
	 ;login:  JUNE 2012     83

BOOKS
Each chapter covers a high-evel task for the user. These
correspond to the configuration of different Jenkins activi-
ties. They also match the timeline presented in Chapter 1 for
gradually introducing continuous integration.

The first four chapters cover the introduction, preparation of
the environment, and installation and configuration of Jen-
kins. The example project for the book is hosted on GitHub
and the book instructs the reader to create an account and
fork the sample repository. I’m not sure how I feel about
reference books which depend on live commercial services.
Realistically, the book is likely to be obsolete before GitHub
goes belly up, but it bothers me somehow.

The remaining chapters cover creating build jobs, automated
testing and notification, authentication and access control
mechanisms, automatic code quality scanning and reporting,
and automated deployment. The final chapter talks about
updates, configuration backups, and storage management
and server loading. I was glad to see that because I didn’t see
anything about capacity planning at the beginning.

On top of the standard features there is a long and growing
list of plugins for open source and commercial applications
available, each of which will require some knowledge of the
related software. I think this is a good thing, but it’s clear that
this book (and this software) is not for the novice developer
or sysadmin.

Jenkins was written in Java and to manage Java projects.
This shows in the focus of the examples in the book. The
plugin list, though, shows that Jenkins is being used to man-
age projects in a dizzying array of environments. All of the
current major scripting languages and Web frameworks are
represented, as are a number of more obscure (to me) tools.
The book doesn’t cover these, but if a plugin exists for your
language or environment it doesn’t look like it will be dif-
ficult to install or configure.

Jenkins is managed almost entirely through the Web user
interface. The book is full of screen shots illustrating the
text. One concern is that any changes to the visual layout of
the user interface will make portions of the book obsolete.

Jenkins: The Definitive Guide
John Ferguson Smart
O’Reilly Media, 2011. 406 pp.
ISBN 978-1-449-30535-2

Anyone who’s worked on the development side of system
administration for any length of time has probably put
together some form of automated build system. Those of us
who are older probably did it from scratch.

A corollary of the Agile development process is the need for
a strong automated build and test service. The popularity of
Agile development has led to the improvement of services to
manage the build and test process and to provide visibility
at each step. To oversimplify, the idea is to rebuild and retest
with every code check-in. Ideally, little bugs are discovered
early and fixed before they grow into big problems. Of course,
people have given this a name: continuous integration. Jen-
kins is a fairly recent addition to the tool set.

It’s important to understand at the outset that Jenkins
doesn’t really do anything by itself. Jenkins manages and
coordinates a series of activities that would otherwise be
done manually or not at all.

Jenkins: The Definitive Guide is light on philosophy. The
introduction and justification for using continuous integra-
tion in general and Jenkins in particular takes just eight
pages. That includes a three-page seven-step timeline to get
from no automation to complete continuous integration. The
rest of the book actually does a fine job of filling in the outline
but doesn’t waste any effort trying to proselytize.

The book is both sparse and dense. Jenkins integrates with
dozens of other pieces of software, and the author doesn’t try
to hand-hold the reader through any of them. For example,
Jenkins is a Java application. Java installation and verifica-
tion take a single paragraph with a URL reference to the
Oracle Web site for download and installation instructions.
Likewise, Git installation and creation of a GitHub account to
download the sample jobs for the next chapter take just over
a page.

Book Reviews
M A R K L A M O U R I N E , B R A N D O N C H I N G , P E T E R H . S A L U S , J E F F B E R G ,
E V A N T E R A N , A N D R I K F A R R O W

	84    ;login:  VOL. 37, NO. 3

automation tasks and demonstrates the general script flow
and how specific libraries function to get results. Some
example projects here are price monitoring, form submission,
aggregation, and email-reading/sending webbots. Section
three covers advanced topics such as dealing with cookies,
encryption, authentication, and macros. Finally, section four
covers general webbot considerations such as fault tolerance,
stealth, and webbot-friendly Web design.

As someone who has been writing PHP/cURL webbots and
spiders myself for about seven years now, I was particularly
excited to read this book. I think Michael does a good job of
covering most of the basic techniques and challenges having
to do with webbot scripting. Although there are a number of
good chapters that will get you up and running quickly, I do
feel that most of the chapters were a bit cursory, lacking some
very important coverage of alternate tools and techniques.
Also, Michael doesn’t delve deeply into topics such as AJAX
and complex JavaScript-driven sites and forms. In my experi-
ence, a large number of sites use these kinds of techniques,
and without the right tools they can be very difficult to parse.

Overall, Webbots, Spiders, and Screen Scrapers is well-writ-
ten, easy to follow, and will get you started quickly. Having
said that, its lack of depth in certain areas definitely makes it
most appropriate for beginning developers/scripters.

—Brandon Ching

A Culture of Innovation: Insider Accounts of
Computing and Life at BBN
David Walden and Raymond Nickerson, eds.
Waterside Publishing, 2011. 559 pp.
ISBN 978-0-9789737-0-4

We owe a great deal to the concept of the industrial lab, the
first of which was that of Thomas Edison in Menlo Park,
NJ (now renamed Edison). World War II gave rise to IBM’s
Research Division in Manhattan and, since 1970, in York-
town Heights, NY. It also saw the start of Bolt Beranek and
Newman in Cambridge, MA, in 1948.

This volume incorporates the narratives of 19 of those who
were involved in BBN over a period of 60 years. It is not 100%
new material. Some of the contents originally appeared in
two special issues of IEEE Annals of the History of Com-
puting (v. 27.2 and v. 28.1 [2005, 2006]), but many of those
articles reappearing in this volume are expanded versions,
and some of the chapters are completely original to this work.

Dick Bolt and Leo Beranek founded their partnership in 1948.
Their first job was the acoustical engineering of the not-yet-
built UN headquarters in New York. Bob Newman became

User interface evolution isn’t a problem limited to books and
software with graphical interfaces, but I think it could be a
greater problem for them.

“Guide” is an appropriate term to use for this book if you take
it in the sense of a tour rather than a reference. Each chapter
shows you something important and concrete but then leaves
you at the entrance to some new place for you to explore on
your own, since each subject is covered well elsewhere. Take
the tour and then decide what parts you want to explore next
and in greater depth.

This book is licensed by the author under the Creative Com-
mons license. The content is available on the Internet at
DocBook. This is a case of Tim O’Reilly putting his money
where his mouth is. He’s spoken out publicly against draco-
nian government-enforced content monopolies. He’s willing
to publish CC licensed books. He knows how to decide what
will make money, and he’s convinced that he doesn’t need an
exclusive copyright to publish a book worth buying. And he’s
right.

—Mark Lamourine

Webbots, Spiders, and Screen Scrapers: A Guide to
Developing Internet Agents with PHP/cURL, 2nd
Edition
Michael Schrenk
No Starch Press, 2012. 362 pp.
ISBN 978-1-59327-397-2

In the second edition of Webbots, Spiders, and Screen Scrap-
ers: A Guide to Developing Internet Agents with PHP/cURL,
Michael Schrenk introduces you to the world of automated
webbots and scripts that can filter, parse, store, and process
Web-based information that suites your needs. Using the
massive information available online and through the meth-
ods described in this book, you can wield that data almost
any way you want. Need to collect metrics or parse and store
content for your academic research? What about wanting to
have an email sent to you when your bank account gets low?
Perhaps you are watching the price on an eBay auction and
you want to be notified—or even have your script automati-
cally bid for you—when it hits a certain amount. Webbots can
do all of these things and more.

The book is broken up into four parts comprising 31 chap-
ters. While this sounds like a lot, most chapters are short
and to the point, covering a specific topic and guiding you to
external sources where appropriate. The first section covers
foundational techniques and technologies and introduces
you to the PHP language and the cURL library. The second
section delves into some simple projects of common Web

	 ;login:  JUNE 2012   Book Reviews    85

The Tangled Web: A Guide to Securing Modern
Web Applications
Michal Zalewski
No Starch Press, 2012. 268 pp.
ISBN 978-1-59327-388-0

Michal Zalewski succeeds in condensing into a single com-
prehensive volume topics that could easily fill several books,
and he provides the right reader with exactly what he or she
needs to know regarding the Web, the browsers we use to
navigate it, and the considerations we need to be aware of to
secure it. Depending on your experience with these topics,
this is not a breeze-through read; this book requires time and
attention to grasp and hold the topics covered.

The book is split into three parts: “Anatomy of the Web,”
“Browser Security Features,” and “A Glimpse of Things to
Come.” The first third of the book really lays the groundwork
for the remaining portions, giving the reader the neces-
sary background to understand what makes the browsing
experience work. Zalewski covers the basics, devoting entire
chapters to the makeup of a URL, the Hypertext Transfer
Protocol, HTML, Cascading Style Sheets, browser-side
scripts, non-HTML document types, and browser plugins. As
I’ll expand on later in this review, Zalewski crams enormous
amounts of information into the 15–20 pages (on average) per
chapter. Whether it is technical detail or history behind the
design of a browser or standard, he leaves no stone unturned.
The second third delves specifically into security features
of browsers, languages, and plugins, with chapters on topics
such as content isolation logic, origin inheritance, content
recognition mechanisms, and handling rogue scripts. The
last third of the book looks at security features and browser
mechanisms that are expected to emerge. A chapter is
devoted to common Web vulnerabilities.

The level of detail Zalewski goes into is excellent. Topics
such as browser history, design considerations and behavior,
HTML markup, security features in plugins, and secure cod-
ing are covered with minimal filler and with examples that
illustrate discussions throughout. Only rarely is the reader
left with questions, and the text provides detailed references
pointing the reader toward additional information if neces-
sary. As an example of the depth that Zalewski provides for
a given topic: the HTML chapter covers everything from
a discussion of the RFC and subsequent HTML version
evolution to browser parsing behavior in handling differ-
ent code segments, including the role UTF-8 characters can
play in manipulating a browser’s parsing behavior. Zalewski
acknowledges that the book is not all-encompassing in cer-
tain areas; however, I would argue that it’s as close to com-
prehensive as is necessary. For those who get spun around in

a partner and the name was changed in 1950. I am not going
to discuss acoustics, but the Harvard Electro-Acoustics Lab
and the MIT Psycho-Acoustic Lab underlie all the work of
the following decades. BBN grew rapidly. By 1960, there were
offices in Los Angeles and Chicago; there were 128 employees
in Cambridge, 22 in LA, and three in Chicago.

One of the “bright young men” at MIT was J.C.R. Licklider. In
1962, Lick went to Washington, to ARPA, where he became
a prime mover in the expansion of computing and in what
would become the ARPANET. In 1968 BBN’s response to the
RFP for the ARPANET was complete. In October 1969 the
first two IMPs (Interface Message Processors), one at UCLA,
one at the SRI in Menlo Park, CA, communicated with each
other: the 21-year-old corporation would make key contribu-
tions to a technology that was to change the world.

But the ARPANET/Internet was far from the end of BBN’s
innovations.

BBN had been the “experimental” site for DEC’s PDP-1;
thanks to Licklider, Dick Pew, and their cohort, the field of
human-computer interaction came into being; networked
email was born here (thanks to Ray Tomlinson; pay no atten-
tion to the Shiva Ayyadurai silliness); time-sharing was
demonstrated here, etc.

I don’t want to turn what should be a review into a menu, but
if you are reading ;login:, you owe a major debt to BBN: acous-
tic signal processing, control systems, torpedo data analysis,
several medical applications, educational technology, speech
processing, and natural language understanding are merely a
few of the topics discussed in this volume.

Not everything is an easy read; some chapters are better than
others. But the work is quite significant in that you can hear
the voices of a number of remarkable individuals. I learned
and profited from every chapter.

One of the most fascinating is Stephen Levy’s “History of
Technology Transfer at BBN,” covering 1948–1997 (the last
decade is covered in Walden’s “Epilog”). I had not realized the
number of business relations of various kinds BBN (and suc-
cessors) had entered into, nor what a large percentage of the
exchange of agreements was profitable.

Although currently a branch of Raytheon, BBN still functions
as a research and development facility, unlike Bell Labs or
XeroxPARC. This volume is a fitting monument. If you are at
all interested in technological history, A Culture of Innova-
tion is more than merely a worthwhile investment. All the
contributors deserve my thanks; Walden and Nickerson, my
gratitude.

—Peter H. Salus

	86    ;login:  VOL. 37, NO. 3

cally describing some rules of thumb by which the problem
could have been avoided entirely.

So what types of bugs are we talking about here? Pretty much
exclusively ones that fall into the category of memory cor-
ruption. While things like XSS and other higher-level bugs
are very popular now (and are just as serious), they aren’t
addressed in this book. These are “hard core,” low-level
bugs which require an intimate knowledge of the languages,
operating systems, and architectures being exploited. For
those not very familiar with these types of memory corrup-
tion bugs, I highly recommend reading the article “Smashing
the Stack for Fun and Profit.” It’s an older Phrack article, but
really spelled out the basics of how memory corruption bugs
can be leveraged by an attacker.

Of course the book isn’t perfect. The level of detail, while
extremely impressive (and useful), can be a bit overwhelm-
ing. It’s not that there is too much information to take in; it’s
more about presentation. Just about every page is half filled
with code listings of some kind, which is great but also can
make the flow of reading a little difficult. You will probably
find yourself jumping back and forth between the code list-
ings and the descriptions several times before you have that
“ah-ha” moment and see what the bug is. Fortunately, the
author puts the most relevant lines of code in bold so at least
you know what you are supposed to be looking at.

All in all, this is a great book, especially for those who have
a strong background in C or C++ programming and want to
learn how to think like a security engineer.

—Evan Teran

D is for Digital: What a Well-Informed
Person Should Know About Computers and
Communications
Brian Kernighan
DisforDigital.net, 2011. 223 pp.
ISBN 978-1463733896

Sporting a white cover with blue lettering, D is for Digital
mimics the look of classic Kernighan books. But the target
audience for this book is not programmers, but, rather,
educated people who are not CS majors.

Brian writes in his foreword that he has been teaching a class
at Princeton called “Computers in Our World” since 1999,
and his experiences teaching what people need to understand
about computers for over a decade really shows in his book.
D is not a textbook, but a gentle and clear journey that covers
hardware, software, and communications in 12 chapters. I
kept picking the book back up and reading more, partially for

the details, there are “Engineering Cheat Sheets” at the end
of each chapter summarizing major points made throughout.

I would recommend this book without question for any Web
application developer. The information within is essential
knowledge to be applied in everyday efforts. I’d also pose it
as essential reading for security professionals—researchers,
analysts, penetration testers, etc.—who will touch the Web
application space. As a member of this community, I can
say the information presented is just another useful tool in
the old shed that will be applicable at some point. Given the
detail, you may want to keep it around to thumb through on
the fly.

—Jeff Berg

A Bug Hunter’s Diary: A Guided Tour Through the
Wilds of Software Security
Tobias Klein
No Starch Press, 2011. 208 pp.
ISBN 978-1593273859

A Bug Hunter’s Diary is a unique book. Its approach to dis-
cussing the topic of computer security is completely different
from any other I’ve read, and that’s a good thing. Instead of
the usual “this is what could be done,” this book says “this is
what I did and why.”

What makes this book so different really boils down to two
things:

v	 The level of detail given when discussing the bugs is
extremely high. You will need a working knowledge of C or
C++, and assembly (usually x86) wouldn’t hurt either.

v	 The format of the book is literally that of a diary, which
makes it more of a unique read.

There are eight chapters—an introduction followed by in-
depth analysis of seven major bugs that the author found and
developed successful exploits for.

The introduction is a good overview of the different
approaches that are applicable to this type of work, ranging
from static analysis to runtime analysis with a debugger to
fuzzing. The author very much prefers static analysis but is
quick to point out that each approach has its pros and cons
and that everyone will have their preference.

Each “diary entry” is broken down into the steps that the
author took to develop the exploit and closes each one with
two very useful things: “vulnerability remediation,” which
discusses what the vendors did to patch the problem and how
long it took, and “lessons learned,” usually a short list basi-

	 ;login:  JUNE 2012   Book Reviews    87

There are no footnotes or references, in keeping with the
style of the book. There is a list of resources at the back and a
glossary. There is also an index, so if the reader knows what
she is looking for, ADSL or “bit rot,” she can find a good expla-
nation for it in this book.

D makes a great gift for the person who is always asking
questions, or perhaps for someone who really needs to know
what he or she is talking about. I wish that this book were
required reading for anyone attempting to write legisla-
tion related to computers, the Internet, and online privacy. I
did find myself wondering what level of education should be
expected of the target audience, and settled for anyone who
has at least two years of college. Also, the book can be used as a
reference, in that any part of the book can be read in isolation.

—Rik Farrow

the history embedded in it and partially because I enjoyed
learning just how Brian approaches difficult topics. I had
toyed with writing a book about computers a long time ago,
but got bogged down in my explanation of binary. Brian has
no problem with covering binary, assembler, file systems,
JavaScript, Web bugs, and traceroute, while keeping the tone
light and readable.

D is split into three sections: hardware, software, and com-
munications. Communications covers the Internet, but also
some communication hardware, cryptography, security, and
privacy issues. If this seems like a lot to cover in just over 200
pages, the goal is not to overwhelm the reader, but to provide
a solid background. The chapters on the Web and privacy are
worth the price all by themselves.

