
	68      ;login:  VOL.  37,  NO.  3   

As a Python programmer, you know that lists, sets, and dictionaries are useful for 
collecting data. For example, you use a list whenever you want to store data and 
keep it in order: 

>>> names = [‘Dave’, ‘Paula’, ‘Thomas’, ‘Lewis’] 

>>> 

If you simply want a collection of unique items and don’t care about the order, you 
can make a set:

>>> colors = set([‘red’,’blue’,’green’,’purple’,’yellow’]) 

>>> 

You use a dictionary whenever you want to make key-value lookup tables: 

>>> prices = { ‘AAPL’ : 613.20, ‘ACME’ : 71.23, ‘IBM’ : 174.11 } 

>>> prices[‘AAPL’] 

613.20 

>>> 

Using just these three primitives, you can build just about any other data structure 
in the known universe. However, why would you? In this article, we reach into 
Python’s collections library and look at some of the tools it provides for manipulat-
ing collections of data. If you’re like me, these will quickly become a part of your 
day-to-day programming. 

Tabulating Data

How many times have you ever needed to tabulate data or build a histogram? For 
example, suppose you want to tabulate and count all of the IP addresses that made 
requests on your Web site from a server log such as this:

78.192.56.97 - - [15/Mar/2012:01:50:37 -0500] “GET /ply/ HTTP/1.1” 200 11875 

69.237.118.150 - - [15/Mar/2012:01:51:52 -0500] “GET /ply/ply.html HTTP/1.1” 

200 107623 

69.237.118.150 - - [15/Mar/2012:01:51:57 -0500] “GET /ply/example.html 

HTTP/1.1” 200 2393 

91.35.214.71 - - [15/Mar/2012:01:52:13 -0500] “GET /ply/ HTTP/1.1” 200 11875 

91.35.214.71 - - [15/Mar/2012:01:52:13 -0500] “GET /favicon.ico HTTP/1.1” 404 

369 

Becoming a Master Collector
D A V I D  B E A Z L E Y

David Beazley is an open 

source developer and author of 

the Python Essential Reference 

(4th Edition, Addison-Wesley, 

2009). He is also known as the creator of Swig 

(http://www.swig.org) and Python Lex-Yacc 

(http://www.dabeaz.com/ply.html). He is 

based in Chicago, where he also teaches a 

variety of Python courses. 

dave@dabeaz.com



	 ;login:  JUNE 2012   Becoming a Master Collector      69

You might be inclined to write a small fragment of code using a Python dictionary, 
like this: 

hits_by_ipaddr = {} 

for line in open(“access-log”): 

	 fields = line.split()

	 ipaddr = fields[0] 

	 if ipaddr in hits_by_ipaddr:

		  hits_by_ipaddr[ipaddr] += 1

	 else: 

		  hits_by_ipaddr[ipaddr] = 1 

Although this code “works,” it’s also a bit clunky. For example, you have to add a 
special check for first initialization (otherwise the attempt to increment the count 
will fail with a KeyError on first access). On top of that, after you have populated 
the dictionary, you will probably want to do some further analysis. For example, 
maybe you want to print a table showing the 25 most common IP addresses in 
descending order: 

popular_ips = sorted(hits_by_ipaddr, 

	 key=lambda x: hits_by_ipaddr[x], 

	 reverse=True)

for ipaddr in popular_ips[:25]:

	 print(“%5d: %s” % (hits_by_ipaddr[ipaddr],ipaddr)) 

As output, this will produce a table such as this: 

       1096: 78.192.56.97  

       1040: 206.15.64.54   

	 473: 212.85.154.246   

	 226: 89.215.101.39   

	 209: 212.85.154.254   

	 185: 82.226.112.70   

	 180: 78.192.56.101 

... 

Although this code is relatively easy to write, you still need to think about it a bit—
especially the tricky sort with the lambda. However, you can avoid all of this if you 
simply use Counter objects from the collections module. Here is a much simplified 
version of the same code: 

from collections import Counter  

hits_by_ipaddr = Counter() 

for line in open(“access-log”):     

	 fields = line.split()     

	 ipaddr = fields[0]     

	 hits_by_ipaddr[ipaddr] += 1  

for ipaddr, count in hits_by_ipaddr.most_common(25):     

	 print(“%5d: %s” % (count, ipaddr)) 

First added to Python 2.7, Counter objects are perfectly suited for tabulation. They 
automatically take care of initializing elements on first access. Not only that, they 
provide useful methods such as most_common([n]) that return the n most com-
mon items. However, this is really only scratching the surface. 



	70      ;login:  VOL.  37,  NO.  3   

If you want, counters can be automatically initialized from iterables. For example, 
let’s make letter counts from strings: 

>>> a = Counter(“Hello”) 

>>> b = Counter(“World”) 

>>> a 

Counter({‘l’: 2, ‘H’: 1, ‘e’: 1, ‘o’: 1}) 

>>> b 

Counter({‘d’: 1, ‘r’: 1, ‘o’: 1, ‘W’: 1, ‘l’: 1}) 

>>>  

Or, if you’re inclined and a bit more sophisticated, you can populate a counter from 
a generator expression: 

>>> f = open(“access-log”) 

>>> hits_by_ipaddr = Counter(line.split()[0] for line in f) 

>>> hits_by_ipaddr[‘78.192.56.97’] 

1096 

>>> 

You can also do math with counters: 

>>> a + b   # Adds counts together 

Counter({‘l’: 3, ‘o’: 2, ‘e’: 1, ‘d’: 1, ‘H’: 1, ‘r’: 1, ‘W’: 1}) 

>>> a - b   # Takes away counts in b 

Counter({‘H’: 1, ‘e’: 1, ‘l’: 1}) 

>>> b - a   # Takes away counts in a 

Counter({‘r’: 1, ‘d’: 1, ‘W’: 1}) 

>>> a & b   # Minimum counts  

Counter({‘l’: 1, ‘o’: 1}) 

>>> a | b   # Maximum counts 

Counter({‘l’: 2, ‘e’: 1, ‘d’: 1, ‘H’: 1, ‘o’: 1, ‘r’: 1, ‘W’: 1}) 

>>>  

Adding and subtracting counts are also available in-place using update() and sub-
tract methods, respectively. For example: 

>>> a = Counter(“Hello”) 

>>> a 

Counter({‘l’: 2, ‘H’: 1, ‘e’: 1, ‘o’: 1}) 

>>> a.update(“World”) 

>>> a 

Counter({‘l’: 3, ‘o’: 2, ‘e’: 1, ‘d’: 1, ‘H’: 1, ‘r’: 1, ‘W’: 1}) 

>>>  

Using some of these techniques, we can refine our script to process an entire direc-
tory of log files:

from collections import Counter 

from glob import glob  

hits_by_ipaddr = Counter()  

logfiles = glob(“*.log”) 

for filename in logfiles:     

	 f = open(filename)     



	 ;login:  JUNE 2012   Becoming a Master Collector      71

	 hits_by_ipaddr.update(line.split()[0] for line in f)     

	 f.close()  

for ipaddr, count in hits_by_ipaddr.most_common(25):     

	 print(“%5d: %s” % (count, ipaddr)) 

By now, hopefully, you’ve gotten the idea that Counter objects are the way to go for 
tabulation. Frankly, they’re one of my favorite new additions to Python. 

Dictionaries with Multiple Values

Normally, dictionaries map a single key to a single value. However, a common ques-
tion that sometimes arises is how you map a key to multiple values. Naturally, the 
solution is to map a key to a list or set. For example, suppose you wanted to make 
a dictionary that mapped URLs to all of the unique IP addresses that accessed it. 
Here is some code that would do it: 

url_to_ips = {} 

for line in open(“access-log”):     

	 fields = line.split()     

	 ipaddr = fields[0]     

	 url = fields[6]     

	 # Create a set on first access     

	 if url not in url_to_ips:         

		  url_to_ips[url] = set()     

	 url_to_ips[url].add(ipaddr) 

Again, we are faced with the problem of creating the first entry for each URL 
(hence, the check that makes the set on first access). We can’t use Counter objects 
here, but not to worry—the defaultdict class is built just for this case. Here is an 
alternative implementation: 

from collections import defaultdict 

url_to_ips = defaultdict(set) 

for line in open(“access-log”):     

	 fields = line.split()     

	 ipaddr = fields[0]     

	 url = fields[6]     

	 url_to_ips[url].add(ipaddr) 

After running this code, you could do things like find out which IP addresses are 
likely to be robots: 

>>> url_to_ips[‘/robots.txt’] 

set([‘173.11.97.115’, ‘107.20.104.146’, ‘61.135.249.76’, ...]) 

>>> 

defaultdict is a special Python dictionary that allows you to supply a callable for 
creating the initial entry to be used on first access. In the above code, we’ve speci-
fied that a set be used. Here are some examples to try: 

>>> from collections import defaultdict 

>>> a = defaultdict(set) 

>>> a 

defaultdict(<type ‘set’>, {}) 

>>> a[‘x’].add(2) 



	72      ;login:  VOL.  37,  NO.  3   

>>> a[‘y’].add(3) 

>>> a[‘x’].add(4) 

>>> a 

defaultdict(<type ‘set’>, {‘y’: set([3]), ‘x’: set([2, 4])}) 

>>>  

In effect, the function provided to defaultdict is triggered to create the first value 
whenever a non-existent key is accessed. Here are more examples: 

>>> a[‘q’] 

set() 

>>> a[‘r’] 

set() 

>>> a 

defaultdict(<type ‘set’>, {‘y’: set([3]), ‘x’: set([2, 4]), ‘r’: set([]), ‘q’: 

set([])}) 

>>> 

Notice how entries for ‘q’ and ‘r’ were added simply by being referenced.

Underneath the covers, defaultdict uses a little-known special method called __
missing__(). It’s called on a dictionary whenever you read from a missing key. For 
example: 

>>> class mydict(dict): 

... 	 def __missing__(self, key): 

... 	 return 0    # Return the missing value 

...  

>>> d = mydict() 

>>> d[‘x’] 

0 

>>> d[‘y’] 

0 

>>> 

Counter objects are implemented using the __missing__() function shown above. 
defaultdict objects create the missing value using a user-supplied function. 

Dictionaries, Views, and Sets

One of the more subtle improvements to Python over the years has been related to 
the relationship between dictionaries and sets. In many respects, a set is just a col-
lection of dictionary keys with no values. In fact, the underlying implementation of 
sets and dictionaries is very similar and shares much of the same code.

Despite their similarities, dictionaries have not traditionally provided a natural 
way to interact with sets of keys or values. Instead, there are simple methods to 
return the keys, values, and items as a list:

>>> a = { ‘x’ : 2, ‘y’ : 3, ‘z’: 4 } 

>>> a.keys() 

[‘y’, ‘x’, ‘z’] 

>>> a.values() 

[3, 2, 4] 

>>> a.items() 

[(‘y’, 3), (‘x’, 2), (‘z’, 4)] 

>>>  



	 ;login:  JUNE 2012   Becoming a Master Collector      73

Starting with Python 2.7, it is possible to express the keys and values of a dictio
nary as a “view” (which is also the default behavior of the above methods in Python 
3). Unlike a list, a view offers a direct window inside the dictionary implementa-
tion. Changes to the underlying dictionary directly change the view: 

>>> k = a.viewkeys() 

>>> k 

dict_keys([‘y’, ‘x’, ‘z’]) 

>>> v = a.viewvalues() 

>>> v 

dict_values([3, 2, 4])  

>>> # Now change the dictionary and observe how the views change 

>>> a[‘w’] = 5 

>>> k 

dict_keys([‘y’, ‘x’, ‘z’, ‘w’]) 

>>> v 

dict_values([3, 2, 4, 5]) 

>>>  

At first glance, it might not be immediately obvious how views are useful. On a 
superficial level, they support iteration, allowing them to be useful in many of the 
same ways as having a list. However, one of their unique features is the ability to 
interact with sets and other sequences more elegantly. To illustrate, here are some 
simple examples you can try: 

>>> a = { ‘x’ : 1, ‘y’: 2, ‘z’ : 3 } 

>>> b = { ‘x’ : 4, ‘y’: 2 }  

>>> # Find all keys in common 

>>> a.viewkeys() & b.viewkeys() 

set([‘y’, ‘x’])  

>>> # Iterate over all keys except ‘z’ 

>>> for k in a.viewkeys() - [‘z’]:

...	 print(“%s = %s” % (k, a[k])) 

...  

y = 2 

x = 1  

>>> # Make a set of all key/value pairs 

>>> a.viewitems() | b.viewitems() 

set([(‘z’, 3), (‘y’, 2), (‘x’, 4), (‘x’, 1)]) 

>>> 

In more practical terms, understanding the nature of views can simplify your code. 
For example, if you wanted to find all of the IP addresses that accessed your site 
but didn’t look at the robots.txt file, you could simply write this: 

>>> nonrobots = hits_by_ipaddr.viewkeys() - url_to_ips[‘/robots.txt’] 

>>>  

Other Goodies: Queues, Ring Buffers, and Ordered Dictionaries

The collections module has a variety of other data structures that are also worth a 
look. For instance, if you ever need to build a queue, use the deque object. A deque 
is like a list except that it’s optimized for insertion and deletion operations on both 



	74      ;login:  VOL.  37,  NO.  3   

ends; in contrast, a list has O(n) performance for operations that insert or delete 
items from the front of the list: 

>>> from collections import deque 

>>> q = deque() 

>>> q.appendleft(1) 

>>> q.appendleft(2) 

>>> q 

deque([2, 1]) 

>>> q.append(3) 

>>> q 

deque([2, 1, 3]) 

>>> q.pop() 

3 

>>> q.popleft() 

2 

>>>  

If you specify a maximum size, a deque turns into a ring-buffer or circular queue: 

>>> q = deque(maxlen=3) 

>>> q.extend([1,2,3]) 

>>> q 

deque([1, 2, 3], maxlen=3) 

>>> q.append(4) 

>>> q 

deque([2, 3, 4], maxlen=3) 

>>> q.append(5) 

>>> q 

deque([3, 4, 5], maxlen=3) 

>>>  

Last, but not least, there is an OrderedDict class. This is used if you want to store 
information in a dictionary while preserving its insertion order. This can be useful 
if you’re reading data that you later want to output in the same order in which it 
was read. For example, suppose you had a file of parameters like this: 

FILENAME foo.txt 

DIRNAME  /users/beazley 

MODE     a 

You could read it into an OrderedDict like this: 

>>> from collections import OrderedDict 

>>> parms = OrderedDict() 

>>> for line in open(“parms.txt”): 

...	 name,value = line.split() 

...	 parms[name] = value 

... 

>>> p[‘DIRNAME’] ‘

/users/beazley’ 

>>> for p in parms.items(): 

...	 print(p) 

...  (‘FILENAME’, ‘foo.txt’) 



	 ;login:  JUNE 2012   Becoming a Master Collector      75

(‘DIRNAME’, ‘/users/beazley’) 

(‘MODE’, ‘a’) 

>>>  

Carefully observe how iterating over the dictionary contents preserves data in the 
same order as read. 

Final Words

If you’re using Python to manipulate data, the collections module is definitely 
worth a look. Even if you’ve been using Python for a while, the contents of this 
module have been expanded with each new Python release. In modern Python 
releases, you might be surprised at what you find. 


