
	24    ;login:  VOL. 37, NO. 3

Anthony D. Joseph is a Chancellor’s Associate Professor in Electrical Engineering

and Computer Science at UC Berkeley. He is developing adaptive techniques

for cloud computing, network and computer security, and security defenses

for machine learning–based decision systems. He also co-leads the DETERlab

testbed, a secure scalable testbed for conducting cybersecurity research.

adj@eecs.berkeley.edu

Randy H. Katz is the United Microelectronics Corporation Distinguished Professor

in Electrical Engineering and Computer Science at UC Berkeley, where he has

been on the faculty since 1983. His current interests are the architecture and

design of modern Internet datacenters and related large-scale services.

randy@cs.Berkeley.edu

TCP incast is a recently identified network transport pathology that affects many-
to-one communication patterns in datacenters. It is caused by a complex interplay
between datacenter applications, the underlying switches, network topology, and
TCP, which was originally designed for wide area networks. Incast increases the
queuing delay of flows, and decreases application level throughput to far below the
link bandwidth. The problem especially affects computing paradigms in which
distributed processing cannot progress until all parallel threads in a stage com-
plete. Examples of such paradigms include distributed file systems, Web search,
advertisement selection, and other applications with partition or aggregation
semantics [25, 18, 5].

There have been many proposed solutions for incast. Representative approaches
include modifying TCP parameters [27, 18] or its congestion control algorithm
[28], optimizing application level data transfer patterns [25, 21], switch level
modifications such as larger buffers [25] or explicit congestion notification (ECN)
capabilities [5], and link layer mechanisms such as Ethernet congestion control [3,
6]. Application level solutions are the least intrusive to deploy, but require modify-
ing each and every datacenter application. Switch and link level solutions require
modifying the underlying datacenter infrastructure and are likely to be logistically
feasible only during hardware upgrades.

Unfortunately, despite these solutions, we still have no quantitatively accurate and
empirically validated model to predict incast behavior. Similarly, despite many
studies demonstrating incast for micro-benchmarks, we still do not understand
how incast impacts application level performance subject to real life complexi-
ties in configuration, scheduling, data size, and other environmental and work-

Understanding TCP Incast and Its
Implications for Big Data Workloads
Y A N P E I C H E N , R E A N G R I F F I T H , D A V I D Z A T S , A N T H O N Y D . J O S E P H ,
A N D R A N D Y K A T Z

Yanpei Chen is a fifth-year

PhD student at the University

of California, Berkeley. His

research focuses on workload-

driven design and evaluation of large-scale

Internet datacenter systems, and includes

industrial collaborations with Cloudera,

NetApp, and Facebook. He is a member

of the Algorithms, Machines, and People’s

Laboratory, and he holds a National Science

Foundation Graduate Research Fellowship.

ychen2@eecs.berkeley.edu

Rean Griffith is a Staff

Engineer in the CTO’s office

at VMware. Prior to joining

VMware in 2010, he was a

post-doc in the RAD Lab at

UC Berkeley. He received his PhD in computer

science from Columbia University in 2008.

His research interests include distributed

systems, operating systems, adaptive systems

and networks, control systems, performance

and reliability modeling, and the application

of statistical machine learning to resource

management problems.

rean@vmware.com

David Zats received his BS

in computer science and

engineering from UCLA

in 2007 and his MS in

electrical engineering and

computer sciences from UC Berkeley in 2009.

He is currently working toward his PhD at UC

Berkeley, where his research focus is on reducing

performance variability in datacenter networks.

dzats@eecs.berkeley.edu

	 ;login:  JUNE 2012   Understanding TCP Incast and Its Implications for Big Data Workloads    25

load properties. These concerns create justified skepticism on whether we truly
understand incast at all, whether it is even an important problem for a wide class of
workloads, and whether it is worth the effort to deploy various incast solutions in
front-line, business-critical datacenters.

We seek to understand how incast impacts the emerging class of big data work-
loads. Canonical big data workloads help solve needle-in-a-haystack type prob-
lems and extract actionable insights from large-scale, potentially complex and
unformatted data. We do not propose in this article yet another solution for incast.
Rather, we focus on developing a deep understanding of one existing solution:
reducing the minimum length of TCP retransmission time out (RTO) from 200 ms
to 1 ms [27, 18]. We believe TCP incast is fundamentally a transport layer problem;
thus, a solution at this level is best.

The first half of this article develops and validates a quantitative model that
accurately predicts the onset of incast and TCP behavior both before and after.
The second half of this article investigates how incast affects the Apache Hadoop
implementation of MapReduce, an important example of a big data application. We
close the article by reflecting on some technology and data analysis trends sur-
rounding big data, speculate on how these trends interact with incast, and make
recommendations for datacenter operators.

Toward an Analytical Model

We use a simple network topology and workload to develop an analytical model for
incast, shown in Figure 1. This is the same setup as that used in prior work [25, 27,
18]. We choose this topology and workload to make the analysis tractable.

Figure 1: Simple setup to observe incast

The workload is as follows. The receiver requests k blocks of data from a set of
N storage servers—in our experiments k = 100 and N varies from 1 to 48. Each
block is striped across N storage servers. For each block request received, a server
responds with a fixed amount of data. Clients do not request block k+1 until all the
fragments of block k have been received. This leads to a synchronized read pattern
of data requests. We reuse the storage server and client code in [25, 27, 18]. The per-
formance metric for these experiments is application-level goodput, i.e., the total
bytes received from all senders divided by the finishing time of the last sender.

We conduct our experiments on the DETER Lab testbed [12], where we have full
control over the non-virtualized node OS, as well as the network topology and
speed. We used 3 GHz dual-core Intel Xeon machines with 1 Gbps network links.
The nodes run standard Linux 2.6.28.1. This was the most recent mainline Linux
distribution in late 2009, when we obtained our prior results [18]. We present
results using both a relatively shallow-buffered Nortel 5500 switch (4 KB per port)
and a more deeply buffered HP Procurve 5412 switch (64 KB per port).

Bottleneck

Receiver

Sender 1

Sender 2

…

Sender N

Switch

Throughput drops to
small % of link capacity

	26    ;login:  VOL. 37, NO. 3

Flow Rate Models

The simplest model for incast is based on two competing behaviors as we increase
N, the number of concurrent senders. The first behavior occurs before the onset of
incast and reflects the intuition that goodput is the block size divided by the trans-
fer time. Ideal transfer time is just the sum of a round trip time (RTT) and the ideal
send time. Equation 1 captures this idea.

Incast occurs when there are some N > 1 concurrent senders, and the goodput drops
significantly. After the onset of incast, TCP retransmission time out (RTO) repre-
sents the dominant effect. Transfer time becomes RTT + RTO + ideal send time, as
captured in Equation 2. The goodput collapse represents a transition between the
two behavior modes.

Figure 2 gives some intuition with regard to Equations 1 and 2. We substitute block-
Size = 64KB, 256 KB, 1024 KB, and 64 MB, as well as RTT = 1 ms, and RTO = 200
ms. Before the onset of incast (Equation 1), the goodput increases as N increases,
although with diminishing rate, asymptotically approaching the full link bandwidth.
The curves move vertically upwards as block size increases. This reflects the fact
that larger blocks result in a larger fraction of the ideal transfer time spent transmit-
ting data, versus waiting for an RTT to acknowledge that the transmission com-
pleted. After incast occurs (Equation 2), RTO dominates the transfer time for small
block sizes. Again, larger blocks lead to RTO forming a smaller ratio versus ideal
transmission time. The curves move vertically upwards as block size increases.

Figure 2: Flow rate model for incast, showing ideal behavior (solid lines, Equation 1) and incast
behavior caused by RTOs (dotted lines, Equation 2). The incast goodput collapse comes from
the transition between the two TCP operating modes.

0

200

400

600

800

1000

0 8 16 24 32 40 48

Goodput
(Mbps)

Number of concurrent senders, N

64KB blocks, ideal
256KB blocks, ideal
1024KB blocks, ideal
64MB blocks, ideal
64KB blocks, 200ms RTO
256KB blocks, 200ms RTO
1024KB blocks, 200ms RTO
64MB blocks, 200ms RTO

	 ;login:  JUNE 2012   Understanding TCP Incast and Its Implications for Big Data Workloads    27

Empirical Verification

Figure 3: Empirical verification of flow rate incast model. Error bars represent 95% confidence
interval around the average of five repeated measurements. This shows that (1) incast goodput
collapse begins at N = 2 senders, and (2) behavior after goodput collapse verifies Equation 2.

This model matches well with our empirical measurements. Figure 3 superposi-
tions the model on our previously presented data in [18]. There, we fix block size at
256 KB and set RTO to 100 ms and 200 ms. The switch is a Nortel 5500 (4 KB per
port). For simplicity, we use RTT = 1 ms for the model. Goodput collapse begins at
N = 2, and we observe behavior for Equation 2 only. The empirical measurements
(solid lines) match the model (dotted-lines) almost exactly.

Figure 4: Empirical verification of flow rate TCP model before onset of incast. RTO is 200 ms.
Error bars represent 95% confidence interval around the average of five repeated measure-
ments. This shows (1) that behavior before goodput collapse verifies Equation 1, and (2) the
onset of incast goodput collapse predicted by switch buffer overflow during slow start (Equa-
tion 3).

We use a more deeply buffered switch to verify Equation 1. As we discuss later,
the switch buffer size determines the onset of incast. Figure 4 shows the behav-
ior using the HP Procurve 5412 switch (64 KB per port). Behavior before goodput
collapse qualitatively verifies Equation 1—the goodput increases as N increases,
although with diminishing rate; the curves move vertically upwards as block size
increases. We can see this graphically by comparing the curves in Figure 4 before
the goodput collapse to the corresponding curves in Figure 2.

Takeaway: Flow rate model captures behavior before onset of incast. TCP RTO domi-
nates behavior after onset of incast.

Predicting the Onset of Incast

Figure 4 also shows that goodput collapse occurs at different N for different block
sizes. We can predict the location of the onset of goodput collapse by detailed mod-
eling of TCP slow start and buffer occupancy. Table 1 shows the slow start conges-

0

200

400

600

800

1000

0 8 16 24 32 40 48

Goodput
(Mbps)

Number of concurrent senders, N

200ms RTO, measured
200ms RTO, model
100ms RTO, measured
100ms RTO, model

(1).

(2).

0

200

400

600

800

1000

0 8 16 24 32

Goodput
(Mbps)

Number of concurrent senders, N

16KB blocks, measured

32KB blocks, measured

64KB blocks, measured

128KB blocks, measured

(1). (2).

	28    ;login:  VOL. 37, NO. 3

tion window sizes versus each packet round trip. For 16 KB blocks, 12 concurrent
senders of the largest congestion window of 5864 bytes would require 70368 bytes
of buffer, larger than the available buffer of 64 KB per port. Goodput collapse
begins after N = 13 concurrent senders. The discrepancy of 1 comes from the fact
that there is additional “buffer” on the network beyond the packet buffer on the
switch, e.g., packets in flight, buffer at the sender machines, etc. According to this
logic, goodput collapse should take place according to Equation 3. The equation
accurately predicts that for Figure 4, the goodput collapse for 16 KB, 32 KB, and 64
KB blocks begin at 13, 7, and 4 concurrent senders, respectively, and for Figure 3,
the goodput collapse is well underway at 2 concurrent senders.

Round trip 16KB blocks 32KB blocks 64KB blocks 128KB blocks

1 1,448   1,448   1,448   1,448

2 2,896   2,896   2,896   2,896

3 5,792   5,792   5,792   5,792

4 5,864 11,584 11,584 11,584

5 10,280 23,168 23,168

6 19,112 46,336

7 36,776

Table 1: TCP slow start congestion window size in bytes versus number of round trips. We veri-
fied using sysctl that Linux begins at 2x base MSS, which is 1448 bytes.

Takeaway: For small flows, the switch buffer space determines the onset of incast.

Second Order Effects

Figure 4 also suggests the presence of second-order effects not explained by Equa-
tions 1 to 3. Equation 3 predicts that goodput collapse for 128 KB blocks should
begin at N = 2 concurrent senders, while the empirically observed goodput collapse
begins at N = 4 concurrent senders. It turns out that block sizes of 128 KB represent
a transition point from RTO-during-slow-start to more complex modes of behavior.

We repeat the experiment for block size = 128 KB, 256 KB, 512 KB, and 1024 KB.
Figure 5 shows the results, which includes several interesting effects.

 ⌈

 ⌉

	 ;login:  JUNE 2012   Understanding TCP Incast and Its Implications for Big Data Workloads    29

Figure 5: Second-order effects other than RTO during slow start. Measurements done on HP
Procurve 5412 switches (64 KB per port). RTO is 200 ms. Error bars represent 95% confidence
interval around the average of five repeated measurements. Showing (1) partial RTOs more
accurately modeling incast behavior for large blocks, (2) transition between single and multiple
partial RTOs, and (3) triple duplicate ACKs causing more gradual, block size–independent
onset of incast.

First, for block size = 512 KB and 1024 KB, the goodput immediately after the
onset of incast is given by Equation 4. It differs from Equation 2 by the multiplier
a for the RTO in the denominator. This a is an empirical constant and represents
a behavior that we call partial RTO. What happens is as follows. When RTO takes
place, TCP SACK (turned on by default in Linux) allows transmission of further
data, until the congestion window can no longer advance due to the lost packet.
Hence, the link is idle for a duration of less than the full RTO value. Hence we call
this effect partial RTO. For block size = 1024 KB, a is 0.6, and for block size = 512
KB, a is 0.8.

Second, beyond a certain number of concurrent senders, a transitions to
something that approximately doubles its initial value (0.6 to 1.0 for block size =
1024 KB, 0.8 to 1.5 for block size = 512 KB). This simply represents that two partial
RTOs have occurred.

Third, the goodput collapse for block size = 256 KB, 512 KB, and 1024 KB is more
gradual compared with the cliff-like behavior in Figure 4. Further, this gradual
goodput collapse has the same slope across different block size. Two factors
explain this behavior. First, flows with block size greater than 128 KB have a lot
more data to send even after the buffer space is filled with packets sent during
slow start (Equation 3 and Table 1). Second, even when the switch drops packets,
TCP can sometimes recover. Empirical evidence of this fact exists in Figure 4.
There, for block size = 16 KB and N = 13 to 16 concurrent senders, at least one of
five repeated measurements manages to get goodput close to 90% of link capacity.
Goodput collapse happens for other runs because the packets are dropped in a way
that a connection with little additional data to send would observe only a single
or double duplicate ACK and would go into RTO soon after. Larger blocks suffer
less from this problem because the ongoing data transfers trigger triple duplicate
ACK with higher probability. Thus, the connection retransmits, enters congestion
avoidance, and avoids RTO. Hence the gradual goodput collapse.

(1). (2). (3).

0

200

400

600

800

1000

0 8 16 24 32 40 48

Goodput
(Mbps)

Number of concurrent senders, N

1024KB blocks, measured

512KB blocks, measured

256KB blocks, measured

128KB blocks, measured

1024KB blocks, modeled, 0.6x RTO

1024KB blocks, modeled, 1.0x RTO

512KB blocks, modeled, 0.8x RTO

512KB blocks, modeled, 1.5x RTO

256KB blocks, modeled, 1.0x RTO

128KB blocks, modeled, 1.0x RTO

	30    ;login:  VOL. 37, NO. 3

We should point out that SACK semantics are independent of duplicate ACKs,
since SACK is layered on top of existing cumulative ACK semantics [23].

Takeaway: Second-order effects include partial RTO due to SACK, multiple partial
RTOs, and triple duplicate ACKs causing more gradual onset of incast.

Good Enough Model

Unfortunately, some parts of the model remain qualitative. We admit that the full
interaction between triple duplicate ACKs, slow start, and available buffer space
requires elaborate treatment far beyond the flow rate and buffer occupancy analy-
sis presented here.

That said, the models here represent the first time we quantitatively explain major
features of the incast goodput collapse. Comparable results in related work [28, 25]
can be explained by our models also. The analysis allows us to reason about the
significance of incast for future big data workloads later in the article.

Incast in Hadoop MapReduce

Hadoop represents an interesting case study of how incast affects application-level
behavior. Hadoop is an open source implementation of MapReduce, a distributed
computation paradigm that played a key part in popularizing the phrase “big data.”
Network traffic in Hadoop consists of small flows carrying control packets for var-
ious cluster coordination protocols, and larger flows carrying the actual data being
processed. Incast potentially affects Hadoop in complex ways. Further, Hadoop
may well mask incast behavior, because the network forms only a part of the over-
all computation and data flow. Our goal for this section is to answer whether incast
affects Hadoop, by how much, and under what circumstances.

We perform two sets of experiments. First, we run stand-alone, artificial Hadoop
jobs to find out how much incast impacts each component of the MapReduce data
flow. Second, we replay a scaled-down, real-life production workload using previ-
ously published tools [17] and cluster traces from Facebook, a leading Hadoop user,
to understand the extent to which incast affects whole workloads. These experi-
ments take place on the same DETER machines as those in the previous section.
We use only the large buffer Procurve switch for these experiments.

Stand-alone jobs

Table 2 lists the Hadoop cluster settings we considered. The actual stand-alone
Hadoop jobs are hdfsWrite, hdfsRead, shuffle, and sort. The first three jobs stress
one part of the Hadoop I/O pipeline at a time. Sort represents a job with 1-1-1 ratio
between read, shuffled, and written data. We implement these jobs by modifying
the randomwriter and randomtextwriter examples that are pre-packaged with
recent Hadoop distributions. We set the jobs to write, read, shuffle, or sort 20 GB of
terasort format data on 20 machines.

	 ;login:  JUNE 2012   Understanding TCP Incast and Its Implications for Big Data Workloads    31

E X P E R I M E N T S E T U P

Parameter Values

Hadoop jobs hdfsWrite, hdfsRead, shuffle, sort

TCP version Linux-2.6.28.1, 1ms-min-RTO

Hadoop version 0.18.2, 0.20.2

Switch model HP Procurve 5412

Number of machines 20 workers and 1 master

fs.inmemory.size.mb 75, 200

io.file.buffer.size 4096, 131072

io.sort.mb 100, 200

io.sort.factor 10, 100

dfs.block.size 67108864, 536870912

dfs.replication 3, 1

mapred.reduce.parallel.copies 5, 20

mapred.child.java.opts -Xmx200m, -Xmx512M

Table 2: Hadoop parameter values for experiments with stand-alone jobs

The TCP versions are the same as before—standard Linux 2.6.28.1, and modified
Linux 2.6.28.1 with tcp_rto_min set to 1 ms. We consider Hadoop versions 0.18.2
and 0.20.2. Hadoop 0.18.2 is considered a legacy, basic, but still relatively stable
and mature distribution. Hadoop 0.20.2 is a more fully featured distribution that
introduces some performance overhead for small jobs [17]. Subsequent Hadoop
improvements have appeared on several disjoint branches that are currently being
merged, and 0.20.2 represents the last time there was a single mainline Hadoop
distribution [30].

The rest of the parameters are detailed Hadoop configuration settings. Tuning
these parameters can considerably improve performance, but requires specialist
knowledge about the interaction between Hadoop and the cluster environment.
The first value for each configuration parameter in Table 2 represents the default
setting. The remaining values are tuned values, drawn from a combination of
Hadoop sort benchmarking [1], suggestions from enterprise Hadoop vendors [4],
and our own experiences. One configuration worth further explaining is dfs

.replication. It controls the degree of data replication in HDFS. The default
setting is threefold data replication to achieve fault tolerance. For use cases
constrained by storage capacity, the preferred method is to use HDFS RAID [14],
which achieves fault tolerance with 1.4x overhead, much closer to the ideal onefold
replication.

	32    ;login:  VOL. 37, NO. 3

R E S U LT S

Figure 6: Hadoop stand-alone job completion times and incast overhead. Measurements
done on HP Procurve 5412 switches (64 KB per port). The error bars show 95% confidence
intervals from 20 repeated measurements. The confidence intervals are not overlapping for
both settings.

Figure 6 shows the results for Hadoop 0.18.2. We consider two performance met-
rics: job completion time and incast overhead. We define incast overhead according
to Equation 5, i.e., the difference between job completion time under default and 1
ms-min-RTO TCP, normalized by the job completion time for 1 ms-min-RTO TCP.
The default Hadoop has very high incast overhead, while for tuned Hadoop, the
incast overhead is barely visible. However, the tuned Hadoop-0.18.2 setting leads
to considerably lower job completion times.

The results illustrate a subtle form of Amdahl’s Law, which explains overall
improvement to a system when only a part of the system is being improved. Here,
the amount of incast overhead depends on how much network data transfers
contribute to the overall job completion time. The default Hadoop configura-
tions result in network transfers contributing to a large fraction of the overall job
completion time. Thus, incast overhead is clearly visible. Conversely, for tuned
Hadoop overall job completion time is already low. Incast overhead is barely visible
because the network transfer time is low.

We repeat these measurements on Hadoop 0.20.2. Compared with Hadoop 0.18.2,
the more recent version of Hadoop sees a performance improvement for the default
configuration. For the optimized configuration, Hadoop 0.20.2 sees performance
overhead of around 10 seconds for all four job types. This result is in line with our
prior comparisons between Hadoop versions 0.18.2 and 0.20.2 [17]. Unfortunately,
10 seconds is also the performance improvement for using TCP with 1ms-min-
RTO. Hence, the performance overhead in Hadoop 0.20.2 masks the benefits of
addressing incast.

0
100
200
300
400
500
600

hdfsWrite hdfsRead shuffle sort

Time (s)
default TCP 1ms min RTO

0
100
200
300
400
500
600

hdfsWrite hdfsRead shuffle sort

Time (s)
default TCP 1ms min RTO

0.0

0.2

0.4

0.6

0.8

1.0

hdfsWrite hdfsRead shuffle sort

Incast overhead

0.0

0.2

0.4

0.6

0.8

1.0

hdfsWrite hdfsRead shuffle sort

Incast overhead

Default Hadoop 0.18.2 Tuned Hadoop 0.18.2

	 ;login:  JUNE 2012   Understanding TCP Incast and Its Implications for Big Data Workloads    33

Takeaway: Incast does affect Hadoop. The performance impact depends on cluster
configurations, as well as data and compute patterns in the workload.

Real-life Production Workloads

The results in the above subsection indicate that to find out how much incast
really affects Hadoop, we must compare the default and 1 ms-min-RTO TCP while
replaying real-life production workloads.

Previously, such evaluation capabilities have been exclusive to enterprises that
run large-scale production clusters. Recent years have witnessed a slow but steady
growth of public knowledge about front-line production workloads [29, 10, 17, 15,
9], as well as emerging tools to replay such workloads in the absence of production
data, code, and hardware [17, 16].

W O R K L O A D A N A LY S I S

We obtained seven production Hadoop workload traces from five companies in
social networking, e-commerce, telecommunications, and retail. Among these
companies, only Facebook has so far allowed us to release their name and syn-
thetic versions of their workload. We do have permission to share some summary
statistics. The full analysis is under publication review.

Several observations are especially relevant to incast. Consider Figure 7, which
shows the distribution of per job input, shuffle, and output data for all workloads.
First, all workloads are dominated by jobs that involve data sizes of less than 1 GB.
For jobs so small, scheduling and coordination overhead dominate job completion
time. Therefore, incast will make a difference only if the workload intensity is high
enough that Hadoop control packets alone would overwhelm the network. Second,
all workloads do contain jobs at the 10s TB or even 100s TB scale. This compels the
operators to use Hadoop 0.20.2. This version of Hadoop is the first to incorporate
the Hadoop fair scheduler [29]. Without it, the small jobs arriving behind very
large jobs would see FIFO head of queue blocking and would suffer wait times of
hours or even days. This feature is so critical that cluster operators use it despite
the performance overhead for small jobs. Hence, it is likely that in Hadoop 0.20.2,
incast will be masked by the performance overhead.

W O R K L O A D R E P L AY

Figure 7: Per job input, shuffle, and output size for each workload. FB-* workloads come from a
six-month cluster trace in 2009 and a 45-day trace in 2010. CC-* workloads come from traces of
up to two months long at various customers of Cloudera, which is a vendor of enterprise Hadoop.

0
0.2
0.4
0.6
0.8

1

Fr
ac

tio
n

of
 jo

bs

Per-job input size

0
0.2
0.4
0.6
0.8

1

Per-job shuffle size

0
0.2
0.4
0.6
0.8

1

Per-job output size

CC-a CC-b
CC-c CC-d
CC-e

0
0.2
0.4
0.6
0.8

1

Fr
ac

tio
n

of
 jo

bs

Per-job input size

0
0.2
0.4
0.6
0.8

1

Per-job shuffle size

0
0.2
0.4
0.6
0.8

1

Per-job output size

FB-2009
FB-2010

1 KB MB GB TB

1 KB MB GB TB 1 KB MB GB TB 1 KB MB GB TB

1 KB MB GB TB 1 KB MB GB TB

	34    ;login:  VOL. 37, NO. 3

We replay a day-long Facebook 2009 workload on the default and 1 ms-min-RTO
versions of TCP. We synthesize this workload using the method in [17]. It captures
in a relatively short synthetic workload the representative job submission and
computation patterns for the entire six-month trace.

Our measurements confirm the hypothesis earlier. Figure 8 shows the distribution
of job completion times. We see that the distribution for 1 ms-min-RTO is 10–20
seconds right-shifted compared with the distribution for default TCP. This is in
line with the 10–20 seconds overhead we saw in the workload-level measurements
in [17], as well as the stand-alone job measurements earlier in the article. The
benefits of addressing incast are completely masked by overhead from other parts
of the system.

Figure 8: Distribution of job completion times for the FB-2009 workload.

Figure 9 offers another perspective on workload-level behavior. The graphs show
two sequences of 100 jobs, ordered by submission time, i.e., we take snapshots of
two continuous sequences of 100 jobs out of the total 6000+ jobs in a day. These
graphs indicate the behavior complexity once we look at the entire workload of
thousands of jobs and diverse interactions between concurrently running jobs. The
10–20 seconds performance difference on small jobs becomes insignificant noise
in the baseline. The few large jobs take significantly longer than the small jobs and
stand out visibly from the baseline. For these jobs, there are no clear patterns to the
performance of 1 ms-min-RTO versus standard TCP.

Figure 9: Sequences of job completion times

The Hadoop community is aware of the performance overheads in Hadoop 0.20.2
for small jobs. Subsequent versions partially address these concerns [22]. It would
be worthwhile to repeat these experiments once the various active Hadoop code
branches merge back into the next mainline Hadoop [30].

Takeaway: Small jobs dominate several production Hadoop workloads. Non-network
overhead in present Hadoop versions masks incast behavior for these jobs.

0
0.2
0.4
0.6
0.8

1

0 60 120 180 240 300
Completion time (sec)

Fraction of jobs

1ms-min-RTO TCP
default TCP

0
120
240
360

0 20 40 60 80 100

R
un

 ti
m

e(
s)

Job index

default TCP 1ms-min-RTO

0
300
600
900

4620 4640 4660 4680 4700 4720

R
un

 ti
m

e(
s)

Job index

	 ;login:  JUNE 2012   Understanding TCP Incast and Its Implications for Big Data Workloads    35

Incast for Future Big Data Workloads

Hadoop is an example of the rising class of big data computing paradigms, which
almost always involve some amount of network communications. To understand
how incast affects future big data workloads, one needs to appreciate the tech-
nology trends that drive the rising prominence of big data, the computational
demands that result, and the countless design and mis-design opportunities, as
well as the root causes of incast.

We believe that the top technology trends driving the prominence of big data
include (1) increasingly easy and economical access to large-scale storage and
computation infrastructure [11, 7]; (2) ubiquitous ability to generate, collect, and
archive data about both technology systems and the physical world [19]; and (3)
growing desire and statistical literacy across many industries to understand and
derive value from large datasets [2, 13, 24, 20].

Several data analysis trends emerge, confirmed by the cluster operators who pro-
vided the traces in Figure 7:

1. 	 There is increasing desire to do interactive data analysis, as well as streaming
analysis. The goal is to have humans with non-specialist skills explore diverse
and evolving data sources, and once they discover a way to extract actionable
insights, such insights should be updated based on incoming data in a timely and
continuous fashion.

2. 	 Bringing such data analytic capability to non-specialists requires high-level
computation frameworks built on top of common platforms such as MapReduce.
Examples of such frameworks in the Hadoop MapReduce ecosystem include
HBase, Hive, Pig, Sqoop, Oozie, and others.

3. 	 Data sizes grow faster than the size per unit cost of storage and computation
infrastructure. Hence, efficiently using storage and computational capacity are
major concerns.

Incast plays into these trends as follows. The desire for interactive and stream-
ing analysis requires highly responsive systems. The data sizes required for
these computations are small compared with those required for computations on
historical data. We know that when incast occurs, the RTO penalty is especially
severe for small flows. Applications would be potentially forced to either delay the
analysis response or give answers based on partial data. Thus, incast could emerge
as a barrier for high quality interactive and streaming analysis.

The desire to have non-specialists use big data systems suggests that functionality
and usability should be the top design priorities. Incast affects performance, which
can be interpreted as a kind of usability. It becomes a priority only after we have
a functional system. Also, as our Hadoop experiments demonstrate, performance
tuning for multi-layered software stacks would need to confront multiple layers of
complexity and overhead.

The need for storage capacity efficiency entails storing compressed data, perform-
ing data deduplication, or using RAID instead of data replication to achieve fault
tolerance. In such environments, memory locality becomes the top concern, and
disk or network locality becomes secondary [8]. If the workload characteristics
permit a high level of memory or disk locality, network traffic gets decreased, the
application performance increases, and incast becomes less of a concern.

	36    ;login:  VOL. 37, NO. 3

The need for computational capacity efficiency implies that computing infrastruc-
ture needs to be more highly utilized. Network demands will thus increase. Con-
solidating diverse applications and workloads multiplexes many network traffic
patterns. Incast will likely occur with greater frequency. Further, additional TCP
pathologies may be revealed, such as the similarly phrased TCP outcast problem,
which affects link share fairness for large flows [26].

Recommendations

Set TCP minimum RTO to 1 ms.

Future big data workloads likely reveal TCP pathologies other than incast. Incast
and similar behavior are fundamentally transport-level problems. It is not resource
effective to overhaul the entire TCP protocol, redesign switches, or replace the
datacenter network to address a single problem. Setting tcp_rto_min is a configu-
ration parameter change that produces low overhead, is immediately deployable,
and, as we hope our experiments show, does no harm inside the datacenter.

Deploy better tracing infrastructure.

It is not yet clear how much incast will impact future big data workloads. This
article discusses several contributing factors, but we need further information to
determine which factors dominate under what circumstances. Better tracing helps
remove the uncertainty. Where possible, such insights should be shared with the
general community. We hope the workload comparisons in this article encourage
similar, cross-organizational efforts elsewhere.

Apply a scientific design process.

We believe future big data systems demand a departure from some design
approaches that emphasize implementation over measurement and validation.
The complexity, diversity, scale, and rapid evolution of such systems imply that
mis-design opportunities proliferate, redesign costs increase, experiences rapidly
become obsolete, and intuitions become hard to develop. Our approach in this
article involves performing simplified experiments, developing models based on
first principles, empirically validating these models, then connecting the insights
to real life by introducing increasing levels of complexity. We hope our experiences
tackling the incast problem demonstrate the value of a design process rooted in
empirical measurement and evaluation.

Acknowledgments

This research is supported in part by the UC Berkeley AMP Lab (https://amplab
.cs.berkeley.edu/sponsors/), and the DARPA- and SRC-funded MuSyC FCRP
Multiscale Systems Center. Thank you to Rik Farrow and Sara Alspaugh for proof-
reading a draft of the article. Thank you also to Keith Sklower for assistance with
the DETER Testbed logistics.

References

[1] Apache Hadoop documentation: http://hadoop.apache.org/common/docs/
r0.20.2/cluster_setup.html#Configuring+the+Hadoop+Daemons.

[2] Hadoop World 2011 speakers: http://www.hadoopworld.com/speakers/.

	 ;login:  JUNE 2012   Understanding TCP Incast and Its Implications for Big Data Workloads    37

[3] IEEE 802.1Qau standard—Congestion notification: http://www.ieee802.org/
1/pages/802.1au.html.

[4] Personal communications with Cloudera engineering and support teams.

[5] M. Alizadeh et al. Data center TCP (DCTCP). In SIGCOMM 2010.

[6] M. Alizadeh et al. Data center transport mechanisms: Congestion control
theory and IEEE standardization. In Annual Allerton Conference 2008.

[7] Amazon Web Services. Amazon Elastic Compute Cloud (Amazon EC2):
http://aws.amazon.com/ec2/.

[8] G. Ananthanarayanan et al. Disk-locality in datacenter computing considered
irrelevant. In HotOS 2011.

[9] G. Ananthanarayanan et al. PACMan: Coordinated memory caching for parallel
jobs. In NSDI 2012.

[10] G. Ananthanarayanan et al. Scarlett: Coping with skewed content popularity
in MapReduce clusters. In EuroSys 2011.

[11] Apache Foundation. Apache Hadoop: http://hadoop.apache.org/.

[12] T. Benzel et al. Design, deployment, and use of the deter testbed. In DETER
2007.

[13] D. Borthakur et al. Apache Hadoop goes realtime at Facebook. In SIGMOD
2011.

[14] D. Borthakur et al. HDFS RAID. Tech talk. Yahoo Developer Network. 2010.

[15] Y. Chen et al. Energy efficiency for large-scale MapReduce workloads with
significant interactive analysis. In EuroSys 2012.

[16] Y. Chen et al. SWIM—Statistical workload injector for MapReduce:
https://github.com/SWIMProjectUCB/SWIM/wiki.

[17] Y. Chen et al. The case for evaluating MapReduce performance using workload
suites. In MASCOTS 2011.

[18] Y. Chen et al. Understanding TCP incast throughput collapse in datacenter
networks. In WREN 2009.

[19] EMC and IDC iView. Digital universe: http://www.emc.com/leadership/
programs/digital-universe.htm.

[20] M. Isard et al. Quincy: Fair scheduling for distributed computing clusters.
In SOSP 2009.

[21] E. Krevat et al. On application-level approaches to avoiding TCP throughput
collapse in cluster-based storage systems. In PDSW 2007.

[22] T. Lipcon and Y. Chen. Hadoop and performance. Hadoop World 2011:
http://www.hadoopworld.com/session/hadoop-and-performance/.

[23] M. Mathis et al. Request for Comments: 2018—TCP selective acknowledgment
options: http://tools.ietf.org/html/rfc2018, 1996.

[24] S. Melnik et al. Dremel: Interactive analysis of Web-scale datasets. In VLDB
2010.

	38    ;login:  VOL. 37, NO. 3

[25] A. Phanishayee et al. Measurement and analysis of TCP throughput collapse
in cluster-based storage systems. In FAST 2008.

[26] P. Prakash et al. The TCP outcast problem: Exposing throughput unfairness in
data center networks. In NSDI 2012.

[27] V. Vasudevan et al. Safe and effective fine-grained TCP retransmissions for
datacenter communication. In SIGCOMM 2009.

[28] H. Wu et al. ICTCP: Incast congestion control for TCP in data center networks.
In Co-NEXT 2010.

[29] M. Zaharia et al. Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. In EuroSys 2010.

[30] C. Zedlewski. An update on Apache Hadoop 1.0: http://www.cloudera.com/
blog/2012/01/an-update-on-apache-hadoop-1-0/.

