
14 ; L O G I N : V O L . 3 0 , N O . 4

M A R K M C C U L L O U G H

secure automated
file transfer
Mark McCullough is a senior system administrator
at SBC, where he focuses on issues of security and
system automation.

mmccul@earthlink.net

W H E N W E W E R E A S K E D T O S E T U P A N
automated file transfer of customer data
with an outside vendor, we developed a
method using SSH to do this. Soon several
other projects requested the same struc-
ture to transfer files containing sensitive
data. Various refinements were later made,
as well as more in-depth security analysis.
Much later, a variation was even developed
that permitted outside contractors to
securely access individual servers without
compromising the security of the network.
Each of these variations used SSH to trans-
fer the files in a way that did not lower the
overall security of the system, yet could be
completely automated.

Requirements

Any choice of product for file transfer must offer the
following three characteristics: it must use or allow
for good authentication; it must encrypt the data dur-
ing transfer; the method must be completely auto-
mated.

Securing interactive access has similar requirements
except, obviously, automation is no longer needed. It
should go without saying that the setup must not
introduce significant new security risks.

Today, business-to-business virtual private networks
(B2B VPNs) provide the ability to secure network
transactions from the perimeter of one company to
the perimeter of another. Given the axiom that most
computer intrusions come from inside the corporate
intranet, stopping the security at the corporate
perimeter is insufficient.

The first requirement is obviously met by SSH. Public
key exchange and encrypting user authorization cre-
dentials provide good authentication. It is also possi-
ble to use true two-factor authentication with SSH.

By nature, SSH also meets the second requirement,
encrypting the session. HR and legal requirements
may require data confidentiality, especially if the data
is personal, medical, or financial. Future develop-
ments like widespread adoption of IPv6 or use of
point-to-point IPSec may mitigate this requirement
by moving the burden from the application layer to
the transport layer.

The third requirement appears to be readily met by
SSH as well. Use of SSH keys in memory makes for
easy scripting.

; LO G I N : AU G U ST 2 0 0 5 S E C U R E AUTOM ATE D F I L E TR A N S F E R 15

For the immediate problem of transferring files, sev-
eral alternatives to SSH are available (e.g., rcp, FTP,
NetBIOS, HTTPS, rlp). Each of these alternatives has
advantages and disadvantages and may in some situa-
tions be more appropriate than SSH; in many cases,
however, SSH remains the preferred choice.

SSH for File Transfer

Unfortunately, SSH needs some work before it can be
appropriately secured, especially when used for file
transfer. Unlike FTP, creating individual access for
downloads on SSH provides for the possibility of
interactive access, something not at all desirable in
most situations. SCP-only accounts are possible but
difficult to properly set up and maintain. Perhaps
more important, protecting the system so that users
cannot overwrite key files offers a unique challenge.
A user able to send an arbitrary file name could
potentially overwrite the very file that prevents inter-
active access with an altered file.

Fortunately, this deficiency in SSH can be addressed,
but it does require some work on both the client end
and the server end. SSH offers the possibility of
authenticating by means of a public key instead of
just password authentication. One of the most useful
features of public key authentication is the ability to
specify a forced command that will be executed any-
time a user successfully authenticates to the system
using that public key.

Using forced commands, one must give up on the
SCP and SFTP ease-of-use features. Instead, the fact
that SSH will pass STDIN through the encrypted ses-
sion to STDOUT on the remote end is used. Also,
forced commands permit immediate command execu-
tion method through normal shell notation.

To specify a forced command to a system using
OpenSSH, one prepends command=”some
command” to the beginning of the line containing
the public key. Other SSH servers may use a different
syntax. Consult your documentation on the correct
format, but be sure to enclose your forced command
in double quotes to protect spaces.

Direct Server-to-Server Transfers

There are two basic ways to transfer a file: by a PUT
or by a GET (to borrow from the FTP terminology).
Windows systems can readily be the initiator just as
easily as UNIX, but it is presumed here that a UNIX
box is the server receiving the request for either the
PUT or the GET.

The simplest application of file transfer assumes that
the client will be directly transferring files to the next

server with a PUT. All the more complex concepts in
file transfer presume that one understands this direct
server-to-server file transfer method.

The forced command needs to receive a file sent on
STDIN to a hard-coded file name. It is important that
the sender not have any input on the forced com-
mand executed to protect against tainting of the com-
mand line or overwriting the authorized_keys file.
The dd command was chosen for this purpose
because of its ability to handle both STDIN and STD-
OUT easily. If there is no fear of file clashing (the
same file will be transferred once a day and should
overwrite the existing file), then the forced command
on the server to PUT a file would be

command="/usr/bin/dd of=/path/to/file"

Usually, it is important to protect against file-name
clashes, so a date string might be added:

command="/usr/bin/dd of=/path/somename-\
'/usr/bin/date +%Y-%m-%dT%H:%M:%S'.$$"

Note the use of the shell syntax for process ID (PID);
a full datestamp provides protection for a unique file
name. This method does not attempt to protect
against a local attack to predict the file name. The file
transferred should be placed in a location of the drive
where permissions can protect against unauthorized
access.

Unfortunately, many times a custom file name, deter-
mined by the application, is required. For example,
each send of the file may require a sequence number
in the file name which changes every day. Allowing
the sender to specify the file name without checking
it first is unacceptable. Prepending the file name as
the first line of the file can be used to embed the file
name even in a binary file. In UNIX there are, of
course, multiple ways to do this without editing the
file. Windows users can concatenate two files with the
copy command:

copy file1 + file2 newfile

A trivial script could read the file up to the first line
break and use what is read to obtain the desired file
name and write the rest of the file to that file name:

#!/usr/bin/ksh
SOURCEFILE=$1
INNAME=$(/usr/bin/head -1 $SOURCEFILE)
FILENAME=$(/usr/bin/basename $INNAME)
/usr/bin/tail +2 $SOURCEFILE > $FILENAME

Obviously, such a method should have sanity checks
appropriate for the location to protect against deliber-
ate or accidental overwriting of a different file. The
above example could easily be modified to send files
to specific directories depending on the file name.
The use of a base name helps prevent key files from
being overwritten.

16 ; L O G I N : V O L . 3 0 , N O . 4

The GET procedure is fundamentally similar. The pri-
mary restriction of this method is that each public key
can only execute one function, such as get a file of a
given file name. The forced command in this structure
would appear as:

command="dd if=/file/to/send"

Obviously, /file/to/send is the full specification of the
file name to be sent to the requesting client. That the
original command line can be used as a variable to the
command string might allow the requester the ability
to request arbitrary file names, but extra care must be
taken to detaint any information passed by the
requester.

ClientSide

The client sends the file (PUT) by piping the data into
the SSH process. Under UNIX, one way to do this
would be:

cat file | ssh remotehost

If a set file name is to be placed as the first line of the
file, one may wish to do it at the time the file is sent:

(echo desiredfilename ; cat file) | ssh remotehost

Windows provides a similar mechanism; the PUT com-
mand using PuTTY might be

type file | plink remotehost

The GET procedure is fundamentally very similar to
the PUT. However, instead of sending the data through
the SSH session, it is received and then output to a file:

ssh remotehost | dd of=/file/to/receive

The Windows command is very similar:

plink remotehost > /file/to/receive

One caveat about the Windows procedure: Some Win-
dows SSH clients may not be able to handle reasonably
sized files transferred in this manner. In 2003, the then
current version of SecureCRT was unable to handle
more than 128KB of data. PuTTY, on the other hand,
was capable of transferring well over a megabyte of
data.

“Man in the Middle” Bastion Host

Usually, direct SSH connections are not possible from
the outside company directly to the endpoint, and so a
bastion host is used for the transfer. Two possibilities
exist. In the first case, the bastion host may be required
to intercept files suspected of containing inappropriate
content. In this case, some minor scripting knowledge
is required. In the second case, it may be unacceptable
for the bastion host to be able to intercept the files
being transferred. This option requires more security
awareness on the part of the destination-server admin-

istrators rather than concentrating the security aware-
ness on a perimeter box.

In the first scenario with a bastion host, the sender
transfers the file in the manner described previously,
but this time sending to the bastion host. Instead of
using the direct forced command, the bastion host uses
a script, which receives the file as indicated and then
immediately plays the role of the client, transferring
the file to the final destination. In the following exam-
ple, the forced command that invokes the script also
passes a single argument of the final destination server:

#!/usr/bin/ksh
MSGFILE=/appl/safedir/tmpfile-\
'/usr/bin/date +%Y-%m-%DT%H:%M:%S'.$$
/usr/bin/dd of=$MSGFILE
/usr/bin/dd if=$MSGFILE | /usr/bin/ssh $1
/usr/bin/rm $MSGFILE

Once the file is transferred, the bastion host can safely
remove the file. If there is reason to inspect a file, this
can be done by not removing the file or by transferring
it to a different server inside the organization.

As a variation, if the end server expects the file to be
received by scp, then the second dd command could
be changed to

scp $MSGFILE $1:.

Pass-Through Bastion Host

In the second method, direct transfer of the file, it is
unacceptable for the bastion host to intercept the files
being transferred. A command sequence example is:

ssh -L 2001:finalhost:22 -f bastionhost sleep 60
cat /file/to/send | ssh -p 2001 localhost dd \
of=/file/being/sent

Note, the dd step on the second line is redundant and
exists for documentation purposes only. In this scenar-
io, the bastion host has a forced command of sleep 60
but, unlike the first method, does permit port
forwarding.

Because the bastion host only serves as a port forward,
it is impossible to intercept the file at the intermediate
point. This method is appropriate for instances where
the initiator and receiver cannot directly route to each
other. It is also important to note that this method
could be extended to chain multiple bastion hosts
together (again, the dd command here is for documen-
tation purposes only):

ssh -L 2001:bastion2:2222 -f bastion1 sleep 60
ssh -L 2002:remoteserver:22 -f -p 2001 \
localhost sleep 60
cat /file/to/send | ssh -p 2002 localhost dd \
of=/file/sent

The forced command on the intermediate hosts would
match the specified command, a sleep command. On

; LO G I N : AU G U ST 2 0 0 5 S E C U R E AUTOM ATE D F I L E TR A N S F E R 17

the final box, the forced command matches instances,
described above, where no bastion host is used.

A caveat: Because this second method permits port
forwarding, it is possible for a user to port forward
beyond the intended destination, permitting the user
to leapfrog to other systems in your network. A leap-
frog attack can be difficult to detect because, until it
goes beyond the final destination, the attack resem-
bles legitimate file-transfer traffic. As such, it is more
appropriately used when the users of both the initiator
and the receiver have legitimate access to the network
but cannot directly talk to each other.

Interactive Access

Interactive user access presents a different problem.
Users cannot be restricted to a single command that is
completely locked down. It is very difficult to ensure
that a port forwarding is not created to transfer files
back and forth. With B2B VPNs, the question might
even be, why worry? Interactive access from an outside
vendor should not result in the dumbing down of
security. As with any box, the box that the vendors
access should be locked down, disabling the telnet
daemon, the r-commands, etc.

By directing the B2B VPN endpoint to a bastion sys-
tem, users can be forced to authenticate against this
system. This system would be running a specially con-
figured SSH daemon with all port forwarding disabled.
(As a note, this will disable the possibility of X11 traf-
fic, but considering the speed of X Windows traffic
over a wide area network, this restriction would hope-
fully not be a serious issue.) Once users land on this
box, a forced script will immediate initiate a SSH to
their eventual destination. It does not matter if they
attempt to construct port forwards beyond the bastion
box, because all port forwarding is stopped at this bas-
tion system. They cannot construct a new port forward
through that particular hop.

Set either a .profile or forced command to execute a
small script for the user. Ensure that when the script

exits, the user’s connection is terminated. The script
should initiate an SSH connection to the next system
without ever offering the user the chance to get a shell
prompt. This is important because a user with shell
access could install their own port forwarder to bypass
the protections of the bastion host.

Configuring the Server for Interactive Access

Several of the listed options require changes to the
server. Some of the options require that port forward-
ing be enabled, but others specifically shut it down for
added security. In the OpenSSH server, there are sev-
eral options that should be set to add to the security of
the system. In the sshd_config file:

X11Forwarding no
AllowTcpForwarding no

For the indirect file transfer where the files land on the
bastion host, also set (using command-line option
names):

no-agent-forwarding
no-pty

Conclusion

Using the built-in features of SSH permits two compa-
nies to safely transfer sensitive files in an automated
manner. Of course, in any discussion of computer
security, it is important to evaluate recommendations
carefully prior to implementing them at any given site.
It is hoped, however, that the tools described here will
make it easier to handle the problems of file transfer.

AC K N OW L E D G M E NTS

The procedures described above were developed with
the cooperation of Ivan Holt and Darrell Widhalm
from SBC. Their input helped bring these methods to
full operational use.

