
S T E V E M A N Z U I K

your defense
is offensive
Steve Manzuik is the founder and moderator of
Vulnwatch (www.vulnwatch.org). He is currently a
product manager for eEye Digital Security, and over
his 17-year career has worked for Ernst & Young, IBM,
and Bindview Razor.

smanzuik@eeye.com

T O D AY, I N F O R M AT I O N T E C H N O L O G Y
is flooded with various gadgets and prod-
ucts that are all marketed to help improve
security. Some of these products do work
as advertised while others do not. One
would assume that the security products
themselves are secure, but the reality is
that some security products may in fact
be more of a danger to your networks than
a benefit. This article outlines some of the
known vulnerabilities in security products
as well as some new attack vectors that
may not have been considered. In doing
so, the intent is not to call attention to spe-
cific vendors, but the reader may notice
that some vendors have more issues than
others.

In the Beginning

By searching the Open Source Vulnerability Database
(OSVDB) for the keyword “security,” one finds secu-
rity problems dating back to 1996: OSVDB ID 6519—
IPFW address:mask syntax firewall filter leak.

While this flaw does not lead to the use of IPFW as an
attack vector, it does show that security flaws within
security products have existed for quite some time.
Lets look at some of the newer, more serious issues
out there.

More Relevant Issues

I’ll start with a security technology that everyone has
been convinced that they need: firewalls. When you
search online vulnerability databases such as OSVDB
(www.osvdb.org) using “firewall,” you find approxi-
mately 160 different vulnerabilities. Of course not all
of these are serious enough to be used as an attack
vector, but some are.

The first vulnerability is OSVDB ID 4412—Check-
point Firewall-1 SmartDashboard Overflow. This vul-
nerability allows a remotely authenticated user to ele-
vate her privileges and execute arbitrary commands.
This issue is over a year old and, according to OSVDB,
there are no known patches or workarounds for it,
but exploit code does exist. The level of exposure to a
vulnerability such as this is limited, as you do need to
be an authenticated user, which would lead one to
assume that various log files will offer evidence of
your dirty deeds; of course, those log files are only

; LO G I N : AU G U ST 2 0 0 5 YO U R D E F E N S E I S O F F E N S I V E 43

44 ; L O G I N : V O L . 3 0 , N O . 4

good if stored in a secure manner and if the evil user
doesn’t know to cover up the evidence.

Obviously, allowing code to be executed on your fire-
wall is a bad thing, and the scenarios where this can
be abused are endless.

Also under the category of abusing firewalls we find a
handful of Zone Alarm vulnerabilities. According to
OSVDB there are 16 different ways one could abuse
Zone Alarm. However, out of those 16 vulnerabilities
only two offer the ability to be used in an attack other
than your run-of-the-mill denial of service. The first
of these was discovered by eEye Digital Security and
is an overflow that was present in the SMTP process-
ing agent. Those of you familiar with this vulnerabil-
ity are probably getting ready to correct me by saying
that this is not remotely exploitable, since it requires
the malformed SMTP RCPT TO string to come from
the client. This is only partially correct: yes, the mal-
formed command must come from the client side, but
that does not rule out the potential to abuse this flaw.

For example, a malicious Web link could easily be
crafted and used to trick users into sending an email
with the correct malicious string, causing the system
either to crash or, even better from an attacker’s per-
spective, to execute commands with system privi-
leges. Probably the easiest and most reliable attack to
initiate here, not that I would know anything about
attacking systems, would be to upload and execute
something, netcat perhaps, that could give you sys-
tem-level shell or back-door access to the system.
Simply executing netcat to listen on port 53 or some
other nonobvious port is pretty common, and, as far
as I know, netcat is not on any of the anti-virus ven-
dor hit lists.

The second vulnerability in Zone Alarm is very simi-
lar, albeit more difficult to exploit, since it requires
abusing a specific device driver installed with Zone
Alarm. Again, this needs to be achieved on the client
side. This vulnerability is more likely to lead to crash-
ing the system than to successfully executed com-
mands, but the potential for abuse is there and it does
work.

To broaden this article beyond a discussion of broken
firewalls, which would ultimately lead to a rant that
might be construed as antifirewall technology, I will
move on to another popular security technology:
intrusion detection systems (IDS).

IDS

As you probably know, there are host-based (HIDS)
and network-based (NIDS) intrusion detection sys-
tems; for the purposes of this article, I will make most

NIDS and HIDS vendors cringe by simply lumping
them together.

As my first example, I will use the Snort vulnerability
that was found just over two years ago. I have person-
ally witnessed environments still running older ver-
sions of Snort, which is why I am using it as an exam-
ple. Basically, an attacker can send a specially crafted
packet that will cause a heap overflow and execute
commands.

Let’s think about this one for a minute. Here you have
a system that is typically installed on sensitive net-
work segments and is typically in a position to see
most network traffic. Rather than just abusing the
sensitivity of this system, a smart attacker would use
this vulnerability to gather data. For example, by
using this vulnerability to obtain a remote shell, one
could capture sensitive information, since that is
essentially what NIDS is already doing.

Luckily, this vulnerability has been fixed and is not
present on any new versions of Snort. My next exam-
ple, for those good at noticing patterns, was discov-
ered by eEye Digital Security.

OSVDB ID 4702 explains how a flaw in the way
RealSecure, Preventia, and BlackIce reassemble SMB
packets can be abused to run arbitrary code with sys-
tem privileges. This vulnerability can be exploited
with one simple SMB packet; to quote the eEye advi-
sory, “code execution is effortless.”

Once again, we have a system that is typically used in
sensitive locations, offering an attacker access to sen-
sitive data. Much like the Snort attack, a smart
attacker would not abuse this flaw but silently use it
to gather sensitive data. In fact, by combining this
with the numerous ways an attacker could bypass IDS
signatures, the attacker could easily gain and main-
tain access to the system. A careful attacker could pull
this off without being detected.

Another example of the same IDS products leaving
organizations open to attack is the ICQ Protocol over-
flow that was used in the Witty worm. The Witty
worm is a great example of how systems designed to
protect you can leave you vulnerable.

All of the above examples have been known for quite
some time. Most of them have been addressed by the
vendors, although that does not mean that there are
no longer any systems that can be attacked using
these methods. The following scenarios are ones that
may or may not have been thought of or reported but
that do illustrate how the very infrastructure we have
built to protect our networks can in fact be used
against us.

; LO G I N : AU G U ST 2 0 0 5 YO U R D E F E N S E I S O F F E N S I V E 45

Patch and Systems Management

At Blackhat Amsterdam 2005, Chris Farrow pre-
sented a talk that I wrote and researched, outlining
many of the flaws in the current patch and systems
management process and including some ideas on
how these flaws can be abused. Most of these attack
scenarios are completely theoretical, and while varia-
tions on or portions of the attacks have occurred, no
one has performed an attack against the patching or
systems management infrastructure . . . yet.

During the Blackhat talk, the following disclaimer
was given: No vendor products will be named unless
information is already public; most of these flaws
apply to multiple vendors; and any vendor-specific
issues will be disclosed to the vendors before they are
publicly disclosed.

The patching of workstations and servers has become
a necessity in maintaining system security and
uptime. Almost every organization today finds itself
forced to install some sort of patch on an almost
monthly basis. This has become a very expensive
problem for organizations, and many vendors have
gladly stepped up to the plate with various solutions
designed to help manage the patching and configura-
tion of systems, thus helping to increase the overall
security of an organization. Too bad many of these
vendors did not consider the impact of their very own
products on an organization’s security.

Before we dive into the specific flaws in the various
products let’s look at the anatomy of a Microsoft
patch. Patches released by Microsoft are digitally
signed, these signatures are available on the patch
download server, and Microsoft controls the patch
process with an XML file named mssecure.xml. As a
bare minimum this seems like a reasonable way to
handle patch distribution, but can you think of any
vendors out there that do not even bother to do this
bare minimum?

Patch and systems management products can be
lumped into two categories: agent-based and agent-
less technologies. Obviously, to be managed or
patched the agent-based systems require an agent to
be installed on the host systems. The agentless sys-
tems do not require an agent but usually require priv-
ileged credentials or some sort of trust relationship on
the network.

Most of these systems communicate over the follow-
ing protocols: HTTP, RPC/DCOM.

You will notice that these do not include any proto-
cols that are natively “secure” by means of encryp-
tion. Some products do have an option to run over
HTTPS while others do encrypt agent-to-master com-
munications, but most do not.

Patches are fed to the master systems directly via
Windows Update over HTTP. Some systems down-
load new patches for each run; others store the
patches in a central repository. Some systems are able
to simply push out patches and configuration
changes; others require custom scripts to be created.

So far, while explaining at a very high level how most
vendors have approached patch and systems manage-
ment, I have already uncovered some potential flaws
that should be investigated. They are:

n Lack of encrypted communications between the
console and the agents

n Lack of true authentication (some products)
between the agent and the console

n Patch repository as a potential attack vector

L AC K O F E N C RY P TE D COM M U N I C ATI O N S

Some vendors do not encrypt communications via the
agent and the console. This leaves them open to
replay and man-in-the-middle attacks. Imagine a
sophisticated attacker placing himself between your
servers and the system that has the ability to alter the
configuration of those systems.

L AC K O F TR U E AUTH E NTI C ATI O N

During testing and research for the original Blackhat
talk, I found that some agents only check that the
machine name sending the commands matches that
of the console, and then simply do what they are told
by this machine. Obviously, this is a huge mistake in
terms of security, since an attacker can easily not only
discover the machine name but also spoof it.

PATC H R E P O S ITO RY A S AT TAC K V E C TO R

The patch repositories on some systems have, by
default, extremely weak directory and file permis-
sions, leaving the patches themselves vulnerable to
modification. While some systems combat this by
checking the digital signature each time they issue a
patch, others simply check once, save the patch in the
directory, and then assume the patch is valid so long
as the file name matches. These are all weaknesses in
the patch products themselves; as with any weakness,
however, these can be exploited only if there are
attack vectors designed to take advantage of them.

Attack Scenarios

The first potential attack vector comes from an inter-
nal threat (admittedly not as sexy or cool as an exter-
nal attack):

46 ; L O G I N : V O L . 3 0 , N O . 4

n Compromise the patch repository
n The attacker gains access to the central
patch repository, modifies a patch to install
malicious code, and waits for that patch to
be rolled out.

n The attacker gains access to the central
patch repository, follows the numbering
sequence of vendor patches, and places a
malicious patch with the next patch name,
knowing that the system will not overwrite
what is in the repository.

n Sniff internal network for agent-to-console commu-
nications or console-to-system communications

n Look for credentials as they will have privi-
leged access.

n Watch for specific commands to figure out
and document what the agent will respond
to and how it will respond.

n Man-in-the-middle the system and substitute the
payload with malicious code

n Adjust patch targeting to prevent a patch
from being installed, leaving a system vul-
nerable. This would work only if the agent
does not report patch success/failure back to
the console, though such traffic can also be
modified or created.

An internal malicious user could pull off one of the
above attacks undetected as long as the user is smart
enough to learn exactly how the system works and
what inputs and outputs it expects. System administra-
tors explicitly trust what they see on their consoles and
do not have the time or reason to double-check the
system.

The second attack scenario involves an external attack
and abuses a couple of flaws found specifically in the
Microsoft patch process. The first issue with this
process is that it is regularly scheduled. This gives an
attacker a window of opportunity—more on this
shortly. The second issue is that while Microsoft

publishes an XML file containing everything a user
needs to validate a patch, that XML is distributed from
the same systems that the patches are distributed from.
You will see why this can be a problem in the following
scenario. The attacker:

n creates a trojan patch, digitally signs it, and creates
the proper XML file that some systems will look for;

n patiently waits for the next “Patch Tuesday”;
n goes after the infrastructure of the target;
n redirects requests for known patch sites to a site con-

taining spoofed patches.

The system will receive what it believes to be a valid
XML file and then begin to download the executables.
Your base will then belong to the attacker.

The trojan patch could address the actual problem and
simply install its own additional code. And it could be
digitally signed, obviously not with Microsoft’s key but
with another. Many patch management systems only
check that there is a signature and do not actually vali-
date that signature.

Solutions and Conclusion

The scenarios outlined above are based on nothing
more than high-level research of vulnerabilities and
how specific products work. While products that run
and “secure” Microsoft environments were used, in all
of the examples these flaws can extend to other operat-
ing systems.

The bottom line and the entire point of this article is
that organizations need to start putting more thought
and research into what products they use to protect
their infrastructures. Basing purchasing decisions on
who has the cutest booth babes at the various confer-
ences may make sense for general IT products and
services but not when selecting a security or systems
management vendor.

