
	56    ;login:  VOL. 37, NO. 2

As Python programmers know, there has always been a “batteries included”
philosophy when it comes to Python’s standard library. For instance, if you simply
download Python and install it, you instantly get access to hundreds of modules
ranging from XML parsing to reading and writing WAV files.

The standard library is both a blessing and a curse. Because of it, many program-
mers find they can simply install Python and have it work well enough for their
purposes. At the same time, reliance on the library and concerns about backwards
compatibility tend to give it a certain amount of inertia. It is sometimes difficult
to push for changes and improvements to existing modules. This is especially true
if one tries to challenge the dominance of standard library modules for extremely
common tasks such as regular expression parsing or network programming.

In this article, I’m going to take a brief tour through two third-party libraries, re-
quests and regex, that have generated a bit of buzz in the Python world by aiming to
replace long-standing and widely used standard library modules. Both have gener-
ated buzz in the Python world and, coincidentally, both start with the letter “R.”

Interacting with the Web

Python has long included a module, urllib, that gives you simple access to the Web.
For example, if you want to download and print out the street address of every bike
rack in the city of Chicago, you can write code like this:

import urllib

u = urllib.urlopen(“http://data.cityofchicago.org/api/views/cbyb-69xx/rows.

csv”)

for line in u:

	 fields = line.split(“,”)

	 print fields[1]

This works fine if all you want to do is pull down a simple document and read it.
However, as you know, the Web is a complicated place. If you need to do almost
anything else, such as supply custom HTTP headers, provide form data, upload
files, perform authentication, or deal with cookies, you’re out of luck.

Some limitations of urllib are addressed by another standard library, creatively
named urllib2. However, if you’ve ever used urllib2 you know that it feels “over
engineered” and that seemingly simple tasks like authentication can be tricky. To
give you some idea, here is a fragment of code that shows how you would initiate a
basic authentication login to the Python Package Index (http://pypi.python.org).

“R” is for Replacement
D A V I D B E A Z L E Y

David Beazley is an open

source developer

and author of the Python

Essential Reference (4th Edition,

Addison-Wesley, 2009). He is also known as

the creator of Swig (http://www.swig.org) and

Python Lex-Yacc (http://www.dabeaz.com/

ply.html). He is based in Chicago, where he

also teaches a variety of Python courses.

dave@dabeaz.com

http://pypi.python.org

	 ;login:  APRIL 2012   “R” is for Replacement    57

import urllib2

auth = urllib2.HTTPBasicAuthHandler()

auth.add_password(“pypi”,”http://pypi.python.org”,”username”,”password”)

opener = urllib2.build_opener(auth)

r = urllib2.Request(“http://pypi.python.org/pypi?:action=login”)

u = opener.open(r)

resp = u.read()

From here. You can access more pages

As you can see, the process has become quite a bit more complicated. It gets far
more convoluted, if not practically impossible, if you want to do anything more
advanced, such as invoke other HTTP methods (e.g., HEAD, PUT, DELETE, etc.),
upload files, or read streaming data.

Although you could continue to hack away on urllib2 to try to make it do what you
want, you might be better off looking at Kenneth Reitz’s requests library instead
(http://pypi.python.org/pypi/requests). Rather than trying to emulate existing
functionality, requests provides an entirely different programming interface.

First, let’s just download a simple Web page:

>>> import requests

>>> r = requests.get(“http://www.python.org”)

>>> r.status_code

200

>>> r.headers

{‘last-modified’: ‘Fri, 27 Jan 2012 15:49:35 GMT’,

 ‘content-length’: ‘18882’,

 ‘etag’: ‘”105800d-49c2-4b7847185c1c0”’,

 ‘date’: ‘Sat, 28 Jan 2012 19:13:11 GMT’,

 ‘accept-ranges’: ‘bytes’,

 ‘content-type’: ‘text/html’,

 ‘server’: ‘Apache/2.2.16 (Debian)’

}

>>> page = r.text

>>> page

u’<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”...’

>>>

That was certainly easy enough. Although it looks easy, there are some subtle
things going on under the covers. First, access to the r.text attribute automatically
performs the appropriate Unicode decoding, returning a Unicode string. Thus, you
don’t have to worry about it. Similarly, you can easily obtain status code and header
information as shown.

Now, let’s make a HEAD request to see if the document has changed recently:

>>> r = requests.head(“http://www.python.org”)

>>> r.headers

{‘last-modified’: ‘Fri, 27 Jan 2012 15:49:35 GMT’,

 ‘content-length’: ‘18882’,

 ‘etag’: ‘”105800d-49c2-4b7847185c1c0”’,

 ‘date’: ‘Sat, 28 Jan 2012 19:23:08 GMT’, ‘accept-ranges’: ‘bytes’,

 ‘content-type’: ‘text/html’,

 ‘server’: ‘Apache/2.2.16 (Debian)’

}

http://pypi.python.org/pypi/requests

	58    ;login:  VOL. 37, NO. 2

>>> r.text

u’’

>>>

That was also easy. Believe it or not, this is practically impossible to do using urllib
or urllib2, since they don’t provide an interface for changing the HTTP method.

Let’s look at an example of authentication. This example shows how to log in to the
Python Package Index using basic authentication as shown earlier:

import requests

r = requests.get(“http://pypi.python.org/pypi?:action=login”,

 auth=(“user”,”password”))

resp = r.text

If you wanted to know whether any cookies were set on a page, simply access the
cookies attribute:

>>> r = requests.get(“http://pypi.python.org/pypi?:action=login”,auth=(“user

”,”password”))

>>> r.cookies

{‘pypi’: ‘0bf0722dee2203ee3accf4fef9650b2f’}

>>>

To pass cookies back on subsequent requests, simply supply the r.cookies diction-
ary as an argument:

>>> r2 = requests.get(newurl, cookies=r.cookies)

>>>

Let’s write a request that reads real-time data from Twitter’s streaming API for
anything that mentions the word “python”. You’ll need to supply your own user-
name and password for this:

import requests

import sys

import json

url = “https://stream.twitter.com/1/statuses/filter.json”

parms = {

 ‘track’ : ‘python’,

 }

auth = (‘username’,’password’)

r = requests.post(url, data=parms, auth=auth)

for line in r.iter_lines():

 if line:

 print json.loads(line)

Here, requests will open a connection and simply feed you a stream of lines as they
are produced. Again, it’s relatively straightforward. However, don’t even try it with
urllib2. There is far more that you can do with requests, but this should have given
you a small taste for it.

Regular Expression Pattern Matching

The standard library module for handling regular expression parsing is re. If I
recall correctly, it is the second implementation of regular expressions, first ap-
pearing about 14 years ago in Python 2.0. However, just when you thought re might
be the last word in Python regular expression handling, a new library called regex

	 ;login:  APRIL 2012   “R” is for Replacement    59

has appeared. regex is the work of Matthew Barnett and has recently been offi-
cially blessed for inclusion in the standard library starting with Python 3.3 (not yet
released). However, you can use it now if you simply download it from http://pypi.
python.org/pypi/regex. (Editor’s Note: You may not be able to install regex on top of
versions of Python older than 2.6.4.)

regex is a drop-in replacement for the standard re library. Thus, any regex match-
ing code that you might have written before should still work. An easy way to try
regex without making too many changes is to simply change the import statement
as follows:

import regex as re

Use re library as before

...

The new regex library fixes a huge number of issues, annoyances, and bugs related
to the old re library. These include various convenience features, such as showing
you the pattern when pattern objects are inspected or printed, as here:

>>> pat = regex.compile(“[a-zA-Z_][a-zA-Z0-9_]+”)

>>> pat

regex.Regex(‘[a-zA-Z_][a-zA-Z0-9_]+’, flags=regex.V0)

>>>

You also get a much simplified way to refer to capture groups.

>>> pat = regex.compile(r”(\d+)/(\d+)/(\d+)”)

>>> m = pat.match(“1/29/2012”)

>>> m[0]

‘1/29/2012’

>>> m[1]

‘1’

>>> m[2]

‘29’

>>> m[3]

‘2012’

>>> m[1:]

(‘1’, ‘29’, ‘2012’)

>>>

Behind the scenes, limitations related to the number of capture groups, concur-
rent operation with threads, and other matters are fixed, in addition to a number of
tricky issues with Unicode (e.g., proper case folding).

However, besides subtle cosmetic and implementation improvements, regex offers
an interesting range of new functionality. There are too many additions to cover in
their entirety, but let’s look at a few of the more interesting enhancements.

Suppose you wanted part of a regex to match a set of possible words or symbols. For
example, suppose you wanted to match some of Python’s math operators (+, -, *, /,
and **). You might be inclined to write a regex like this:

import regex

pat = regex.compile(r’**|*|\+|-|/’)

However, if you look at such a pattern, there are all sorts of tricky escapes (for * and
+). Plus, you have to worry about matching in the right order (checking ** prior to *).
Here is an alternate approach using named sets:

http://pypi.python.org/pypi/regex
http://pypi.python.org/pypi/regex

	60    ;login:  VOL. 37, NO. 2

import regex

ops = { ‘+’, ‘*’, ‘-’, ‘/’, ‘**’ } # A set of everything you want to match

pat = regex.compile(‘\L<ops>’, ops=ops)

In this version, you don’t have to worry about escaping any of the possible matches
or their order. You simply pass a set using the \L escape and specify an appropriate
keyword argument (which contains a list or set of the literal symbols you want to
match). regex will figure everything out, including the escaping and ordering, to
make it work.

If you have written regular expressions, you probably know about the specifica-
tion of character sets such as [a-zA-Z] or [^a-zA-Z]. regex takes this much further
by allowing common set operations (union, intersection, difference), as well as an
interface to the Unicode properties. Thus, you can start writing character set pat-
terns like this:

Match all letters except vowels

pat1 = regex.compile(“[[a-z]--[aeiou]]+$”,regex.V1)

pat1.match(“xyzzy”) 	# Matches

pat1.match(“plugh”) 	# Doesn’t match

Match any non-ascii character

pat2 = regex.compile(r”[^\p{ASCII}]+”,regex.V1)

pat2.search(u”That’s a spicy jalape\u00f1o”) 	# Matches

pat2.search(u”I want another torta”) 	 # No matches

Finally, another interesting feature is support for fuzzy matching. This is a match-
ing technique where text with errors in the form of insertions, deletions, or substi-
tutions can be matched. Here is an example:

>>> pat = regex.compile(“(?:spam){s<=1}”)

>>>

This regex pattern specifies that the text “spam” is to be matched, but that, at most,
one letter substitution is allowed. Here’s what happens:

>>> pat.match(“spam”) 	 # Exact match

<_regex.Match object at 0x100547850>

>>> pat.match(“slam”)	 # 1-letter substituted (match)

<_regex.Match object at 0x1005478b8>

>>> pat.match(“slum”)	 # 2-letters substituted (no match)

>>>

There are additional options to specify insertions and deletions. For example, here
is a pattern than allows, at most, one deletion, one substitution, and one insertion:

>>> pat = regex.compile(“(?:spam){s<=1,d<=1,i<=1}$”)

>>> pat.match(“spm”)	 # Matches. 1 deletion

<_regex.Match object at 0x1005478b8>

>>> pat.match(“sm”)	 # No match. 2 deletions

>>> pat.match(“spaam”)	 # Match. 1 insertion

<_regex.Match object at 0x100547850>

>>> pat.match(“slamm”)	 # Match. 1 insertion, 1 substitution

<_regex.Match object at 0x1005478b8>

>>> pat.match(“slum”)	 # Match. 1 deletion, 1 insertion, 1 substition

Each insertion, substition, or deletion is counted separately and can be combined
to match a wide range of words. If you wanted to narrow it down, you could just put
a limit on the number of combined errors. For example:

	 ;login:  APRIL 2012   “R” is for Replacement    61

>>> pat = regex.compile(“(?:spam){s,i,d,e<=1}”)

>>> pat2.match(“spam”)	 # Match exact

<_regex.Match object at 0x100547850>

>>> pat2.match(“spm”)	 # Match, 1 deletion

<_regex.Match object at 0x1005478b8>

>>> pat2.match(“spaam”)	 # Match, 1 insertion

<_regex.Match object at 0x100547850>

>>> pat2.match(“slum”)	 # No match

>>>

Needless to say, fuzzy matching opens up new areas of possible application to regu-
lar expression matching.

Putting It All Together

As a final example, it is now possible to present a short script that tries to identify
people drunk-tweeting from the city of Chicago:

drunktweet.py

‘’’

Print out possible drunk tweets from the city of Chicago.

‘’’

import regex

import requests

import json

Terms for being “wasted”

terms = { ‘drunk’,’wasted’,’buzzed’,’hammered’,’plastered’ }

A fuzzy regex for people who can’t type

pat = regex.compile(r”(?:\L<terms>){i,d,s,e<=1}$”, regex.I, terms=terms)

Connect to the Twitter streaming API

url = “https://stream.twitter.com/1/statuses/filter.json”

parms = {

 ‘locations’ : “-87.94,41.644,-87.523,42.023” # Chicago

 }

auth = (‘username’,’password’)

r = requests.post(url, data=parms, auth=auth)

Print possible candidates

for line in r.iter_lines():

 if line:

 tweet = json.loads(line)

 status = tweet.get(‘text’,u’’)

 words = status.split()

 if any(pat.match(word) for word in words):

 print tweet[‘user’][‘screen_name’], status

Final Words

Although this article has only focused on two modules, there are many other ef-
forts to improve upon the standard library (too many to list). In a future issue, I
hope to discuss alternatives to some of the system libraries—especially use of the
subprocess module. Stay tuned.

