because binaries are shared (by default), and So-
laris optimizes memory use by sharing objects in
memory when possible, an average container uses
approximately 60MB of memory when booted.

SOLARIS 10 CONTAINERS

n

= By default a package (Sun’s concept of an install-
able application) installs in the global zone and all
nonglobal zones. Likewise, a patch will by default
install in all containers that contain the packages
to which the patch refers.

= As mentioned above, a container is a resource-
managed zone. The first release of Solaris 10, on
which this article is based, includes CPU use as a
manageable resource. (Note that there are now
three streams of Solaris release: the standard com-
mercial release; the “Express” updates that arrive
every month or so, and for all intents are beta re-
leases available to anyone interested; and the Open
Solaris community release, which is a periodic
snapshot of the internal build of Solaris based on
the Open Solaris release, and is the least tested of
these. This latter release is the most recent of the
builds, but also the most likely to have problems.)

As with other OS-virtualizing technologies, contain-
ers are secure from each other, allowing only network
access between them. They also have their own net-
work configurations, having their own IP addresses
and allowing variations in network membership (sub-
nets and network masks, for instance).

There are also some limits that come with containers
(most of these are likely to be removed in future re-
leases of Solaris):

= A container cannot be an NFS server.

= A container cannot be moved to another system
(i.e., imported or exported).

= A container must have a pre-set network address
(i.e., it cannot be DHCP-configured).

= The only container-manageable resource as of the
first release of Solaris is CPU shares. A container
could, for example, use all the system’s virtual
memory.

= Due to the security restriction that a nonglobal
container be securely separate from other contain-
ers, some features of Solaris 10 do not work in a
container. The most limiting is DTrace, the ex-
traordinary Solaris 10 debugging/analysis tool.

= A container cannot run Linux binaries natively
(the initial container marketing from Sun to the
contrary notwithstanding). Likewise not currently
supported, a container cannot have its own fire-
wall configuration. Solaris 10 uses ipfilters as its
firewall technology; ipfilters can be configured in
the global zone only.

= By definition, a container runs the same operating
system release as the global zone. Even kernel
patches installed on the system affect all contain-
ers. Only application patches or non-kernel oper-
ating system patches can vary between containers.

So what we are left with is a very lightweight, easy to
manage, but in some ways limited application segre-

;LOGIN: VOL. 30, NO. 5

gation facility. The same application could be run in
multiple containers, use the same network ports, and
be unaware of any of its brothers. A container can
crash and reboot without affecting any other contain-
ers or the global zone. An application can run amok
in a container, eating all available CPU but leaving the
other containers with their guaranteed fair-share
scheduling slices. A user with root access inside of a
container may control that container, but cannot es-
cape from the container to read or modify the global
zone or any other containers. In fact, a container
looks so much like a traditional system that it is a
common mistake to think you are using the global
zone when you are “contained.” An easy navigation
solution is found in the command zonename. It dis-
plays the name of the current zone. I suggest you
have that output displayed as part of your prompt so
that you always track the zone you are logging in to.

Creation

The creation of a container is a two-step process. The
zonecfg command defines the configuration of a con-
tainer. It can be used interactively or it can read a
configuration file, such as:

create -b

set zonepath=/opt/zones/zone00
set autoboot=false

add inherit-pkg-dir

set dir=/lib

end

add inherit-pkg-dir

set dir=/platform

end

add inherit-pkg-dir

set dir=/sbin

end

add inherit-pkg-dir

set dir=/usr

end

add inherit-pkg-dir

set dir=/opt/sfw

end

add net

set address=131.106.62.10
set physical=bcme0

end

add rctl

set name=zone.cpu-shares
add value (priv=privileged,limit=1,action=none)
end

In the above example, I create zone00. It will not au-
tomatically boot when the system boots. It will be a
sparse install, inheriting the binaries, libraries, and
other static components from the global zone, for all
of the inherit-pkg-dir directories added. It will have
the given network address, using the Ethernet port
known as bcme0. Finally, it will have a fair-share

scheduler share of 1. (See below for more information
on the fair-share scheduler.) The command zonecfg
-z zone00 —f config-file will read the configuration
(from the file named “config-file”). Either a sparse in-
stall or a full container install is possible. If there are
no inherit-pkg-dir entries, all packages from the glob-
al zone are installed in full. Such a container can take
3GB or more of storage but is then less dependent on
the global zone. Typically, sparse installation is used.

Several options are available with zonecfg. An impor-
tant one is fs, which mounts file systems within the
container. Not only can file systems from other hosts
be mounted via NFS, but loopback mounts can be
used to mount directories from the global zone with
the container. For example, to mount /usr/local read
only as /opt/local in zone00, interactively:

zonecfg —z zone00

zonecfg:zone00> add fs

zonecfg:zone00:fs> set dir=/usr/local
zonecfg:zone00:fs> set special=/opt/local
zonecfg:zone00:fs> set type=lofs
zonecfg:zone00:fs> add options [ro,nodevices]
zonecfg:zone00:fs> end

When the zone is rebooted, the mount will be in place.

Next, zoneadm -z zone00 install will verify that the
configuration information is complete, and if it is will
perform the installation. The installation for the most
part consists of package installations of all of the
packages in the inherit-pkg-dir directories, but only
those parts of the packages that are nonstatic (config-
uration files, for example). The directory under
which the container will be created must exist and
must have file mode 700 set. Typically, a container in-
stallation takes a few minutes.

Once the container is created, zoneadm -z zone00
boot will boot the container. The first boot will cause
a sysidconfig to execute, which by default will
prompt for the time zone, root password, name ser-
vices information, and so on. Rather than answer
those questions interactively, a configuration file can
do the trick. For example:

name_service=DNS

{

domain_name=petergalvin.info
name_server=131.106.56.1
search=arp.com

}

network_interface=PRIMARY

{
hostname=zone00.petergalvin.info
}

timezone=US/Eastern
terminal=vt100

system_locale=C
timeserver=localhost
root_password=bwFOdwea2yBmc
security_policy=NONE

;LOGIN: OCTOBER 2005

Placing this information in the sysidcfg file in the /etc
directory of the container (/opt/zones/zone00/root/
etc/sysidcfg) before the first boot provides most of the
sysifconfig answers. Now the container can be boot-
ed. To connect to the container console, as root, you
can use zlogin —-C zone00. Here you can watch the
boot output. Unfortunately, there is still an NFSv4
question to answer for sysidconfig, but once that is
done the container is up and running. The first boot
also invokes the new Solaris 10 service management
facility, which analyzes the container and adds ser-
vices as prescribed by the installed daemons and
startup scripts. Future boots of the container only
take a few seconds.

Management

Once a container has been installed and booted, it is
fairly self-sufficient. The zoneadm list command will
show the status of one or all containers.

I find a script to execute a command against every
container is helpful. For example:

#!/bin/bash

for zin zone00 zone01 zone02 zone03 zone04
zone05 zone06 zone07 zone08 zone09 zone10
zonel11 zone12 zone13 zone14 zone15 zone16
zonel17 zone18 zone19 zone20;

do

zoneadm -z $z boot

zlogin -z $z hostname;

done

Note that the zlogin command, when run as root in
the global zone, can execute a command in a specified
zone without a password being given.

Another administrative convenience comes from the
direct access the global zone has to the other contain-
ers’ root file systems. Root in the global zone can copy
files into the directory tree of any of the containers via
the container’s root directory.

By default, any package added to the global zone is
added to every container on the system. Likewise, any
patch will be added to every container that contains
the files to which that patch applies. It is a bit surpris-
ing to watch pkgadd boot each installed but nonrun-
ning container, install the packages, and then return
the container to its previous state. But that is an ex-
ample of just how well integrated into Solaris 10 con-
tainers are. There are options to the pkgadd and
patchadd to override this behavior.

Fair-Share Scheduler

As previously mentioned, the fair-share scheduler can
be used in conjunction with zones to make them into
containers. A container then may be limited in its

share of available CPU scheduling slices. Fair share is

SOLARIS 10 CONTAINERS

13

a complex scheduling algorithm in which an arbitrary
number of shares are assigned to entities within the
computer. A given entity (in this case a container, but
it could be a collection of processes called a project)
then is guaranteed its fair share of the CPU—that is,
its share count divided by the total. If some CPU is
unused, then anyone needing CPU may use it, but if
there is more demand than CPU, all entities are given
their share. There is even the notion of scheduling
memory, in that an entity that used more than its fair
share may get less than its share for a while when
some other entity needs CPU.

The system on which a container runs must have the
fair-share scheduler enabled. First, the scheduler is
loaded and set to be the default via dispadmin —d FSS.
The fair-share scheduler is now the default on the sys-
tem (even surviving reboots), and all new processes
are put into that scheduling class. Now all the current
processes in the timesharing class (the previous de-
fault) can be moved into fair share by priocntl -s —c
FSS —i class TS. Finally, I'll give the global zone some
shares (in this case, five) so it cannot be starved by
the containers: prctl —n zone.cpu-shares —v 5 —r —i
zone global. To check the share status of a container
(in this case, the global zone), use prctl —n zone.cpu-
shares —i zone global. Take note that the prctl com-
mand share setting does not survive reboots, so this
command should be added to an rc script to make it
permanent.

networking. If a set of applications uses shared mem-
ory, then they obviously need to be in the same con-
tainer. Much will depend on the support by software
creators and vendors of containers. Early indications
are good that vendors will support their applications
being installed inside containers.

Some of the design decisions surrounding containers
will limit how they are used. For example, it does not
make sense to install a development, QA, and produc-
tion container for a given application on the same sys-
tem. Development might want to be using a different
operating system release than the one currently in use
in production, for example. Or QA may need to test a
kernel patch. It would be reasonable to create a con-
tainer for each developer on a development server,
however, to keep rogue code from crashing that
shared system or hogging the CPU. For those that
host applications for others (say, application service
providers), containers are a boon for managing and
securing the multiple users or companies that use the
applications on their servers.

Conclusion

Use

14

Containers are new, and therefore best practices are
still in their infancy. Given the power of containers
and the low overhead, I would certainly expect that
most Solaris 10 systems will have containers config-
ured. An obvious configuration is that only root users
access the global zone, and all other users live in one
or more containers. Another likely scenario is that
each application be installed in a nonglobal container,
or each into its own container, if it only communi-
cates with the other applications on that system via

;LOGIN: VOL. 30, NO. 5

The Solaris 10 container facility is a different take on
virtualized operating system environments commonly
found on other systems. Only one Solaris release may
run on the system, and even kernel patches affect all
containers. Beyond that, containers offer a cornu-
copia of features and functions. They are lightweight,
so they may be arbitrarily created and deleted. They
are secure, protecting themselves from other contain-
ers and protecting the global zone from all containers.
And they can be resource managed (although only
CPU resources at this point) to avoid a container from
starving others. Further, containers are integrated
into other aspects of Solaris 10, such as package and
patch management. Containers are a welcome
addition to Solaris 10 and allow for improved utiliza-
tion of machines, as well as more security and
manageability.

