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TCP incast is a recently identified network transport pathology that affects many-
to-one communication patterns in datacenters. It is caused by a complex interplay 
between datacenter applications, the underlying switches, network topology, and 
TCP, which was originally designed for wide area networks. Incast increases the 
queuing delay of flows, and decreases application level throughput to far below the 
link bandwidth. The problem especially affects computing paradigms in which 
distributed processing cannot progress until all parallel threads in a stage com-
plete. Examples of such paradigms include distributed file systems, Web search, 
advertisement selection, and other applications with partition or aggregation 
semantics [25, 18, 5]. 

There have been many proposed solutions for incast. Representative approaches 
include modifying TCP parameters [27, 18] or its congestion control algorithm 
[28], optimizing application level data transfer patterns [25, 21], switch level 
modifications such as larger buffers [25] or explicit congestion notification (ECN) 
capabilities [5], and link layer mechanisms such as Ethernet congestion control [3, 
6]. Application level solutions are the least intrusive to deploy, but require modify-
ing each and every datacenter application. Switch and link level solutions require 
modifying the underlying datacenter infrastructure and are likely to be logistically 
feasible only during hardware upgrades. 

Unfortunately, despite these solutions, we still have no quantitatively accurate and 
empirically validated model to predict incast behavior. Similarly, despite many 
studies demonstrating incast for micro-benchmarks, we still do not understand 
how incast impacts application level performance subject to real life complexi-
ties in configuration, scheduling, data size, and other environmental and work-
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load properties. These concerns create justified skepticism on whether we truly 
understand incast at all, whether it is even an important problem for a wide class of 
workloads, and whether it is worth the effort to deploy various incast solutions in 
front-line, business-critical datacenters. 

We seek to understand how incast impacts the emerging class of big data work-
loads. Canonical big data workloads help solve needle-in-a-haystack type prob-
lems and extract actionable insights from large-scale, potentially complex and 
unformatted data. We do not propose in this article yet another solution for incast. 
Rather, we focus on developing a deep understanding of one existing solution: 
reducing the minimum length of TCP retransmission time out (RTO) from 200 ms 
to 1 ms [27, 18]. We believe TCP incast is fundamentally a transport layer problem; 
thus, a solution at this level is best. 

The first half of this article develops and validates a quantitative model that 
accurately predicts the onset of incast and TCP behavior both before and after. 
The second half of this article investigates how incast affects the Apache Hadoop 
implementation of MapReduce, an important example of a big data application. We 
close the article by reflecting on some technology and data analysis trends sur-
rounding big data, speculate on how these trends interact with incast, and make 
recommendations for datacenter operators. 

Toward an Analytical Model

We use a simple network topology and workload to develop an analytical model for 
incast, shown in Figure 1. This is the same setup as that used in prior work [25, 27, 
18]. We choose this topology and workload to make the analysis tractable. 

Figure 1: Simple setup to observe incast

The workload is as follows. The receiver requests k blocks of data from a set of 
N storage servers—in our experiments k = 100 and N varies from 1 to 48. Each 
block is striped across N storage servers. For each block request received, a server 
responds with a fixed amount of data. Clients do not request block k+1 until all the 
fragments of block k have been received. This leads to a synchronized read pattern 
of data requests. We reuse the storage server and client code in [25, 27, 18]. The per-
formance metric for these experiments is application-level goodput, i.e., the total 
bytes received from all senders divided by the finishing time of the last sender. 

We conduct our experiments on the DETER Lab testbed [12], where we have full 
control over the non-virtualized node OS, as well as the network topology and 
speed. We used 3 GHz dual-core Intel Xeon machines with 1 Gbps network links. 
The nodes run standard Linux 2.6.28.1. This was the most recent mainline Linux 
distribution in late 2009, when we obtained our prior results [18]. We present 
results using both a relatively shallow-buffered Nortel 5500 switch (4 KB per port) 
and a more deeply buffered HP Procurve 5412 switch (64 KB per port). 
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Flow Rate Models

The simplest model for incast is based on two competing behaviors as we increase 
N, the number of concurrent senders. The first behavior occurs before the onset of 
incast and reflects the intuition that goodput is the block size divided by the trans-
fer time. Ideal transfer time is just the sum of a round trip time (RTT) and the ideal 
send time. Equation 1 captures this idea. 

Incast occurs when there are some N > 1 concurrent senders, and the goodput drops 
significantly. After the onset of incast, TCP retransmission time out (RTO) repre-
sents the dominant effect. Transfer time becomes RTT + RTO + ideal send time, as 
captured in Equation 2. The goodput collapse represents a transition between the 
two behavior modes. 

Figure 2 gives some intuition with regard to Equations 1 and 2. We substitute block-
Size = 64KB, 256 KB, 1024 KB, and 64 MB, as well as RTT = 1 ms, and RTO = 200 
ms. Before the onset of incast (Equation 1), the goodput increases as N increases, 
although with diminishing rate, asymptotically approaching the full link bandwidth. 
The curves move vertically upwards as block size increases. This reflects the fact 
that larger blocks result in a larger fraction of the ideal transfer time spent transmit-
ting data, versus waiting for an RTT to acknowledge that the transmission com-
pleted. After incast occurs (Equation 2), RTO dominates the transfer time for small 
block sizes. Again, larger blocks lead to RTO forming a smaller ratio versus ideal 
transmission time. The curves move vertically upwards as block size increases. 

Figure 2: Flow rate model for incast, showing ideal behavior (solid lines, Equation 1) and incast 
behavior caused by RTOs (dotted lines, Equation 2). The incast goodput collapse comes from 
the transition between the two TCP operating modes.
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Empirical Verification

Figure 3: Empirical verification of flow rate incast model. Error bars represent 95% confidence 
interval around the average of five repeated measurements. This shows that (1) incast goodput 
collapse begins at N = 2 senders, and (2) behavior after goodput collapse verifies Equation 2. 

This model matches well with our empirical measurements. Figure 3 superposi-
tions the model on our previously presented data in [18]. There, we fix block size at 
256 KB and set RTO to 100 ms and 200 ms. The switch is a Nortel 5500 (4 KB per 
port). For simplicity, we use RTT = 1 ms for the model. Goodput collapse begins at 
N = 2, and we observe behavior for Equation 2 only. The empirical measurements 
(solid lines) match the model (dotted-lines) almost exactly. 

Figure 4: Empirical verification of flow rate TCP model before onset of incast. RTO is 200 ms. 
Error bars represent 95% confidence interval around the average of five repeated measure-
ments. This shows (1) that behavior before goodput collapse verifies Equation 1, and (2) the 
onset of incast goodput collapse predicted by switch buffer overflow during slow start (Equa-
tion 3).

We use a more deeply buffered switch to verify Equation 1. As we discuss later, 
the switch buffer size determines the onset of incast. Figure 4 shows the behav-
ior using the HP Procurve 5412 switch (64 KB per port). Behavior before goodput 
collapse qualitatively verifies Equation 1—the goodput increases as N increases, 
although with diminishing rate; the curves move vertically upwards as block size 
increases. We can see this graphically by comparing the curves in Figure 4 before 
the goodput collapse to the corresponding curves in Figure 2. 

Takeaway: Flow rate model captures behavior before onset of incast. TCP RTO domi-
nates behavior after onset of incast. 

Predicting the Onset of Incast

Figure 4 also shows that goodput collapse occurs at different N for different block 
sizes. We can predict the location of the onset of goodput collapse by detailed mod-
eling of TCP slow start and buffer occupancy. Table 1 shows the slow start conges-
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tion window sizes versus each packet round trip. For 16 KB blocks, 12 concurrent 
senders of the largest congestion window of 5864 bytes would require 70368 bytes 
of buffer, larger than the available buffer of 64 KB per port. Goodput collapse 
begins after N = 13 concurrent senders. The discrepancy of 1 comes from the fact 
that there is additional “buffer” on the network beyond the packet buffer on the 
switch, e.g., packets in flight, buffer at the sender machines, etc. According to this 
logic, goodput collapse should take place according to Equation 3. The equation 
accurately predicts that for Figure 4, the goodput collapse for 16 KB, 32 KB, and 64 
KB blocks begin at 13, 7, and 4 concurrent senders, respectively, and for Figure 3, 
the goodput collapse is well underway at 2 concurrent senders. 

Round trip 16KB blocks 32KB blocks 64KB  blocks 128KB blocks 

1 1,448   1,448   1,448   1,448 

2 2,896   2,896   2,896   2,896 

3 5,792   5,792   5,792   5,792 

4 5,864 11,584 11,584 11,584 

5 10,280 23,168 23,168 

6 19,112 46,336 

7 36,776

Table 1: TCP slow start congestion window size in bytes versus number of round trips. We veri-
fied using sysctl that Linux begins at 2x base MSS, which is 1448 bytes.

Takeaway: For small flows, the switch buffer space determines the onset of incast. 

Second Order Effects

Figure 4 also suggests the presence of second-order effects not explained by Equa-
tions 1 to 3. Equation 3 predicts that goodput collapse for 128 KB blocks should 
begin at N = 2 concurrent senders, while the empirically observed goodput collapse 
begins at N = 4 concurrent senders. It turns out that block sizes of 128 KB represent 
a transition point from RTO-during-slow-start to more complex modes of behavior. 

We repeat the experiment for block size = 128 KB, 256 KB, 512 KB, and 1024 KB. 
Figure 5 shows the results, which includes several interesting effects. 
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Figure 5: Second-order effects other than RTO during slow start. Measurements done on HP 
Procurve 5412 switches (64 KB per port). RTO is 200 ms. Error bars represent 95% confidence 
interval around the average of five repeated measurements. Showing (1) partial RTOs more 
accurately modeling incast behavior for large blocks, (2) transition between single and multiple 
partial RTOs, and (3) triple duplicate ACKs causing more gradual, block size–independent 
onset of incast.

First, for block size = 512 KB and 1024 KB, the goodput immediately after the 
onset of incast is given by Equation 4. It differs from Equation 2 by the multiplier 
a for the RTO in the denominator. This a is an empirical constant and represents 
a behavior that we call partial RTO. What happens is as follows. When RTO takes 
place, TCP SACK (turned on by default in Linux) allows transmission of further 
data, until the congestion window can no longer advance due to the lost packet. 
Hence, the link is idle for a duration of less than the full RTO value. Hence we call 
this effect partial RTO. For block size = 1024 KB, a is 0.6, and for block size = 512 
KB, a is 0.8. 

Second, beyond a certain number of concurrent senders, a transitions to 
something that approximately doubles its initial value (0.6 to 1.0 for block size = 
1024 KB, 0.8 to 1.5 for block size = 512 KB). This simply represents that two partial 
RTOs have occurred. 

Third, the goodput collapse for block size = 256 KB, 512 KB, and 1024 KB is more 
gradual compared with the cliff-like behavior in Figure 4. Further, this gradual 
goodput collapse has the same slope across different block size. Two factors 
explain this behavior. First, flows with block size greater than 128 KB have a lot 
more data to send even after the buffer space is filled with packets sent during 
slow start (Equation 3 and Table 1). Second, even when the switch drops packets, 
TCP can sometimes recover. Empirical evidence of this fact exists in Figure 4. 
There, for block size = 16 KB and N = 13 to 16 concurrent senders, at least one of 
five repeated measurements manages to get goodput close to 90% of link capacity. 
Goodput collapse happens for other runs because the packets are dropped in a way 
that a connection with little additional data to send would observe only a single 
or double duplicate ACK and would go into RTO soon after. Larger blocks suffer 
less from this problem because the ongoing data transfers trigger triple duplicate 
ACK with higher probability. Thus, the connection retransmits, enters congestion 
avoidance, and avoids RTO. Hence the gradual goodput collapse. 
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We should point out that SACK semantics are independent of duplicate ACKs, 
since SACK is layered on top of existing cumulative ACK semantics [23]. 

Takeaway: Second-order effects include partial RTO due to SACK, multiple partial 
RTOs, and triple duplicate ACKs causing more gradual onset of incast. 

Good Enough Model

Unfortunately, some parts of the model remain qualitative. We admit that the full 
interaction between triple duplicate ACKs, slow start, and available buffer space 
requires elaborate treatment far beyond the flow rate and buffer occupancy analy-
sis presented here. 

That said, the models here represent the first time we quantitatively explain major 
features of the incast goodput collapse. Comparable results in related work [28, 25] 
can be explained by our models also. The analysis allows us to reason about the 
significance of incast for future big data workloads later in the article. 

Incast in Hadoop MapReduce

Hadoop represents an interesting case study of how incast affects application-level 
behavior. Hadoop is an open source implementation of MapReduce, a distributed 
computation paradigm that played a key part in popularizing the phrase “big data.” 
Network traffic in Hadoop consists of small flows carrying control packets for var-
ious cluster coordination protocols, and larger flows carrying the actual data being 
processed. Incast potentially affects Hadoop in complex ways. Further, Hadoop 
may well mask incast behavior, because the network forms only a part of the over-
all computation and data flow. Our goal for this section is to answer whether incast 
affects Hadoop, by how much, and under what circumstances. 

We perform two sets of experiments. First, we run stand-alone, artificial Hadoop 
jobs to find out how much incast impacts each component of the MapReduce data 
flow. Second, we replay a scaled-down, real-life production workload using previ-
ously published tools [17] and cluster traces from Facebook, a leading Hadoop user, 
to understand the extent to which incast affects whole workloads. These experi-
ments take place on the same DETER machines as those in the previous section. 
We use only the large buffer Procurve switch for these experiments. 

Stand-alone jobs

Table 2 lists the Hadoop cluster settings we considered. The actual stand-alone 
Hadoop jobs are hdfsWrite, hdfsRead, shuffle, and sort. The first three jobs stress 
one part of the Hadoop I/O pipeline at a time. Sort represents a job with 1-1-1 ratio 
between read, shuffled, and written data. We implement these jobs by modifying 
the randomwriter and randomtextwriter examples that are pre-packaged with 
recent Hadoop distributions. We set the jobs to write, read, shuffle, or sort 20 GB of 
terasort format data on 20 machines. 
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E X P E R I M E N T  S E T U P

Parameter Values 

Hadoop jobs hdfsWrite, hdfsRead, shuffle, sort 

TCP version Linux-2.6.28.1, 1ms-min-RTO 

Hadoop version 0.18.2, 0.20.2 

Switch model HP Procurve 5412 

Number of machines 20 workers and 1 master 

fs.inmemory.size.mb 75, 200 

io.file.buffer.size 4096, 131072 

io.sort.mb 100, 200 

io.sort.factor 10, 100 

dfs.block.size 67108864, 536870912 

dfs.replication 3, 1 

mapred.reduce.parallel.copies 5, 20 

mapred.child.java.opts -Xmx200m, -Xmx512M

Table 2: Hadoop parameter values for experiments with stand-alone jobs

The TCP versions are the same as before—standard Linux 2.6.28.1, and modified 
Linux 2.6.28.1 with tcp_rto_min set to 1 ms. We consider Hadoop versions 0.18.2 
and 0.20.2. Hadoop 0.18.2 is considered a legacy, basic, but still relatively stable 
and mature distribution. Hadoop 0.20.2 is a more fully featured distribution that 
introduces some performance overhead for small jobs [17]. Subsequent Hadoop 
improvements have appeared on several disjoint branches that are currently being 
merged, and 0.20.2 represents the last time there was a single mainline Hadoop 
distribution [30]. 

The rest of the parameters are detailed Hadoop configuration settings. Tuning 
these parameters can considerably improve performance, but requires specialist 
knowledge about the interaction between Hadoop and the cluster environment. 
The first value for each configuration parameter in Table 2 represents the default 
setting. The remaining values are tuned values, drawn from a combination of 
Hadoop sort benchmarking [1], suggestions from enterprise Hadoop vendors [4], 
and our own experiences. One configuration worth further explaining is dfs 

.replication. It controls the degree of data replication in HDFS. The default 
setting is threefold data replication to achieve fault tolerance. For use cases 
constrained by storage capacity, the preferred method is to use HDFS RAID [14], 
which achieves fault tolerance with 1.4x overhead, much closer to the ideal onefold 
replication. 
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R E S U LT S

Figure 6: Hadoop stand-alone job completion times and incast overhead. Measurements 
done on HP Procurve 5412 switches (64 KB per port). The error bars show 95% confidence 
intervals from 20 repeated measurements. The confidence intervals are not overlapping for 
both settings. 

Figure 6 shows the results for Hadoop 0.18.2. We consider two performance met-
rics: job completion time and incast overhead. We define incast overhead according 
to Equation 5, i.e., the difference between job completion time under default and 1 
ms-min-RTO TCP, normalized by the job completion time for 1 ms-min-RTO TCP. 
The default Hadoop has very high incast overhead, while for tuned Hadoop, the 
incast overhead is barely visible. However, the tuned Hadoop-0.18.2 setting leads 
to considerably lower job completion times. 

The results illustrate a subtle form of Amdahl’s Law, which explains overall 
improvement to a system when only a part of the system is being improved. Here, 
the amount of incast overhead depends on how much network data transfers 
contribute to the overall job completion time. The default Hadoop configura-
tions result in network transfers contributing to a large fraction of the overall job 
completion time. Thus, incast overhead is clearly visible. Conversely, for tuned 
Hadoop overall job completion time is already low. Incast overhead is barely visible 
because the network transfer time is low. 

We repeat these measurements on Hadoop 0.20.2. Compared with Hadoop 0.18.2, 
the more recent version of Hadoop sees a performance improvement for the default 
configuration. For the optimized configuration, Hadoop 0.20.2 sees performance 
overhead of around 10 seconds for all four job types. This result is in line with our 
prior comparisons between Hadoop versions 0.18.2 and 0.20.2 [17]. Unfortunately, 
10 seconds is also the performance improvement for using TCP with 1ms-min-
RTO. Hence, the performance overhead in Hadoop 0.20.2 masks the benefits of 
addressing incast. 
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Takeaway: Incast does affect Hadoop. The performance impact depends on cluster 
configurations, as well as data and compute patterns in the workload. 

Real-life Production Workloads

The results in the above subsection indicate that to find out how much incast 
really affects Hadoop, we must compare the default and 1 ms-min-RTO TCP while 
replaying real-life production workloads. 

Previously, such evaluation capabilities have been exclusive to enterprises that 
run large-scale production clusters. Recent years have witnessed a slow but steady 
growth of public knowledge about front-line production workloads [29, 10, 17, 15, 
9], as well as emerging tools to replay such workloads in the absence of production 
data, code, and hardware [17, 16]. 

W O R K L O A D  A N A LY S I S

We obtained seven production Hadoop workload traces from five companies in 
social networking, e-commerce, telecommunications, and retail. Among these 
companies, only Facebook has so far allowed us to release their name and syn-
thetic versions of their workload. We do have permission to share some summary 
statistics. The full analysis is under publication review. 

Several observations are especially relevant to incast. Consider Figure 7, which 
shows the distribution of per job input, shuffle, and output data for all workloads. 
First, all workloads are dominated by jobs that involve data sizes of less than 1 GB. 
For jobs so small, scheduling and coordination overhead dominate job completion 
time. Therefore, incast will make a difference only if the workload intensity is high 
enough that Hadoop control packets alone would overwhelm the network. Second, 
all workloads do contain jobs at the 10s TB or even 100s TB scale. This compels the 
operators to use Hadoop 0.20.2. This version of Hadoop is the first to incorporate 
the Hadoop fair scheduler [29]. Without it, the small jobs arriving behind very 
large jobs would see FIFO head of queue blocking and would suffer wait times of 
hours or even days. This feature is so critical that cluster operators use it despite 
the performance overhead for small jobs. Hence, it is likely that in Hadoop 0.20.2, 
incast will be masked by the performance overhead. 

W O R K L O A D  R E P L AY

Figure 7: Per job input, shuffle, and output size for each workload. FB-* workloads come from a 
six-month cluster trace in 2009 and a 45-day trace in 2010. CC-* workloads come from traces of 
up to two months long at various customers of Cloudera, which is a vendor of enterprise Hadoop.
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We replay a day-long Facebook 2009 workload on the default and 1 ms-min-RTO 
versions of TCP. We synthesize this workload using the method in [17]. It captures 
in a relatively short synthetic workload the representative job submission and 
computation patterns for the entire six-month trace. 

Our measurements confirm the hypothesis earlier. Figure 8 shows the distribution 
of job completion times. We see that the distribution for 1 ms-min-RTO is 10–20 
seconds right-shifted compared with the distribution for default TCP. This is in 
line with the 10–20 seconds overhead we saw in the workload-level measurements 
in [17], as well as the stand-alone job measurements earlier in the article. The 
benefits of addressing incast are completely masked by overhead from other parts 
of the system. 

Figure 8: Distribution of job completion times for the FB-2009 workload.

Figure 9 offers another perspective on workload-level behavior. The graphs show 
two sequences of 100 jobs, ordered by submission time, i.e., we take snapshots of 
two continuous sequences of 100 jobs out of the total 6000+ jobs in a day. These 
graphs indicate the behavior complexity once we look at the entire workload of 
thousands of jobs and diverse interactions between concurrently running jobs. The 
10–20 seconds performance difference on small jobs becomes insignificant noise 
in the baseline. The few large jobs take significantly longer than the small jobs and 
stand out visibly from the baseline. For these jobs, there are no clear patterns to the 
performance of 1 ms-min-RTO versus standard TCP. 

Figure 9: Sequences of job completion times 

The Hadoop community is aware of the performance overheads in Hadoop 0.20.2 
for small jobs. Subsequent versions partially address these concerns [22]. It would 
be worthwhile to repeat these experiments once the various active Hadoop code 
branches merge back into the next mainline Hadoop [30]. 

Takeaway: Small jobs dominate several production Hadoop workloads. Non-network 
overhead in present Hadoop versions masks incast behavior for these jobs. 
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Incast for Future Big Data Workloads

Hadoop is an example of the rising class of big data computing paradigms, which 
almost always involve some amount of network communications. To understand 
how incast affects future big data workloads, one needs to appreciate the tech-
nology trends that drive the rising prominence of big data, the computational 
demands that result, and the countless design and mis-design opportunities, as 
well as the root causes of incast. 

We believe that the top technology trends driving the prominence of big data 
include (1) increasingly easy and economical access to large-scale storage and 
computation infrastructure [11, 7]; (2) ubiquitous ability to generate, collect, and 
archive data about both technology systems and the physical world [19]; and (3) 
growing desire and statistical literacy across many industries to understand and 
derive value from large datasets [2, 13, 24, 20]. 

Several data analysis trends emerge, confirmed by the cluster operators who pro-
vided the traces in Figure 7:

1. 	 There is increasing desire to do interactive data analysis, as well as streaming 
analysis. The goal is to have humans with non-specialist skills explore diverse 
and evolving data sources, and once they discover a way to extract actionable 
insights, such insights should be updated based on incoming data in a timely and 
continuous fashion. 

2. 	 Bringing such data analytic capability to non-specialists requires high-level 
computation frameworks built on top of common platforms such as MapReduce. 
Examples of such frameworks in the Hadoop MapReduce ecosystem include 
HBase, Hive, Pig, Sqoop, Oozie, and others. 

3. 	 Data sizes grow faster than the size per unit cost of storage and computation 
infrastructure. Hence, efficiently using storage and computational capacity are 
major concerns. 

Incast plays into these trends as follows. The desire for interactive and stream-
ing analysis requires highly responsive systems. The data sizes required for 
these computations are small compared with those required for computations on 
historical data. We know that when incast occurs, the RTO penalty is especially 
severe for small flows. Applications would be potentially forced to either delay the 
analysis response or give answers based on partial data. Thus, incast could emerge 
as a barrier for high quality interactive and streaming analysis. 

The desire to have non-specialists use big data systems suggests that functionality 
and usability should be the top design priorities. Incast affects performance, which 
can be interpreted as a kind of usability. It becomes a priority only after we have 
a functional system. Also, as our Hadoop experiments demonstrate, performance 
tuning for multi-layered software stacks would need to confront multiple layers of 
complexity and overhead. 

The need for storage capacity efficiency entails storing compressed data, perform-
ing data deduplication, or using RAID instead of data replication to achieve fault 
tolerance. In such environments, memory locality becomes the top concern, and 
disk or network locality becomes secondary [8]. If the workload characteristics 
permit a high level of memory or disk locality, network traffic gets decreased, the 
application performance increases, and incast becomes less of a concern. 
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The need for computational capacity efficiency implies that computing infrastruc-
ture needs to be more highly utilized. Network demands will thus increase. Con-
solidating diverse applications and workloads multiplexes many network traffic 
patterns. Incast will likely occur with greater frequency. Further, additional TCP 
pathologies may be revealed, such as the similarly phrased TCP outcast problem, 
which affects link share fairness for large flows [26]. 

Recommendations

Set TCP minimum RTO to 1 ms. 

Future big data workloads likely reveal TCP pathologies other than incast. Incast 
and similar behavior are fundamentally transport-level problems. It is not resource 
effective to overhaul the entire TCP protocol, redesign switches, or replace the 
datacenter network to address a single problem. Setting tcp_rto_min is a configu-
ration parameter change that produces low overhead, is immediately deployable, 
and, as we hope our experiments show, does no harm inside the datacenter. 

Deploy better tracing infrastructure. 

It is not yet clear how much incast will impact future big data workloads. This 
article discusses several contributing factors, but we need further information to 
determine which factors dominate under what circumstances. Better tracing helps 
remove the uncertainty. Where possible, such insights should be shared with the 
general community. We hope the workload comparisons in this article encourage 
similar, cross-organizational efforts elsewhere. 

Apply a scientific design process. 

We believe future big data systems demand a departure from some design 
approaches that emphasize implementation over measurement and validation. 
The complexity, diversity, scale, and rapid evolution of such systems imply that 
mis-design opportunities proliferate, redesign costs increase, experiences rapidly 
become obsolete, and intuitions become hard to develop. Our approach in this 
article involves performing simplified experiments, developing models based on 
first principles, empirically validating these models, then connecting the insights 
to real life by introducing increasing levels of complexity. We hope our experiences 
tackling the incast problem demonstrate the value of a design process rooted in 
empirical measurement and evaluation. 
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