
	60    ;login:  VOL. 37, NO. 3

It seems like everyone talks about the weather, but few people code about it. It’s not
that I’m particularly enamored by weather (I go along with the Phantom Tollbooth
quote, “I’m the Whether Man, not the Weather Man, for after all it’s more impor-
tant to know whether there will be weather than what the weather will be.”), but I
think it makes a lovely trampoline from which to explore a few of the more preva-
lent kinds of Web services/APIs you may encounter. For these demonstrations
I’m going to stick to free or close to free services (at least for a personal level of
queries). There are some commercial weather data providers who are exceptionally
miserly with their data or force you to sign a EULA the size of my arm; they will be
conspicuously absent from this column.

One quick note for my international readers: The goal of this column is to demon-
strate how to bring Perl to bear to work with these kinds of APIs, not the specific
services or APIs themselves. If any of these services fail to cover your particu-
lar geographical area, it is possible you can find one that does and use the same
techniques to query it. It’s not that I don’t care deeply and passionately about the
weather where you live; it is just that it is easier for me to show code that I can vali-
date by looking out my window.

Weather Provided as XML

One thing that most of these services have in common is that they like to return
data in a structured XML format. I thought I would start our exploration by looking
at a service that returns a really simple XML document. Before I show this exam-
ple to you, I have to admit we’re going to be a bit naughty. The following example
will query a service that doesn’t really have a documented API for this purpose
and is almost certainly not supported in this context. And even though there is a
Perl module available to use this service (though we’re going to do it by hand in this
column), I can’t recommend you use it for anything besides educational/demon-
stration purposes.

So who provides this API-less service that we’re going to use in such a transgres-
sive manner? Google. I realize this is a bit of a surprise given how important APIs
are to them, but this is not a separate official service to them. Google provides
weather data as part of their ability to customize your Google home page (iGoogle,
sigh) with a weather gadget. There is also a small amount of information on how
their weather data is represented in a document about customizing their toolbar.
Hopefully, this information gives you a sense of just how much in the wilderness
we’ll be when we attempt to use this service.

COLUMNSPractical Perl Tools
Rainy Days and Undocumented APIs Always Get Me Down

D A V I D N . B L A N K - E D E L M A N

David N. Blank-Edelman is

the director of technology at

the Northeastern University

College of Computer and

Information Science and the author of the

O’Reilly book Automating System Administration

with Perl (the second edition of the Otter

book), available at purveyors of fine dead

trees everywhere. He has spent the past 24+

years as a system/network administrator in

large multi-platform environments, including

Brandeis University, Cambridge Technology

Group, and the MIT Media Laboratory. He was

the program chair of the LISA ’05 conference

and one of the LISA ’06 Invited Talks co-chairs.

David is honored to have been the recipient

of the 2009 SAGE Outstanding Achievement

Award and to serve on the USENIX Board of

Directors beginning in June of 2010.

dnb@ccs.neu.edu

	 ;login:  JUNE 2012   Practical Perl Tools    61

That being said, the actual work is really easy. If you make an HTTP GET request
to a URL of this form:

http://www.google.com/ig/api?weather={some place}

it will return an XML document like this (I used Boston, MA, as the place and
reformatted the reply for easier reading):

<?xml version=”1.0”?>

<xml_api_reply version=”1”>

 �<weather module_id=”0” tab_id=”0” mobile_row=”0” mobile_zipped=”1”

row=”0” section=”0”>

 <forecast_information>

 <city data=”Boston, MA”/>

 <postal_code data=”Boston MA”/>

 <latitude_e6 data=””/>

 <longitude_e6 data=””/>

 <forecast_date data=”2012-03-29”/>

 <current_date_time data=”2012-03-29 16:54:00 +0000”/>

 <unit_system data=”US”/>

 </forecast_information>

 <current_conditions>

 <condition data=”Overcast”/>

 <temp_f data=”42”/>

 <temp_c data=”6”/>

 <humidity data=”Humidity: 76%”/>

 <icon data=”/ig/images/weather/cloudy.gif”/>

 <wind_condition data=”Wind: N at 9 mph”/>

 </current_conditions>

 <forecast_conditions>

 <day_of_week data=”Thu”/>

 <low data=”34”/>

 <high data=”48”/>

 <icon data=”/ig/images/weather/rain.gif”/>

 <condition data=”Showers”/>

 </forecast_conditions>

 <forecast_conditions>

 <day_of_week data=”Fri”/>

 <low data=”37”/>

 <high data=”50”/>

 <icon data=”/ig/images/weather/sunny.gif”/>

 <condition data=”Clear”/>

 </forecast_conditions>

 <forecast_conditions>

 <day_of_week data=”Sat”/>

 <low data=”30”/>

 <high data=”45”/>

 <icon data=”/ig/images/weather/chance_of_rain.gif”/>

 <condition data=”Chance of Rain”/>

 </forecast_conditions>

 <forecast_conditions>

 <day_of_week data=”Sun”/>

 <low data=”34”/>

	62    ;login:  VOL. 37, NO. 3

 <high data=”55”/>

 <icon data=”/ig/images/weather/chance_of_rain.gif”/>

 <condition data=”Chance of Rain”/>

 </forecast_conditions>

 </weather>

</xml_api_reply>

Now, let’s grab the data using Perl and parse it. Since this is really simple XML and
our use of this data is straightforward, we can turn to the tremendously helpful
XML::Simple module to parse the data. Although XML::Simple can parse the data,
it can’t fetch it from Google. For that we’ll use LWP::Simple, which provides a get()
function that will retrieve data for a given URL. Here’s the code:

use strict;

use LWP::Simple;

use XML::Simple;

my $xml = XMLin(get(‘http://www.google.com/ig/api?weather=Boston+MA’),

 ValueAttr => [‘data’]);

print “Current conditions: “

 . $xml->{weather}->{current_conditions}->{condition} . “ “

 . $xml->{weather}->{current_conditions}->{temp_f} . “ F\n”;

foreach my $day (@{ $xml->{weather}->{forecast_conditions} }) {

 print $day->{day_of_week} . ‘: ‘

 . $day->{condition} . ‘ ‘

 . $day->{high} . ‘/’

 . $day->{low} . “\n”;

}

XML::Simple’s XMLin function gets called to parse the data retrieved by
LWP::Simple. We use the defaults for it with one exception to make our life easier.
If you take a look at the sample XML document above, you’ll see lines such as:

<condition data=”Overcast”/>

<temp_f data=”42”/>

<temp_c data=”6”/>

<humidity data=”Humidity: 76%”/>

where the elements don’t actually hold the data; the attributes of those elements do.
By default, XML::Simple will place those attributes into their own separate hashes
with the name of the attribute as the key. This means we would ordinarily get a
data structure that looks like this excerpt:

‘current_conditions’ => HASH(0x7f8032f32b80)

 ‘condition’ => HASH(0x7f8032f332b8)

 ‘data’ => ‘Overcast’

 ‘humidity’ => HASH(0x7f8032f2da90)

 ‘data’ => ‘Humidity: 73%’

 ‘icon’ => HASH(0x7f8032f2db20)

 ‘data’ => ‘/ig/images/weather/cloudy.gif’

 ‘temp_c’ => HASH(0x7f8032f333d8)

 ‘data’ => 6

 ‘temp_f’ => HASH(0x7f8032f33348)

 ‘data’ => 42

	 ;login:  JUNE 2012   Practical Perl Tools    63

 ‘wind_condition’ => HASH(0x7f8032f2dbb0)

 ‘data’ => ‘Wind: N at 9 mph’

It would be much more pleasant if we could just eliminate the need for a separate
sub-hash to hold the values, and instead get something like:

‘current_conditions’ => HASH(0x7fc001733058)

 ‘condition’ => ‘Overcast’

 ‘humidity’ => ‘Humidity: 73%’

 ‘icon’ => ‘/ig/images/weather/cloudy.gif’

 ‘temp_c’ => 6

 ‘temp_f’ => 42

 ‘wind_condition’ => ‘Wind: N at 9 mph’

and indeed, that’s what the ValueAttr option to XMLin() does for us in one swell
foop. Now you get some sense of why I tend to be pretty effusive in my praise of
XML::Simple.

Weather Provided as an RSS Feed

The second kind of weather service I’d like to explore with you is one I introduced
in a column back in 2006. There are services that provide weather data to you as
RSS feeds. RSS is better known as a blog-related standard, so you may not have
encountered it much except as internal plumbing found largely behind the scenes.
Wikipedia’s got the following lovely description:

RSS (originally RDF Site Summary, often dubbed Really Simple Syndica-
tion) is a family of Web feed formats used to publish frequently updated
works—such as blog entries, news headlines, audio, and video—in a stan-
dardized format. An RSS document (which is called a “feed,” “Web feed,” or
“channel”) includes full or summarized text, plus metadata such as publish-
ing dates and authorship.

RSS feeds benefit publishers by letting them syndicate content automati-
cally. A standardized XML file format allows the information to be pub-
lished once and viewed by many different programs. They benefit readers
who want to subscribe to timely updates from favorite websites or to aggre-
gate feeds from many sites into one place.

The RSS format spec has gone through a number of revisions, but all of them are
represented using XML. We could use a generic XML parser to deal with it (as
you’ll see in the next section in this column), but in this case it is a little easier to
use a dedicated RSS module called XML:RSS::Parser to parse the data. There is
also an XML::RSS module available that I would normally use, but it doesn’t seem
to (at least in my experience) play nicely with the slightly customized RSS feed
we’re going to consume in this section.

Yahoo! is probably the most popular provider that makes RSS feeds for weather
available, so we’ll use them for the code example for this section. Querying Yahoo!
for weather for a US location is as easy as requesting the RSS feed for that loca-
tion’s zip code using a URL:

http://xml.weather.yahoo.com/forecastrss?p={zipcode here}

Even though that query format works, it is deprecated; instead, Yahoo! now wants
you to do this instead:

	64    ;login:  VOL. 37, NO. 3

http://weather.yahooapis.com/forecastrss?w={WOEID}

In the second format above, you provide a WOEID in the URL using the w param-
eter. Yahoo! created the WOEID, or “Where On Earth ID,” to be a unique identi-
fier for any place on the planet. It’s a cooler system than you might expect (so cool
Twitter decided to adopt it). More details on it can be found at this Yahoo! URL:
http://developer.yahoo.com/geo/geoplanet/guide/concepts.html.

So where do you get the WOEID for a particular place? Yahoo! suggests the easiest
way to do so is to search for that place at http://weather.yahoo.com. The resulting
URL for that place’s weather page will end in the WOEID for that place. For exam-
ple, if I search for Boston, MA, the URL for the page that is returned has this URL:

http://weather.yahoo.com/united-states/massachusetts/boston-2367105/

If the idea that you have to type in each place you would want to query into a search
box in a browser seems a bit, ehemm, manual to you (and I certainly hope it does to
regular readers of this column), Yahoo! provides a place-to-WOEID query service
available. It’s simple to use, but I think it is out of the scope of this column. For
more details, please see http://developer.yahoo.com/geo/geoplanet/.

So let’s get back to the task at hand and see how to use XML::RSS::Parser to deal
with data from Yahoo!’s RSS-based weather service. XML::RSS::Parser doesn’t
actually fetch the data from either of the two Yahoo! RSS feed URLs above, so we’ll
again use LWP::Simple’s get() function. Putting all of these pieces together, we get
sample code that looks like this:

use strict;

use LWP::Simple;

use XML::RSS::Parser;

my $parser = XML::RSS::Parser->new;

Yahoo! uses a custom namespace for their data

$parser->register_ns_prefix(‘yweather’,

 ‘http://xml.weather.yahoo.com/ns/rss/1.0’);

2367105 is the WOEID for Boston, MA

my $feed = $parser->parse_string(

 get(‘http://weather.yahooapis.com/forecastrss?w=2367105’));

print “Current Conditions: “

 . $feed->query(‘//yweather:condition/@yweather:text’) . “ “

 . $feed->query(‘//yweather:condition/@yweather:temp’) . “ F\n”;

my (@forecasts) = $feed->query(‘//yweather:forecast’);

foreach my $day (@forecasts) {

 print $day->query(‘@yweather:day’) . ‘: ‘

 . $day->query(‘@yweather:text’) . ‘ ‘

 . $day->query(‘@yweather:high’) . ‘/’

 . $day->query(‘@yweather:low’) . “\n”;

}

Most of the code above is pretty straightforward, with one exception. The lines
that include code like this might be a bit curious:

$feed->query(‘//yweather:condition/@yweather:text’)

	 ;login:  JUNE 2012   Practical Perl Tools    65

One of XML:RSS::Parser’s strengths (which it gets from the Class::XPath module it
uses) is that it provides an XPath-like/lite query language. XPath provides a terse
but elegant syntax for finding elements in an XML document. I like it a great deal,
so much so that I suspect you can look for a future column on just XPath. In the
meantime, let me explain that the code above returns the yweather:text attribute
from an XML element with the name “yweather:condition” found anywhere in the
document (‘//’ means anywhere starting from the root element).

The line later in our code that says:

my (@forecasts) = $feed->query(‘//yweather:forecast’);

is performing a similar query, this time requesting all of the elements called
yweather:forecast. We iterate over each of the elements returned by that query, and
for each element we request the attributes we want to display:

foreach my $day (@forecasts) {

 print $day->query(‘@yweather:day’) . ‘: ‘

 . $day->query(‘@yweather:text’) . “ “

 . $day->query(‘@yweather:high’) . “/”

 . $day->query(‘@yweather:low’) . “\n”;

}

Weather Provided as JSON

For our final example, I though it would be good to change up the format we’re pro-
cessing even though XML is by far the most prevalent format being used to provide
weather data. But XML itself is starting to get stiff competition from another data
interchange format when it comes to Web services these days. The competitor is
JSON, made popular because AJAXy things are tending to use it more and more. To
understand a bit about JSON, I want to quote verbatim from the json.org Web site:

JSON (JavaScript Object Notation) is a lightweight data-inter-
change format. It is easy for humans to read and write. It is easy for
machines to parse and generate. It is based on a subset of the Java
Script Programming Language, Standard ECMA-262 3rd Edition—
December 1999. JSON is a text format that is completely language
independent but uses conventions that are familiar to programmers
of the C-family of languages, including C, C++, C#, Java, JavaScript,
Perl, Python, and many others. These properties make JSON an
ideal data-interchange language.

JSON is built on two structures:
u	 A collection of name/value pairs. In various languages, this

is realized as an object, record, struct, dictionary, hash table,
keyed list, or associative array.

u	 An ordered list of values. In most languages, this is realized as
an array, vector, list, or sequence.

These are universal data structures. Virtually all modern program-
ming languages support them in one form or another. It makes
sense that a data format that is interchangeable with programming
languages also be based on these structures.

If you’ve dealt at all with YAML, you will have very little problem coping with
JSON (YAML proponents claim it is a superset of JSON). We explored working

	66    ;login:  VOL. 37, NO. 3

with JSON back in the June 2008 ;login: column, so you may want to take a quick
look at that column if you’d like more information on how to work with it from Perl.

For this demonstration, we’re going to use the Web service from Weather Under-
ground (wunderground.com) that does charge money for their service if used over
a certain amount. The free plan offers you 500 calls per day, 10 calls per minute—
more than sufficient for the needs of this column. If you want to go higher, the next
tier (5000 calls per day, 100 per minute) is only $20US per month, nothing outra-
geous.

One quick aside before we actually get into coding against their API: our previ-
ous data provider, Yahoo! actually has a “secret” (i.e., not directly documented in
their Weather section, as far as I can tell) JSON API available. I think one undocu-
mented API per column is more than enough so I’m going to just mention it exists
(use “forecastjson” in the URL instead of “forecastrss”) and move on.

To use the Weather Underground API, you need to sign up for an API key. With that
key, you can construct your query URL. In the examples below, I’ve replaced my
personal API key with YOURAPIKEY.

Unlike the previous services we’ve seen, Weather Underground lets you request
different “features” from the service by adding keywords to the part of the URL you
would normally associate with the path to the resource. For example, if I wanted to
retrieve just the current conditions for a place, I would use a URL that began:

http://api.wunderground.com/api/YOURAPIKEY/conditions ...

If I wanted to duplicate what we’ve received from the other services by requesting
both the current conditions and the forecast, the URL would begin with:

http://api.wunderground.com/api/YOURAPIKEY/conditions/forecast ...

After the features part of the URL, you provide the location and an indication of
the format you’d like back. Here’s the complete URL we’d use to get back the cur-
rent conditions and forecast for Boston as a JSON document:

http://api.wunderground.com/api/YOURAPIKEY/conditions/forecast/q/MA/Boston.json

Based on our previous examples, you can probably guess what our sample code
will look like. The main difference is we’ll be feeding the results of our get() to the
JSON module’s from_json function. This converts the JSON documented into a
Perl data structure, along the lines of this (I’ve heavily excerpted below because the
data you get back is pretty voluminous):

0 HASH(0x7fd2bad12020)

 ‘current_observation’ => HASH(0x7fd2bad11f18)

 ‘relative_humidity’ => ‘79%’

 ‘solarradiation’ => 109

 ‘station_id’ => ‘KMAWINTH1’

 ‘temp_c’ => 6.1

 ‘temp_f’ => 42.9

 ‘temperature_string’ => ‘42.9 F (6.1 C)’

 ‘visibility_km’ => 16.1

 ‘visibility_mi’ => 10.0

 ‘weather’ => ‘Overcast’

 ‘wind_degrees’ => 47

 ‘wind_dir’ => ‘NE’

	 ;login:  JUNE 2012   Practical Perl Tools    67

 ‘wind_gust_kph’ => 16.1

 ‘wind_gust_mph’ => 10.0

 ‘forecast’ => HASH(0x7fd2baad6758)

 ‘simpleforecast’ => HASH(0x7fd2bad00850)

 ‘forecastday’ => ARRAY(0x7fd2badfcf08)

 0 HASH(0x7fd2badfcfc8)

 ‘avehumidity’ => 67

 ‘avewind’ => HASH(0x7fd2badfdd48)

 ‘degrees’ => 34

 ‘dir’ => ‘NE’

 ‘kph’ => 10

 ‘mph’ => 6

 ‘conditions’ => ‘Rain Showers’

The trickiest part is simply finding the right parts of the data structure to display.
Here’s our last piece of sample code:

use strict;

use LWP::Simple;

use JSON;

my $weather = from_json(

 �get(‘http://api.wunderground.com/api/YOURAPIKEY/conditions/forecast/q/

MA/Boston.json’

)

);

print ‘Current conditions: ‘

 . $weather->{current_observation}->{weather} . “ “

 . $weather->{current_observation}->{temp_f} . “ F\n”;

foreach my $day (@{

 $weather->{forecast}->{simpleforecast}->{forecastday} }) {

 print �$day->{date}->{weekday_short} . “: “

 . $day->{conditions} . ‘ ‘

 . $day->{high}->{fahrenheit} . ‘/’

 . $day->{low}->{fahrenheit} . “\n”;

}

To end this column, let me show you the current output of the previous code so you
can feel a bit better about the weather near you:

Current conditions: Overcast 42.9 F

Thu: Rain Showers 46/36

Fri: Clear 48/36

Sat: Chance of Rain 43/30

Sun: Chance of Rain 52/32

Take care, and I’ll see you next time.

