
	78    ;login:  VOL. 37, NO. 2

Learning Python, 4th Edition
Mark Lutz
O’Reilly, 2009. 1140 pp.
ISBN 978-0-596-15806-4

The Quick Python Book, 2d Edition
Vernon L Ceder, Daryl K. Harms, and Kenneth McDonald
Manning, 2010. 322 pp.
ISBN 978-1-935182-20-7

If somebody had given me column A, with the book titles
complete with series names and subtitles, and column B, with
an accurate description of what each one covers, and asked
me to match them up, I would never have succeeded. I found
this group of books both startlingly diverse and oddly titled.

Beginning Python is in the “Programmer to Programmer”
series. It also starts with a description of how programming
a computer differs from using a computer, and spends pages
of its chapter on variables in a discussion of what a vari-
able is. On the other hand, lambda functions appear not long
after, and shortly after that you have left Python itself to
gallop through topics that drag in extra protocols and topics,
ranging from file typing and file system traversal through
XML parsing, and on to creating your own fully functioning
Web server with a database backend. (Input sanitization,
however, is out of scope, so it comes with XSS and SQL injec-
tion vulnerabilities.) The Python it teaches is 2.6 with 3.1
enhancements; it uses 2.6 idioms, not 3.1 idioms. I wouldn’t
recommend it to anybody, and I’d particularly advise against
it for anybody who is just learning to program. The example
of quotes, which illustrates single, double, and triple quotes
with something that’s either a single quote, two single quotes,
and three single quotes, or a single quote, a double quote, and
some punctuation mark I’ve never seen before, is particularly
problematic, especially since it is immediately followed by
examples which use triple double quotes.

If you want a rapid introduction to Python for an experienced
programmer, I’d suggest The Quick Python Book instead. It
covers the basics of Python, plus some of the key libraries

The Linux Command Line: A Complete
Introduction
William E. Shotts, Jr.
No Starch, 2012. 432 pp.
ISBN 978-1-59327-389-7

Some books I like because they fill my personal needs, some
because they are good examples of something I have no
interest in, and some because I can give them to other people.
This book falls into that last category. This is the book that I
can give to people who want to know how to do “that UNIX-
y stuff you do.” It assumes that you are a reasonably bright
person with a grasp of how to use a computer, and you want
to make the leap from using Linux with a GUI to using Linux
from a command line. It introduces you to thinking like a
UNIX person, without dragging in lots of history, and covers
the most important commands you need to know, with a big
helping of bash scripting.

Careful selection of topics keeps this down to a reasonable
size. That means making lots of decisions I fully support,
such as deciding to only cover Linux, and only modern distri-
butions at that. Keeping the focus relatively narrow makes a
book that’s much more readable and usable. You’re not forever
skipping special cases. I am sad that this approach means
that awk is only mentioned in passing, but if I’m going to sup-
port the drawing of lines, I’m going to have to live with some
authorial choices that differ from mine.

I’ve been waiting for this book for quite a while, and will be
enthusiastically pressing it on several people.

Beginning Python: Using Python 2.6 and Python 3.1
James Payne
Wrox, 2010. 558 pp.
ISBN 978-0-470-41463-7

Head First Python
Paul Barry
O’Reilly, 2011. 445 pp.
ISBN 978-1-449-38267-4

BOOKSBook Reviews
E L I Z A B E T H Z W I C K Y , W I T H M A R K L A M O U R I N E , T R E Y D A R L E Y ,
A N D B R A N D O N C H I N G

	 ;login:  APRIL 2012   Book Reviews    79

that it is a good idea to build your own fully functioning
safety-free Web server, especially with a database backend.

Seven Languages in Seven Weeks
Bruce A. Tate
The Pragmatic Programmers LLC, 2010. 300 pp.
http://pragprog.com/book/btlang/seven-languages-in-seven-weeks
ISBN 978-1-93435-659-3

When I was a freshman in college, I learned seven program-
ming languages. Computer concepts were taught in Pascal.
Engineering was in FORTRAN and VAX and 68000 Assem-
bly. Business used COBOL. Artificial Intelligence research
was done in LISP and Prolog. I have always been glad that
I had that grounding in the variety of ways it is possible to
express a problem.

Seven Languages in Seven Weeks offers a similar survey of
modern programming languages and language concepts. The
creators of these languages each feel that there’s something
that needs to be expressed and that no other language they
know does quite what they want. Tate sets out to show what
makes each one special. He’s chosen Ruby, Io, Prolog, Scala,
Erlang, Clojure, and Haskell. Except for Ruby, most of these
will be obscure or unknown to ordinary mainstream coders.

Tate’s introduction is very clear about what this book is not:
it’s not a tutorial or an installation guide. It’s not complete
or comprehensive. He didn’t pick the most popular or most
academically acclaimed languages. He apologizes up front
to those whose favorite working language isn’t included, and
explains that he was not interested in producing a “Best of”
book. He chose a set of languages which covers the range of
current practice. His goal is to explore the significant fea-
tures of each language, how those help express different ideas
clearly and concisely.

The book is divided into a section for each language. The
introduction to each section provides the resources and
information needed to install the language and to begin
interacting or coding. Each section is further broken down
into single-day sessions. Tate knows you have real work to do,
so each section only contains three days.

The daily sessions start with the common language con-
structs: variables, types, logic, flow control, and so on. Tate
glosses the basics and highlights how each language is spe-
cial. By the third day, you’re deep into the core concepts that
make each language unique. Each day ends with a summary
of the key concepts and a set of exercises to help you explore
for yourself and to set them in your mind. The sections con-
clude with a wrap-up of the significant features and a little
discussion of why they’re important.

(regular expressions, Tkinter, pickles, shelves) for Python 3
and Python 2. It does so with enough Monty Python refer-
ences to suggest that the authors get the Python mindset,
but not an unbearable number. (Yes, reviewing Python books
will, perforce, involve evaluating them on the number of
Monty Python references. It is as inescapable as the Spanish
inquisition.) If you do not already understand some program-
ming language—preferably an object-oriented one—you will
not find it a rewarding experience.

I have not yet found a book I’d recommend as a Python
introduction for your average person new to programming.
Learning Python is only a reasonable introduction for some-
body with a computing background and a burning desire
for completeness. Its introductory chapter does not attempt
to introduce you to programming as a concept, but it does
list all the major varieties of Python implementations and
explain them. You get to “What is Jython?” before you get to
“Hello, world.” It’s a very complete introduction to Python,
taking 3 as its point of reference but with information on 2,
the differences, and how to code portably. It hews quite care-
fully to the language itself, avoiding more than the briefest of
brushes with common libraries. It’s a good, readable language
reference, and if you like learning languages systematically,
it’s an unusually good example of a careful guide to the whole
language.

Learning Python should put the other books’ lengths in con-
text. It takes a bit over a thousand pages to do a nice, thor-
ough job of explaining the language, just the language, with
explanations of the idioms, nice clear examples, and plenty
of whitespace, but no major detours and the assumption that
you already understand all the underlying concepts. Quick
Python covers that territory, plus common libraries, in a third
the space. Beginning Python does it in about a fifth the space,
and tries to begin with fewer assumptions.

And then there’s Head First Python, which I like better than
Beginning Python even though it is even more of a breathless
gallop. In fewer pages with more pictures, it not only walks
you through creating your own fully functioning Web server
with a database backend (and no input sanitization), it also
has you create an Android app and move your Web server
onto Google Apps. On the other hand, it does a believable
job of explaining the things it does explain, and it makes no
pretense to have taught you how these things work. It teaches
a number of general programming concepts (not just why
objects and exceptions are good ideas, but also some concepts
in software design), and it explicitly walks the reader through
a number of debugging situations, which is important for
novices. Like Learning Python, its audience as a book to learn
from is a relatively narrow one, but the right person will find
it a fun and educational ride. But please, please, do not decide

	80    ;login:  VOL. 37, NO. 2

who’s ever read someone else’s code (or even their own after a
time) should be able to get behind that.

Sprinkled throughout the book are a set of “key ideas.” Each
one relates to the clarity of the style or structure of the code.
They range from choosing good names to knowing your
libraries. They also include a couple of examples of tradi-
tional structural refactoring. Some of this may sound quaint,
but the authors illustrate their points in practical ways.

The first three sections cover cosmetic and aesthetics, then
logic and branching structures, and, finally, application
structure.

There is a fourth section with two unrelated chapters. The
first makes a case for writing tests that can be read and that,
when they fail, indicate clearly what failed. They also include
a remarkably non-trivial application and work through three
phases of development.

In most books I don’t look at the table of contents much after I
begin reading, but in this one the chapter headings make the
best summary of those key concepts. It would have been nice
to see a cheat sheet or a one- or two-page compact summary
of the key ideas.

I’ve been coding for long enough that there’s not a lot here
that’s new to me, but I did pick up a few tips, and the book
presents the ideas in a concise and coherent way. For some-
one just starting out or who is interested in approaching
coding for readability in a systematic way, there’s something
here for you that I haven’t seen anywhere else.

My bookshelf is made up mostly of pure references. I have a
few classics which don’t get much use, but which I don’t feel
I can part with. I think this one may fit between those two
groups. I won’t be looking up function calls, but I can imagine
scanning it again when I find myself facing something ugly.

—Mark Lamourine

TCP/IP Illustrated, Volume 1, 2d Edition: The
Protocols
Kevin R. Fall and W. Richard Stevens
Addison-Wesley, 2011. 1017 pp.
ISBN 978-0-321-33631-6

There’s no shortage of technical books. Most quickly fade
in value due to the constant churn of innovation. A select
few stand out, forming something like a canon of computer
science. It is a testament to W. Richard Stevens’s depth of
knowledge and communication style that after nearly two
decades people still refer to his books. Kevin R. Fall had big
shoes to fill when he undertook the ambitious task of produc-

The book closes with a summary of the families of modern
programming concepts and how each of these languages fits
into those families. Tate highlights each language’s strength,
but he doesn’t shy away from exposing the warts or showing
how one problem or another might not be suited to a given
language.

Tate’s style is conversational and tutorial. He writes as if he’s
sitting down with you to show you something cool. He opens
each day with some kind of informal anecdote or metaphor
that leads to the day’s topic. His preparation has included
interviews with the language writers or researchers, and in
some cases he includes portions of his interview if it high-
lights the character or taste of the language he’s teaching. In
at least one case he gets the author of a language to say what
he’d most like to change if he could go back and start again.

When you’ve finished with this book, you should have a clear
understanding of some of the more esoteric concepts of cur-
rent programming languages, and some sense of the flavor of
each of the individual languages. This book may be frustrat-
ing to someone who’s not already familiar with at least a
couple of programming languages. I’d steer away from it if
your interest is solely in writing application code in any one
of them.

I like exploring and understanding the capabilities of dif-
ferent programming languages, even ones I don’t expect to
use. There’s no example in any of these sections that could
not be implemented using one of the other languages. What I
enjoy is seeing the elegance that each one brings to solving a
problem. I suspect I’ll pass it on to friends who also like that
kind of thing.

—Mark Lamourine

The Art of Readable Code: Simple and Practical
Techniques for Writing Better Code
Dustin Boswell and Trevor Foucher
O’Reilly Media Inc., 2012. 190 pp.
ISBN 978-0-596-80229-5

This is my first experience with an O’Reilly book from the
“Theory in Practice” series. This series tries to “impart the
knowledge and wisdom of leading-edge experts” (http://shop
.oreilly.com/category/series/theory.do). The Art of Readable
Code does feel like a series of lessons or conversations with
a colleague or mentor. The authors claim that many of the
examples come from their own real applications.

The Art of Readable Code opens by making a case that code
should be written with the human reader in mind. Anyone

	 ;login:  APRIL 2012   Book Reviews    81

final chapter focuses exclusively on security issues. He starts
off with an excellent refresher in crypto, then goes on to deal
with EAP, IPsec, PKIs, DNSSEC, TLS, and DKIM. I would
buy the book on the basis of this chapter alone.

Some who buy this book will just stick it on a shelf and only
refer to it occasionally. But while this is most assuredly a
reference book (and an excellent one at that), you definitely
can read this book in its entirely, and I would argue that you
are cheating yourself if you don’t. Some material is a bit dense
by its very nature, to be sure, but the writing is incisive and
engaging. As I write this, we’re up to RFC 6528. Nobody has
time to read all of that. Who among us isn’t constantly skir-
mishing with networks, be you coder, DBA, researcher, policy
wonk, or sysadmin? The network is pervasive. Perhaps, like
me, your knowledge of TCP/IP is an amalgamated hodge-
podge gained through years of experience. If you take the
time to read this book you will fill in your gaps and deepen
your understanding of not only the “whats” of the Net but also
the crucial whys and hows.

—Trey Darley

Head First HTML5 Programming: Building Web
Apps with JavaScript
Eric Freeman and Elisabeth Robson
O’Reilly Media, 2011. 610 pp.
ISBN 978-1449390549

O’Reilly’s Head First series is a definite departure from
traditional technical publishing methods. Instead of pages
and pages of text and code, the Head First series uses images,
comedy, and a variety of methods to assist your brain in
remembering what it is that you are learning. Head First
HTML 5 Programming: Building Web Apps with JavaScript
is one of the latest in this series and, like its predecessors, it
does not fail to provide the reader with ample information in
an understandable format.

Weighing in at 610 pages, you might think that Head First
HTML 5 is a bit of overkill for a relatively simple updated
Web standard, and you’d be right. However, the extent of
what is possible in HTML 5 is highly dependent on associ-
ated technologies such as JavaScript. Thus, the vast majority
of this beefy text is actually focused on how JavaScript, in
combination with HTML 5, can be used to usher in a new
generation of Web applications and features.

In fact, of the ten chapters in the book, all but one are focused
primarily on JavaScript. The book opens with a history and
general overview of HTML 5 and how the HTML standard
has come to be what it is today. The next three chapters
offer a crash course in JavaScript. The overview provided

ing this updated edition. (Fall is certainly no slouch himself,
having served on both the Internet Architecture Board
and IETF.) The result is impressive, a true labor of love. It
remains true to the spirit of the original while bringing it up
to date.

Fall leads the reader gently up the OSI stack, from media
layer framing all the way up to DNSSEC and TLS. He
assumes a certain level of innate intelligence in his reader
but tries hard not to assume much knowledge about TCP/IP.
The text incorporates fascinating historical notes, from the
ARPANET days to the present, which illuminate both the
human politics and technical drivers for change.

One major difference between this and the former edition is
how much material Fall elected to remove. The first edition
was, in some respects, wider in scope, addressing such topics
as NFS, SNMP, SMTP, and dynamic routing protocols. Fall
has focused exclusively on core Internet protocols. One might
well object that dynamic routing protocols are core but, as
Fall explains in his preface, there’s a world of difference
between RIP and BGP/OSPF, and to properly treat the latter
would have made this already sizable tome an unreadable
doorstop.

While a good bit of material has been elided from this new
edition, much has been added. The core protocols have sub-
stantially evolved over the past two decades. Fall has done a
great service to his readers in assessing those changes. He’s
essentially read a great pile of RFCs, distilled the essence,
and highlighted further reading on topics most relevant to
you.

As in the first edition, this incorporates countless packet
traces (both tcpdump and wireshark) to illustrate what’s
going down on the wire. On the inside front cover are three
example network diagrams: a home network, a coffee house,
and an enterprise. Fall uses these throughout the book, and
it proves an effective trope. Back in Stevens’s day, there were
some pretty stark differences between different TCP/IP
stacks. Things have improved, but Fall keeps to Stevens’s
penchant for mixing traces from different OSes (OS X, Free-
BSD, Windows, and Linux), reflecting the heterogeneity of
the real world.

Fall has tried to make each chapter self-contained (each
chapter is followed immediately by its footnotes, for exam-
ple). IPv4 and IPv6 are totally integrated within each chapter
(except in a few cases where the topic is only applicable to one
or the other, as with ARP vs. Neighbor Discovery). Security,
too, is integral to the entire text.

It’s worth commenting on the final chapter. Although Fall
has made security an integral part of the entire book, his

	82    ;login:  VOL. 37, NO. 2

written and on target throughout. If I had to raise a com-
plaint at all, it would be that all the examples are in standard
JavaScript, as opposed to a JavaScript library such as jQuery.
JavaScript libraries are so ubiquitous in the Web develop-
ment community that it seems very little new development is
done outside of them.

Head First HTML 5 is a book well suited to be on almost any
Web developer’s bookshelf. There is definitely something in
here for everybody, from the junior developer to the expert. In
the new era of HTML 5, JavaScript is no longer an option, it is
a necessity, and Head First HTML 5 Programming: Building
Web Apps with JavaScript offers a solid foundation.

—Brandon Ching

does assume some previous programming experience and
focuses primarily on DOM parsing, events and handlers, and
functions and objects. Chapters 5 through 9 provide a sort of
“greatest hits” for Web applications, covering such topics as
geolocation, canvas, AJAX and JSON, and video/media. The
book wraps up with coverage of local Web storage and Web
workers, for those beefy applications.

As with a lot of instructional texts, each new concept is sup-
ported by the construction of a dedicated mock project. All
code samples in the book are concise, well explained, and
relevant. One of the neat things about the Head First series is
that visually, important gotchas and side notes are made easy
to identify and remember and do much to help you under-
stand what you are learning.

There was no single chapter that I thought was better than
the rest. This is one of those rare books that I found to be well

