IN THIS ARTICLE I’'M GOING TO LOOK
at some less well known security features
of FreeBSD. Some of these features are com-
mon to all the BSDs. Others are FreeBSD-
specific or have been extended in some
way in FreeBSD. The features that | will be
discussing are available in FreeBSD 5.4.

DAVID MALONE

security through
obscurity

First, 'll mention some features that I don’t plan to
cover. FreeBSD jails are like a more powerful version
of chroot. Like chroot they are restricted to a subtree
of the file system, but users (including root) in a jail
are also restricted in terms of networking and system
calls. It should be safe to give root access to a jail to
an untrusted user, making a jail like virtual system,
not unlike some applications of UML [1] or Xen [2]
but without running separate kernels for each system.

A REVIEW OF A FEW OF

FREEBSD’S LESSER-KNOWN

SECURITY CAPABILITIES

David is a system administrator at Trinity College,

Dublin, a researcher in NUI Maynooth, and a com- A lot has already been written about jails [3], so 1
mitter on the FreeBSD project. He likes to express won’t dwell on them further here.

himself on technical matters, and so has a Ph.D.in

mathematics and is the co-author of IPv6 Network Another feature that I don’t plan to spend much time

Administration (O’Reilly, 2005). onis ACLs. ACLs are an extension of the traditional

B dwmalone@maths.tcd.ie UNIX permissions system to allow you to specify per-
missions for users and groups other than the file’s
owner and group. Since ACLs are familiar to many
people from Solaris, Linux, and Windows, to name
just a few examples, I'll just refer to [4] for the details
on FreeBSD.

File Flags

A lesser-known set of extended permissions is the
“file flags” supported by BSD’s UFS file system. Of in-
terest to us here are the append-only, immutable, and
undeletable flags. These names are reasonably self-
explanatory: append-only files can only be appended
to, immutable files cannot be changed in any way, and
undeletable files cannot be deleted (or have their hard
links removed—all names referring to the inode are
protected).

Each of these flags comes in two flavors: system and
user. System flags can only be set and cleared by root.
User flags can be set and cleared by the file’s owner
and root. The chflags command can be used to set
them and the -o flag to Is can be used to display them.
With these commands the names used for the system
version of the flags are sappnd, schg, and sunlink,
and the user versions are uappnd, uchg, and uunink.

For example, it often surprises newcomers to UNIX
permissions that a file can be deleted by any user who
can write to the directory the file is in. Below, user
Imalone has set the undeletable flag, and now user
dwmalone cannot remove it.

;LOGIN: OCTOBER 2005 SECURITY THROUGH OBSCURITY 27

28

;LOGIN: VOL. 30, NO. 5

dwmalone@hostname % Is -Ido . normal undeleteable

drwxr-xr-x 19 dwmalone wheel - 3584 May 14 09:03 .
-rw-r—r— 1 Imalone wheel - 0 May 14 09:03 normal
-rw-r—r— 1 Imalone wheel uunink 0 May 14 09:03 undeleteable
dwmalone@hostname % rm normal undeleteable

override rw-r—r— Imalone/wheel for normal? y

override rw-r—r— Imalone/wheel uunink for undeleteable? y

rm: undeleteable: Operation not permitted

Even root cannot remove this file, until the flag has been cleared manually:

root@hostname# rm undeleteable

rm: undeleteable: Operation not permitted
root@hostname# chflags nouunink undeleteable
root@hostname# rm undeleteable

There are some obvious applications for these flags. Append-only files can be
used as log files, protecting against accidental or malicious truncation. FreeBSD
installs a number of important files as system immutable (libc, init) to keep
them from being damaged accidentally.

The immutable flag can also be used to prevent people “stealing” a link to an
SUID executable. Usually, in any directory for which a person has write permis-
sions, he can make a hard link to any file in that filesystem for which he has read
permissions. This means that if someone knows there is a vulnerability to be an-
nounced in some SUID executable, he can steal a hard link to it and still have ac-
cess to the executable after the original file appears to the sysadmin to be delet-
ed. If an immutable flag is set on a file, these sorts of games aren’t possible [5].

Note that file flags can only be manipulated locally and cannot be set or cleared
over NFS. This means that marking a file on an NFS server as immutable is a
good way to keep anyone from changing it.

BSD Secure Level

As I described above, the file system flags provide some useful flexibility, and
even some protection against shooting oneself in the foot as root. However, they
provide little protection against a malicious root user, who could just clear all
the flags before going about their nefarious business.

The BSD operating systems do provide a simple form of protection against a ma-
licious root user in the form of numbered “secure levels,” in which the higher
the number, the greater the restrictions on what can be done. The secure level
can be raised using the sysctl command, but cannot be lowered while the sys-
tem is running. On FreeBSD the secure level is set to -1 by default, but the se-
cure level for multi-user operation can be set in /etc/rc.conf by adding settings
such as:

kern_securelevel_enable="YES"

kern_securelevel="2"

The restrictions placed on system operation at each secure level are as follows:
If secure level > 0 you can’t:

m access hardware from user processes via /dev/mem, /dev/pci, I/O instructions,
and so on;

= Joad or unload kernel modules;

= change system-level file system flags (unlink, immutable, append);

= run a debugger on init;

= or cause /dev/random to perform a reseeding operation by writing to it.

If secure level > 1 you also can’t:

= open disks in /dev for writing (including SCSI pass-through devices);

;LOGIN: OCTOBER 2005

= change firewall rules;
= or run the clock faster than twice its normal speed or turn time backwards.

If secure level > 2 you also can’t:

= change certain secondary firewall features such as ipf’s NAT and ipfw’s dum-
mynet configuration;
= change certain sysctl values (msgbuf_clear, ipport_reserved{high, low}).

At secure level 1, root can’t change immutable files. A malicious root might de-
cide to unmount the file system and edit the raw disk, circumventing file per-
missions, flags, and ACLS. At secure level 2, this isn’t possible, as disks cannot
be opened for writing. Interestingly, each jail actually has its own secure level, so
a jail can run at a higher secure level than the host system.

This means that a careful combination of a high secure level and UFS file flags
can prevent an intruder from installing rogue kernels or kernel modules, the
sort of trickery described in Rik Farrow’s “Musings” column last April [6]. For
this to work, all the files and directories involved in the boot process need to be
immutable—this would include /boot, /sbin, /etc, /bin, /lib, /usr/bin, /usr/lib, etc.

In practice, this isn’t often done, as it reduces the amount that can be achieved
with online system administration. To update libraries the system must be re-
booted and the library installed in single-user mode before the secure level is
raised.

1 did say that the secure level could not be lowered while the system is running.
There is a way around this that I have used. If you have chosen to include kernel
debugger support in your kernel, then someone with access to the kernel debug-
ger can reduce the secure level. For example, I can use CTRL+ALT+ESC to get
to the debugger on the console of my server:

root@hostname# sysctl kern.securelevel=2
kern.securelevel: -1 -> 2

root@hostname# KDB: enter: manual escape to debugger
[thread pid 13 tid 100001]

Stopped at kdb_enter+0x2f: nop

db> write securelevel 0

securelevel 0x2 = 0

db> continue

root@hostname# sysctl kern.securelevel
kern.securelevel: 0

This technique allows an administrator to run the system at a high secure level
when appropriate but to lower it when needed. It is important to remember that
access to the kernel debugger requires physical access to the system (either to
the console or via FireWire) and requires debugger support in the kernel.

MAC Framework

The MAC (Mandatory Access Control) framework is part of the excellent work
done by the TrustedBSD project [7] to bring new security features to FreeBSD.
The MAC framework allows people to develop kernel modules that provide ad-
ditional checks on what the kernel permits processes to do.

The MAC framework includes a number of sample modules implementing well-
known security systems, such as the Biba integrity model and Multi-Level Secu-
rity (MLS), which I'll just mention here since to do them justice would require
many pages. The TrustedBSD project also provides a port of the SELinux [8]
policy system. All the MAC modules that are shipped with FreeBSD are docu-
mented both in manual pages (man 4 mac) and in the FreeBSD handbook [9].

Along with these well-known modules are included a number of quirkier offer-
ings. I'll mention three of these here: seeotheruids, bsdextended, and portacl.

SECURITY THROUGH OBSCURITY

29

30

;LOGIN: VOL. 30, NO. 5

Note, while some of these modules can be loaded at any time, they all require
that the MAC framework be compiled into your kernel by adding options MAC
to your kernel config file. The more complex modules must either be loaded at
boot time or compiled into your kernel.

SEEOTHERUIDS MAC MODULE

The seeotheruids module prevents users from seeing processes owned by other
users. Usually ps, netstat, /proc and top will display the processes and sockets
on the system belonging to all users. When the seeotheruids module is enabled,
normal users can only see their own processes. Root is not a normal user, so it
can see everyone’s processes. It is also possible to allow a particular group of
users to see the processes of others; for example, we can arrange for users in
group wheel (with GID 0) to be able to see everyone’s processes:

root@hostname# kldload mac_seeotheruids

root@hostname# sysctl security.mac.seeotheruids.enabled=1
security.mac.seeotheruids.enabled: 0 -> 1

root@hostname# sysctl security.mac.seeotheruids.specificgid=0
security.mac.seeotheruids.specificgid: 0 -> 0

root@hostname# sysctl security.mac.seeotheruids.specificgid_enabled=1
security.mac.seeotheruids.specificgid_enabled: 0 -> 1

BSDEXTENDED MAC MODULE

The bsdextended MAC module allows you to define more complex relationships
between users and what files they are permitted to access. Unlike file permis-
sions, ACLs, and flags, these rules are not attached to particular files but are
systemwide.

This is perhaps best explained using another example. Suppose we have a sand-
box user “pproxy” whose sole purpose is to run a POP proxy daemon. This user
probably only needs read access to a few files on the system but, in fact, has ac-
cess to all the files that are readable by “others.”

pproxy@hostname % ./Is -I

total 8068

-r-xr-xr-x 1 pproxy wheel 4096352 Apr 30 12:07 cat

-r-xr-xr-x 1 pproxy wheel 4096352 Apr 30 12:07 Is

-rw-r—r— 1 pproxy wheel 6 Apr 30 12:27 myfile

-rw-r—r— 1 root wheel 4 Apr 30 12:27 otherfile

pproxy@hostname % ./cat myfile

hello

pproxy@hostname % ./cat otherfile

bye
By loading the bsdextended module we can use the ugidfw command to define
rules stating which files the pproxy user can access. The following commands
set up rules that allow the pproxy user read and execute access to a file and its
attributes if it belongs to user pproxy and no access to any other files:

root@hostname# kldload mac_bsdextended
root@hostname# ugidfw add subject uid pproxy object uid pproxy mode srx
root@hostname# ugidfw add subject uid pproxy object not uid pproxy mode n

The “subject” part of a ugidfw command describes the user or group that the
rule applies to. The “object” part describes the files the rule applies to, by speci-
fying their owner (either by UID or GID). The mode describes the permitted op-
erations.

r normal read access to the file

w normal write access to the file

X execute/search access

s read access to file attributes, such as permissions, owner, etc.

;LOGIN: OCTOBER 2005

a administrative operations such as chmod, etc.
N no access

The first matching rule is used to decide what access is permitted by mac_bsd-
extended. Remember that for an action to be permitted it must also be allowed
by traditional permissions and any other MAC modules, ACLs, or file flags in
force.

After creating these rules with ugidfw, the pproxy user has greatly reduced ac-
cess to the system. They can no longer read world-readable files (even /etc/pass-
wd and /etc/group are inaccessible), and they cannot write to any files:

pproxy@hostname % ./Is -|

Is: otherfile: Permission denied

total 8066

-r-xr-xr-x 1 3007 0 4096352 Apr 30 12:07 cat
-r-xr-xr-x 1 3007 0 4096352 Apr 30 12:07 Is
-rw-r—r— 1 3007 0 6 Apr 30 12:27 myfile
pproxy@hostname % ./cat myfile

hello

pproxy@hostname % ./cat otherfile

cat: otherfile: Permission denied
pproxy@hostname % echo > myfile

myfile: Permission denied

Those who read the preceding two examples carefully will have noticed that I
used copies of Is and cat belonging to the pproxy user. In fact, I also had to stat-
ically link these commands, as the pproxy user cannot read the normal copies of
cat, Is, or libc because of the ugidfw rules! This is much the same situation as
setting up a chrooted environment, where the correct executables and libraries
need to be available to the user.

PORTACL MAC MODULE

The portacl module provides more flexible control of who can use which net-
work ports. The traditional UNIX-style rules controlling who can listen for data
on a port are:

= Root can listen anywhere.
= Everyone else can listen on ports > 1023.

Thus certain daemons, such as Web servers and news servers, need to at least
begin life running as root in order to get access to the required ports (port 80
and port 119, respectively).

The portacl module allows rules like “user www can bind to port 80,” which
means that the Web server never needs to run as root. Let’s take that as an
example:

root@www# kldload mac_portacl
root@wwwi# sysctl security.mac.portacl.rules=uid:80:tcp:80,uid:80:tcp:443
security.mac.portacl.rules: -> uid:80:tcp:80,uid:80:tcp:443

Here we're saying that UID 80 (i.e., user www) should be permitted to bind to
tep port 80 and tep port 443. We do not need to make any other change. Since
the constraints enforced by the MAC framework are in addition to the normal
constraints enforced by the kernel, we need to tell the kernel to relax its usual
restrictions and let portacl do the work.

root@www# sysctl net.inet.ip.portrange.reservedlow=0
net.inet.ip.portrange.reservedlow: 0 -> 0

root@www# sysctl net.inet.ip.portrange.reservedhigh=0
net.inet.ip.portrange.reservedhigh: 1023 -> 0

SECURITY THROUGH OBSCURITY

31

32

;LOGIN: VOL. 30, NO. 5

Portacl actually has an implicit rule that limits ports 1-1023 to root, unless oth-
erwise permitted by your setting of security.mac.portacl.rules, so we don’t need
any further rules to have the other ports behave as usual.

We can then start Apache as user www—provided user www can write to the
necessary log files. In order to do this you could move the log files to
/var/log/www and have that directory owned by user www. The necessary
changes to the default Apache conf file look like this:

Listen 0.0.0.0:80

LockFile /var/log/www/accept.lock

PidFile /var/log/www/httpd.pid

ErrorLog /var/log/www/httpd-error.log

Customlog /var/log/www/httpd-access.log combined

In some cases, there will be no downside to starting a daemon as a non-root
user. However, there are some minor downsides to starting Apache as user www.
As the logs are owned by user www, a vulnerability in a CGI or PHP script may
give write/truncate access to log files. Of course, file flags could be used to miti-
gate this.

Unfortunately, there is no equivalent of the net.inet.ip.portrange.reserved*
sysctls for IPv6, which means that the mac_portacl module is of less use in
combination with IPv6. This is why the example uses the wildcard IPv4 address
explicitly: to stop Apache using the IPv6 wildcard address. This omission should
be fixed in a future release of FreeBSD.

GEOM and Disk Encryption

The last feature of FreeBSD that I'll mention is GEOM. GEOM is a framework
for dealing with disk-like objects in the FreeBSD kernel. For example, the
physical disks on the system are registered with GEOM. GEOM has classes that
understand PC partition tables and FreeBSD disk labels. These classes can
examine the disk and make the partitions and subpartitions of the disk available
in /dev.

GEOM isn't restricted to just recognizing subpartitions; it can also perform more
complex transformations such as striping, network-based disks, and encrypted
disks.

A sample module for doing disk-based encryption, called BDE, is included with
GEOM. Using BDE is actually quite straightforward. Naturally, you need a spare
partition to house the encrypted disk—in this case, we use /dev/ad0s1g. First,
we initialize the disk and choose a passphrase—as usual, choosing a good
passphrase is essential:

root@hostname# gbde init /dev/ad0s1g -L /etc/ad0s1g.lock
Enter new passphrase:
Reenter new passphrase:

The lock file specified in the command will have some information about the
encrypted disk’s “lock sector” written into it. This file should be treated with
some care—it needs to be kept backed up, and knowing its contents will make
an attacker’s life easier. Next, we can attach the disk, create the file system, and
check that everything works OK:

root@hostname# gbde attach ad0Os1g -I /etc/ad0s1g.lock
Enter passphrase:

root@hostname# newfs /dev/ad0s1g.bde

root@hostname# mount /dev/ad0s1g.bde /stuff
root@hostname# df /stuff

Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1g.bde 60667770 455814346 0% /stuff

;LOGIN: OCTOBER 2005

Now the file system can be used as usual, but BDE will encrypt each block be-
fore it is written to the disk.

The problem with encrypted disks is getting the passphrase to the system when
it wants to use the disk. Naturally, you can’t store the passphrase on an unen-
crypted disk; the encryption would be pointless! One option is to manually
issue the gbde attach command whenever the administrator wants access to
use the encrypted disk.

Another option is to require the administrator to enter the passphrase at boot
time, when filesystems are mounted. This can be done by creating an appropri-
ate entry in /etc/fstab and /etc/rc.conf:

root@hostname % fgrep /stuff /etc/fstab
/dev/adOs1g.bde /stuff ufs rw 2 2
root@hostname % fgrep gbde /etc/rc.conf
gbde_devices="AUTO"

With this configuration, the administrator will be prompted for the passphrase
for /dev/adOs1g at boot time. The boot scripts also support encryption of the
swap partition. In this case, the key can be chosen randomly, as the contents of a
swap partition aren’t required after a reboot:

root@hostname % fgrep swap /etc/fstab

/dev/ad0s1b.bde none swap sw 0 0
root@hostname % fgrep gbde /etc/rc.conf
gbde_swap_enable="YES"

More details about how to operate the GEOM BDE system, including how to de-
tach and destroy encrypted disks, can be read in the gbde manual page. For a de-
scription of BDE internals, see [10]; a discussion of the strengths and weakness-
es of its designs can be found at [11]. The GEOM system should also make it
easier for FreeBSD to support disk encryption schemes used by other systems,
such as NetBSD’s CGD [12].

Summary

In this article we’ve covered some older features (file flags and secure levels) and
some newer ones (the MAC and GEOM frameworks). These features basically
provide a richer set of choices in the design of a secure system, providing op-
tions that aren’t available with the plain UNIX security model. As usual, the
tricky bit is the care required to use these features correctly.

More features are in the pipeline. In particular, there should be support for event
auditing and OpenBSM available in the FreeBSD 6 family of releases. It will also
be interesting to see what interesting applications of the MAC and GEOM
frameworks people can come up with. Companies and individuals are already
developing third-party modules for use in their own environments or in FreeB-
SD-based products.

REFERENCES
[1] User Mode Linux: http://user-mode-linux.sourceforge.net/.

[2] Xen virtual machines: http://www.cl.cam.ac.uk/Research/SRG/netos/xen/.

[3] The original jail paper is available at http://docs.freebsd.org/44doc/. Many tutorials are
also available; see, e.g., http://www.freebsddiary.org/jail. php.

[4] FreeBSD Handbook, “Security,” File System Access Control Lists section,
http://www.freebsd.org/handbook/; see a tutorial article at
http://ezine.daemonnews.org/200310/acl.html.

[5] FreeBSD also provides the sysctls security.bsd.hardlink_check_uid and
security.bsd.hardlink_check_gid, which prevent users from making hard links unless
their UID/GID matches that of the file. However, these sysctls are only enforced against
locally running processes, and so hard links can still be made over NFS.

SECURITY THROUGH OBSCURITY

33

[6] “Musings,” ;login:, April 2005.
[7] TrustedBSD project: http://www.trustedbsd.org/.

[8] SELinux: http://www.nsa.gov/selinux/.
SEBSD port: http://www.trustedbsd.org/sebsd.html.

[9] FreeBSD Handbook, “Mandatory Access Control,” http://www.freebsd.org/handbook/.

[10] gbde—GEOM-Based Disk Encryption: http://phk.freebsd.dk/pubs/
bsdcon-03.gbde.paper.pdf.

[11] GBDE discussion on the Cryptography Mailing List threads:
http://www.mail-archive.com/cryptography@metzdowd.com/msg03636.html;
http://www.mail-archive.com/cryptography@metzdowd.com/msg03671.html.

[12] The CryptoGraphic Disk Driver: http:/www.imrryr.org/~elric/cgd/.

5th System Administration and Network Engineering Conference

SANE 2006

15-19 May 2006

Aula Congresscentre, Delft, The Netherlands

The 5th System Administration and Network Engineering Conference will offer three days of training followed
by a two-day conference program, filled with the latest developments in system administration, network
engineering, security, open source software, and practical approaches to your problems and puzzles. You will
also have the opportunity to meet other system administrators and network professionals and chat with
peers who share your concerns and interests.

www.sane.nl/sane2006
A conference organized by Stichting SANE,
co-sponsored by Stichting NLnet, USENIX, SURFnet,and NLUUG

34 ;LOGIN: VOL. 30, NO. 5

