
G E O F F R E Y M A I N L A N D A N D
M A T T W E L S H

distributed, adaptive
resource allocation
for sensor networks
Geoffrey Mainland is currently a Ph.D. student at
Harvard University and received his A.B. in Physics
from Harvard College. His research interests include
programming languages, distributed systems, net-
works, and intelligent control.

mainland@eecs.harvard.edu

Matt Welsh is an assistant professor of Computer
science at Harvard University. His research interests
encompass sensor networks, operating systems, and
distributed systems.

mdw@eecs.harvard.edu

S E N S O R N E T W O R K S H A V E T H E P O T E N -
tial to revolutionize any number of fields.
In the future, sensor networks may allow
bridges to immediately report on structural
damage following an earthquake, environ-
mental monitoring systems to track pollu-
tants in real time, and emergency response
workers to direct limited resources to those
who need medical attention most urgently.
They will also vastly increase the quantity
and quality of research data scientists can
collect in the field. Our group at Harvard is
working on several projects that apply sen-
sor network technology to problems not tra-
ditionally associated with computer science,
including CodeBlue, a software and hard-
ware platform for emergency response, and
the Volcán Tungurahua project, where we
are using sensor networks to monitor erup-
tions at an active volcano in central Ecuador.

A typical sensor network device is the UC Berkeley
Mica2 node, which consists of a 7.3MHz ATmega128L
processor, 128KB of code memory, 4KB of data memo-
ry, and a Chipcon CC1000 radio capable of 38.4Kbps
and an outdoor transmission range of approximately
300 meters. The node measures 5.7cm by 3.1cm by
1.8cm and is typically powered by two AA batteries,
with an expected lifetime of days to months, depend-
ing on application duty cycle. With such limited com-
putational and communication resources, how can ef-
fective applications be developed using this class of
device? One might be tempted to assume that in a few
years sensor network devices will have more powerful
CPUs and better radios. Undoubtedly more powerful
devices will appear, but we believe that the majority of
sensor network nodes will be similar to the Mica2 in
terms of processing power and bandwidth—they’ll
just be much smaller and cheaper. Far from becoming
obsolete, techniques for programming these small de-
vices will become increasingly important.

Consider two commonly cited applications for sensor
networks: environmental monitoring [1, 2] and dis-
tributed vehicle tracking [3, 4]. Both applications re-
quire nodes to collect local sensor data and relay it to a
central base station, typically using a multi-hop rout-
ing scheme. To reduce bandwidth requirements, nodes
may need to aggregate their local sensor data with that
of other nodes. Even these simple applications present
unique challenges to system implementers. Nodes

40 ; L O G I N : V O L . 3 0 , N O . 5

; LO G I N : O C TO B E R 2 0 0 5 D I STR I B UTE D, A DA PTIVE R E S O U R C E A L LO CATI O N F O R S E N S O R N E T WO R KS 41

must individually determine a schedule for sampling, aggregating, and sending
data, subject to energy budget constraints. This schedule affects energy usage
and, therefore, the overall lifetime of the network, as well as the quality of the
data generated by the network. A node’s ideal schedule is based on its physical
location, position in the routing topology, and changes in the environment. As a
result, there is almost never an ideal a priori common schedule for all nodes.
Any action-scheduling algorithm must cope with network dynamics, so even
full knowledge of a node’s network location and capabilities doesn’t allow one to
choose a schedule ahead of time that will work well for all settings.

Many current applications use a single fixed, common schedule anyway, or try
to build in some ad hoc adaptive behavior. For example, an application might
selectively activate nodes that are expected to be near some phenomenon of in-
terest. The only current tool that programmers have to address the scheduling
issue is manual tuning, which is difficult and error-prone.

We propose an adaptive resource allocation scheme for sensor networks, called
“Self-Organizing Resource Allocation” (SORA). Rather than defining a fixed
node schedule, SORA causes nodes to individually tune their rate of operation
using techniques from reinforcement learning [5]. Nodes receive rewards for
taking “useful” actions that contribute to the overall network goal, such as lis-
tening for incoming radio messages or taking sensor readings. Each node learns
which actions are profitable based on this reward feedback. Network retasking is
accomplished by adjusting rewards, rather than pushing new code to sensor
nodes, and network lifetime is controlled by constraining nodes to take actions
that meet a local energy budget.

Application Example: Vehicle Tracking

As a concrete example of using SORA to manage resource allocation in a realistic
sensor network application, we consider tracking a moving vehicle through a
field of sensors. Vehicle tracking raises a number of interesting problems in
terms of detection accuracy and latency, in-network aggregation, energy man-
agement, routing, node specialization, and adaptivity [4, 6, 7]. Vehicle tracking
can be seen as a special case of the more general data collection problem also
found in applications such as environmental and structural monitoring [2, 8].

In the tracking application, each sensor is equipped with a magnetometer capa-
ble of detecting local changes in a magnetic field, which indicates the proximity
of the vehicle to the sensor node. One node acts as a fixed base station, which
collects readings from the other sensor nodes and computes the approximate lo-
cation of the vehicle based on the data it receives. The systemwide goal is to
track the location of the moving vehicle as accurately as possible while simulta-
neously maximizing the efficiency of the network’s energy use.

Each sensor node can take the following set of actions: sample a local sensor
reading, send data toward the base station, listen for incoming radio messages,
sleep for some interval, and aggregate multiple sensor readings into a single
value. Each node maintains a fixed-length FIFO buffer of sensor readings, which
may be sampled locally or received as a radio message from another node. Each
entry in the buffer consists of a tuple containing a vehicle location estimate
weighted by a magnetometer reading. The sample action appends a local reading
to the buffer, and the listen action may add an entry if the node receives a mes-
sage from another node during the listen interval.

Each action a has a utility u(a) given by:

where ra is the current reward for action a, and is the estimated probability of
payment for that action, which is learned by nodes as described below. In our
work, reward vectors are broadcast by the base station, but they may also be
static parameters of the sensor network program. An action may be unavailable
if either the current energy budget is too low to take the action, or other depen-
dencies have not been met (such as lack of sensor readings to aggregate). This
utility function is just the expected reward for taking a given action.

The estimated probability of receiving a reward for an action a, , is updated
every time that action is taken using an exponentially weighted moving average
(EWMA). The equation for this update is:

where represents the sensitivity of the EWMA filter. If an action does not pro-
duce a reward, the node’s estimated probability of receiving a reward decreases,
but if the action does produce a reward, the estimated probability increases.
Nodes learn the probability of receiving a reward instead of directly learning the
expected reward for an action because this allows them to more easily adapt
when a new reward vector is injected into the network.

A node chooses an action to perform by examining the utilities of all available
actions and picking the action with the largest utility, which is just the expected
reward. The expected reward for an action will vary over time due to possible re-
ward adjustments and changing environmental conditions. Therefore, it is im-
portant that nodes periodically “take risks” by choosing actions that have a low
reward probability . To allow nodes to occasionally explore the action space,
we employ an -greedy action selection policy. With a small probability, , when
faced with a decision, a node will choose an available action uniformly at ran-
dom. With probability 1- the node selects the “greedy” action, that is, the ac-
tion that maximizes the utility u(a). This exploration prevents a node from ever
again selecting an action that has been unprofitable in the past.

Comparison with Existing Approaches

To compare the use of SORA with more traditional approaches to sensor net-
work scheduling, we implemented three additional versions of the tracking sys-
tem. The first employs static scheduling, in which every node uses a fixed sched-
ule for sampling, aggregating, and transmitting data to the base station. Nodes
perform a round of actions: sample, listen, aggregate, and transmit. The node
then sleeps for a period of time. Given a daily energy budget, a node determines
how long it must sleep between these rounds to meet this energy budget. The
same schedule is used for every node in the network, so nodes do not learn
which actions they should perform, nor do they adapt their sampling rate to en-
vironmental changes such as the approach of the vehicle. This is the typical ap-
proach used by current sensor network applications.

The second approach employs dynamic scheduling, in which nodes continuously
adjust their sleep period based on their current remaining energy. This allows
nodes that do not consume energy aggregating or transmitting data to use this
conserved energy to increase their sampling rate.

The third and final approach, the Hoods tracker, is based on the tracking system
implemented using the Hoods communication model [7]. It is largely similar to
the dynamically scheduled tracker except in the way that nodes calculate the
target location. Each node that detects the vehicle broadcasts its sensor reading

42 ; L O G I N : V O L . 3 0 , N O . 5

u(a) =

{
βara if the action is available
0 otherwise

β ′
a =

{
α + (1 − α)βa if a receives a reward
(1 − α)βa otherwise

α

βa

βa

ε

ε

ε

βa

; LO G I N : O C TO B E R 2 0 0 5 D I STR I B UTE D, A DA PTIVE R E S O U R C E A L LO CATI O N F O R S E N S O R N E T WO R KS 43

to its neighbors. The node then listens for some period of time and, if its own
reading is the maximum of those it has heard, computes the centroid of the
readings (based on the known locations of neighboring nodes) as the estimated
target location. This location estimate is then routed toward the base station.
We implemented the Hoods tracker to emulate the behavior of a previously
published tracking system for direct comparison with the SORA approach.

For purposes of comparison, we are interested in two metrics: tracking accuracy
and energy efficiency. We do not expect SORA to be more accurate than the
other scheduling approaches, but if it is to be a realistic solution it should per-
form similarly. Our goal is to give good performance while maximizing energy
efficiency, so we are willing to sacrifice some accuracy for more efficient energy
usage.

F I G U R E 1 : T R A C K I N G A C C U R A C Y A N D E N E R G Y E F F I C I E N C Y

Figure 1 summarizes the accuracy and efficiency of each scheduling technique
as the energy budget is varied. Each system varies in terms of its overall tracking
accuracy as well as in the amount of energy used. While SORA has a somewhat
higher rate of tracking error compared to the other scheduling techniques, it
demonstrates the highest efficiency, exceeding 66% for a daily energy budget of
2100J. The static and dynamic schedulers achieve an efficiency of only 22%. In
SORA, most nodes use far less energy than the budget allows. The ability of
SORA to “learn” the duty cycle on a per-node basis is a significant advantage for
increasing network lifetimes. The Hood tracker performs poorly due to its dif-
ferent algorithm for collecting and aggregating sensor data, so it is not included
in Figure 1.

44 ; L O G I N : V O L . 3 0 , N O . 5

Conclusions

Current approaches to resource management are often extremely low-level, re-
quiring that the operation of individual sensor nodes be specified manually.
With SORA, nodes self-schedule their local actions in response to feedback. This
allows nodes to automatically adapt to changing conditions and specialize their
behavior in response to physical location, routing topology, and environmental
changes. While it does require a reformulation of application logic, using SORA
is not particularly difficult, and it allows sensor networks to utilize resources
much more efficiently than standard, ad hoc manual techniques. The increased
complexity of future sensor network applications may make them a bad fit for
this simple technique, but SORA is not meant to be universal. We view it not as
a final solution, but as an important step that demonstrates the potential power
of adaptive techniques in real sensor network systems.

R E F E R E N C E S
[1] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis Girod, Michael Hamilton, and
Jerry Zhao, “Habitat Monitoring: Application Driver for Wireless Communications Tech-
nology,” Proceedings of the Workshop on Data Communications in Latin America and the
Caribbean, 2001.

[2] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John Ander-
son, “Wireless Sensor Networks for Habitat Monitoring,” ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA’02), Atlanta, GA, USA, Sept. 28, 2002.

[3] Dan Li, Kerry Wong, Yu Hen Hu, and Akbar Sayeed,”Detection, Classification and
Tracking of Targets in Distributed Sensor Networks,” Journal of the IEEE Signal Processing
Magazine, Vol. 19, No. 2, March 2002.

[4] Yingqi Xu and Wang-Chien Lee, “On Localized Prediction for Power Efficient Object
Tracking in Sensor Networks,” Proceedings of the 1st International Workshop on Mobile Dis-
tributed Computing, May 2003.

[5] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, MIT
Press, Cambridge, MA, 1998.

[6] R. Brooks, P. Ramanathan, and A. Sayeed, “Distributed Target Classification and
Tracking in Sensor Networks,” Proceedings of the IEEE, November 2003.

[7] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler, “Hood: A Neighbor-
hood Abstraction for Sensor Networks,” Proceedings of the International Conference on Mo-
bile Systems, Applications, and Services (MOBISYS ’04), Boston, MA, June 2004.

[8] Venkata A. Kottapalli, Anne S. Kiremidjian, Jerome P. Lynch, Ed Carryer, Thomas W.
Kenny, Kincho H. Law, and Ying Lei, “Two-Tiered Wireless Sensor Network Architecture
for Structural Health Monitoring,” Proceedings of the SPIE 10th Annual International Sym-
posium on Smart Structures and Materials, San Diego, CA, March 2000.

