
	 ;login:  JUNE 2012     39

A new generation of data storage systems is now emerging to support high-
performance, large-scale Web services whose demands are ill-met by traditional
RDBMSes. Dubbed the NoSQL movement, this trend has produced systems char-
acterized by data stores that provide weak consistency guarantees and limit the
system interface. We argue that these systems have too aggressively capitulated,
that much stronger consistency, availability, and fault-tolerance properties are
possible, and, further, that it is possible to provide these properties while offering
a rich API, although not as rich as full-blown SQL. We report on a recent system
called HyperDex, describe the new techniques it uses to combine strong consis-
tency and fault-tolerance guarantees with high-performance, and go through a
scenario to see how the system can be used by real applications.

ACID and BASE

During the golden age of databases, when the canonical database users were banks
and other financial institutions, providing strong guarantees of atomicity, consis-
tency, isolation, and durability (ACID) were of paramount concern. More recently,
however, the focus of data storage innovation has shifted away from supporting
financial transactions to enabling Web services, such as Google, Facebook, and
Amazon.com, that need to respond to queries efficiently, scale up to vast numbers
of users, and tolerate the server failures that are inescapable at Web scale.

The flagship for this shift away from traditional RDBMS concerns towards
properties that are better suited for Web services is a movement called NoSQL.
This movement represents a constellation of new data storage systems that forego
the traditional ACID guarantees of RDBMSs, along with their SQL interface, for
improvements along the dimensions that matter to scalable Web applications.
Although the NoSQL name suggests that the removal of SQL is the driving force
behind the movement, it is really just the focal point for an overhaul of the storage
system interface. For example, rather than having rigid schemas and support for
complex search queries, most NoSQL systems have relaxed schemas and favor key-
based operations whose implementation can be made scalable and efficient.

Yet the NoSQL movement has, in many ways, tossed the baby out with the bath-
water. Most NoSQL systems subscribe to an alternative to ACID called the BASE
approach, whose fundamental pillars are Basically Available service, Soft-State,
and Eventually Consistent data. It is true that achieving Web scale will require
hard tradeoffs between conflicting desires; yet the BASE approach represents a
capitulation across all fronts. It provides no fault-tolerance guarantee and achieves

PROGRAMMINGAn Introduction to HyperDex and the Brave
New World of High Performance, Scalable,
Consistent, Fault-tolerant Data Stores
R O B E R T E S C R I V A , B E R N A R D W O N G , A N D E M I N G Ü N S I R E R

Robert Escriva is a PhD

student in computer science at

Cornell University. He focuses

on building infrastructure

services for cloud computing.

escriva@cs.cornell.edu

Bernard Wong is an Assistant

Professor in the School of

Computer Science at the

University of Waterloo.

His research interests span

distributed systems and networking, with

particular emphasis on problems involving

decentralized services, self-organizing

networks, and distributed storage systems.

bernard.wong@uwaterloo.ca

Emin Gün Sirer is an Associate

Professor of Computer Science

at Cornell University. He works

on infrastructure services for

cloud computing and secure

operating systems.

egs@systems.cs.cornell.edu

	40    ;login:  VOL. 37, NO. 3

no longevity for data, and typical BASE systems struggle to always return up-to-
date results even with no failures. The name is catchy, but the resulting systems
are quite weak and are useful only to a small niche of applications that can accept
best-effort guarantees.

In this article, we provide a brief introduction to HyperDex, a second-generation
distributed key-value store that is fast, scalable, strongly consistent, and fault-
tolerant. By strongly consistent, we mean that a get will always return the latest
value placed in the system by a put, not just eventually, but always, even during
failures and reconfiguration. By fault-tolerant, we mean a system that can tolerate
up to f failures, whether they are node (server) failures or network partitions
affecting up to f hosts. And by fast, we mean a system with a streamlined
implementation that, on the industry-standard YCSB benchmark, outperforms
Cassandra [6] and MongoDB [1], two popular NoSQL systems, by a factor of 2 to
13. And above all, HyperDex supports a new lookup primitive by which objects
stored in the system can be recalled by their attributes. Thus HyperDex combines
the scalability and high performance properties of NoSQL systems with the
consistency and fault-tolerance properties of RDBMSs, while providing a rich API.
This unique combination of features is made possible by two novel techniques,
hyperspace hashing and value dependent chaining, that determine the way
HyperDex distributes its data.

Hyperspace Hashing

A key-value store, as its name suggests, provides users access to its data through
key-based operations, such as put and get. Most large-scale key-value stores that
support horizontal scaling either use a hashing function to map keys to nodes, such
as Cassandra [6] and Dynamo [4], or partition the keyspace into contiguous regions
that are assigned to different nodes by a centralized coordinator, such as BigTable
[3] or HBase [2].

In contrast, HyperDex uses a new object placement method, called hyperspace
hashing, that takes into account many object attributes when mapping objects to
servers. Hyperspace hashing creates a multidimensional Euclidean space, where
each dimension corresponds to one searchable attribute, that is, an attribute that
may be used as part of a search query. An object’s position in this space is specified
by its coordinate, which can be determined by hashing the object’s searchable
attribute values. Objects’ schemas are fixed, and different object types necessarily
reside in different hyperspaces. Of course, nothing prevents a HyperDex
deployment from having multiple spaces with the same hyperspace structure.

For example, a space of objects with “first name,” “last name,” and “phone number”
searchable attributes corresponds to a three-dimensional hyperspace where
each dimension corresponds to one attribute in the original object. Such a space
is depicted in Figure 1. There are three objects in this space. The circular point
is “John Smith” whose phone number is 555-8000. The square point is “John
Doe” whose phone number is 555-7000. The diamond point is “Jim Bob” whose
phone number is 555-2000. Anyone named “John” must map to somewhere in the
plane labeled “John.” Similarly, anyone with the last name “Smith” must map to
somewhere within the plane labeled “Smith.” Naturally, all people named “John
Smith” must map to somewhere along the line where these two planes intersect.

	 ;login:  JUNE 2012   An Introduction to HyperDex    41

Figure 1: Simple hyperspace hashing in three dimensions. Each plane passes through all points
corresponding to a specified query. Together the planes represent a line through all phone
numbers for a given first name and last name pair. The cubes show two of the eight zones in
this hyperspace each of which is handled by different servers.

For each space, HyperDex tessellates the hyperspace into disjoint pieces called
zones, and assigns nodes (servers) to each zone. Figure 1 shows two of these
assignments. Notice that the line for “John Smith” only intersects two out of the
eight assignments. Consequently, performing a search for all phone numbers of
“John Smith” requires contacting only two nodes. Furthermore, the search could
be made more specific by restricting it to all people named “John Smith” whose
phone number falls between 555-5000 and 555-9999. Such a search contacts only
one out of the eight servers in this hypothetical deployment.

This simple object-mapping technique is not without pitfalls. Objects with many
attributes translate to hyperspaces with many dimensions. The volume of the
resulting hyperspace grows exponentially in the number of dimensions/attributes.
A naïve approach would be to restrict the number of searchable attributes, and
thus the size of the hyperspace. Such a technique limits the utility of hyperspace
hashing. HyperDex avoids exponential growth of the hyperspace while maintain-
ing the utility of hyperspace hashing by creating multiple independent and smaller
hyperspaces, called subspaces. A large object may be represented in constant-size
hyperspaces, the number of which is linear to the number of searchable attributes
in the object. Here, HyperDex trades storage efficiency for search efficiency.

An additional pitfall with naïve hyperspace hashing is that key lookups would be
equivalent to single attribute searches, which would likely be inefficient compared
to key lookups in other key-value stores. Fortunately, using subspace partition-
ing, it is trivial to construct a subspace containing just the key of the object. This
ensures that a get operation will always contact exactly one server in this sub-
space.

Value-Dependent Chaining

In addition to providing good performance and scalability, a distributed storage
system must also provide fault tolerance. Much like other distributed storage sys-
tems, HyperDex achieves fault tolerance through data replication. However, Hyper-
Dex’s use of hyperspace hashing and subspace partitioning introduce additional
challenges, as the two features in combination force the same object to be stored

First Name

Phone Number

Last Name

John

Smith

	42    ;login:  VOL. 37, NO. 3

at more than one server, which in turn presents problems of consistency between
these replicas. As the location of an object in each subspace can change with every
object update, the location of the replicas will also change. The replication scheme
must therefore be able to manage replica sets that change frequently.

One replication approach, used in NoSQL systems that preceded HyperDex, would
be to use an eventually consistent update mechanism. Such a mechanism would
allow each replica to accept updates, and at a later point, the updates would be
propagated to the rest of the replicas. However, changes to the replica set from mul-
tiple concurrent updates could result in inconsistency across subspaces. This type
of inconsistency can accumulate over time and result in significant divergence
between the contents of different subspaces. Furthermore, detecting such diver-
gences is non-trivial and likely involves some form of all-to-all communication.

Instead, HyperDex introduces a new replication protocol called value-depen-
dent chaining that efficiently provides total ordering on replica set updates.
In value-dependent chaining, each update is propagated to the affected server
nodes through a well-defined linear pipeline. Updates flow down the chain,
while acknowledgments flow back up the chain. The head of the chain is the node
responsible for that object’s key, called a point leader. Because all value dependent
chains for the same object have the same point leader, all updates to that object can
be fully ordered with respect to each other. Node failures lead to broken chains,
which are fixed automatically by shifting all nodes below the point of breakage up a
spot and adding a new spare node at the tail of the chain to restore the desired level
of fault tolerance. Failures of the point leader are handled the same way, with the
backup point leader becoming the new node responsible for that zone. This linear
ordering ensures the invariant that there is never any confusion about which nodes
have seen the most fresh updates; consequently, there is no need for expensive
mechanisms such as voting, leader election, or quorum writes.

Value-dependent chains also provide an additional property for free: all key opera-
tions are strongly consistent. The same chaining mechanisms that consistently
update the replica set ensure consistent updates to the objects, without any over-
head beyond what is required to maintain consistency of the replica set.

Tutorial

HyperDex has been fully implemented and is freely available for download. It
includes all of the features we have described in this article. It is also being actively
developed, with a small but growing development community that is eager to add
developer-friendly features and additional language bindings. In this section, we
will illustrate how a simple phonebook application uses HyperDex as its storage
back-end.

Creating a HyperDex Space

A phonebook application needs to, at a bare minimum, keep track of a person’s first
name, last name, and phone number. In order to distinguish unique users, it might
assign to each a user ID. We can instruct HyperDex to create a suitable space for
holding such objects with the following command:

hyperdex-coordinator-control

	 --host 127.0.0.1 --port 6970

	 add-space << EOF

	 ;login:  JUNE 2012   An Introduction to HyperDex    43

space phonebook

dimensions username, first, last

	 phone (int64)

key username auto 1 3

subspace first, last, phone auto 3 3

EOF

This command creates a new space called phonebook that stores objects with the
following four searchable attributes: username, first name, last name, and phone
number. In this example, the space creation command instructs HyperDex to
create a 1-dimensional subspace for the key, and a 3-dimensional subspace for the
remaining attributes.

The replication level is specified by the “1 3” and “3 3” parameters at the end of the
key and subspace line. This instructs HyperDex to divide the key subspace into 21
zones and the subspace for the remaining attributes into 23 zones, and to replicate
each zone on to three nodes. As a general rule, a HyperDex administrator should
configure HyperDex to not have significantly more zones per subspace than the
number of nodes in the deployment.

Basic Operations

With a hyperspace defined, our phonebook application can connect to HyperDex
and begin issuing basic get and put requests. We illustrate the HyperDex API using
our Python client.

import hyperclient

c = hyperclient.Client(‘127.0.0.1’, 1234)

This code snippet instructs the client bindings to talk to the HyperDex control-
ler and retrieve the current HyperDex configuration. The controller ensures that
the clients always receive the most up-to-date configuration. If the configuration
changes, say, due to failures, the servers will detect that a client is operating with
an out-of-date configuration and instruct it to retry with the updated HyperDex
configuration.

Now that our phone application has created a client, it can insert objects in the
system by issuing put requests:

c.put(‘phonebook’, ‘jsmith1’,

	 {‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024})

True

c.put(‘phonebook’, ‘jd’,

	 {‘first’: ‘John’, ‘last’: ‘Doe’, ‘phone’: 6075557878})

True

The client determines the unique location in the hyperspace for an object, contacts
the servers responsible, and issues the put request to these servers. Similarly, our
phone application can retrieve the jsmith1 object by issuing a get request.

c.get(‘phonebook’, ‘jsmith1’)

{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024}

	44    ;login:  VOL. 37, NO. 3

Our phone application can also use HyperDex’s search primitive to retrieve objects
based on one or more secondary attributes.

[x for x in c.search(‘phonebook’,

	 {‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024})]

[{‘first’: ‘John’, ‘last’: ‘Smith’,

	 ‘phone’: 6075551024,

	 ‘username’: ‘jsmith1’}]

[x for x in c.search(‘phonebook’, {‘first’: ‘John’})]

[{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024, ‘username’: ‘jsmith1’},

{‘first’: ‘John’, ‘last’: ‘Doe’, ‘phone’: 6075557878, ‘username’: ‘jd’}]

[x for x in c.search(‘phonebook’, {‘last’: ‘Smith’})]

[{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024, ‘username’: ‘jsmith1’}]

[x for x in c.search(‘phonebook’, {‘last’: ‘Doe’})]

[{‘first’: ‘John’, ‘last’: ‘Doe’, ‘phone’: 6075557878, ‘username’: ‘jd’}]

Should the user decide to remove “John Doe” from his/her phonebook, the phone-
book application can remove the object by issuing a delete request:

c.delete(‘phonebook’, ‘jd’)

True

[x for x in c.search(‘phonebook’, {‘first’: ‘John’})]

[{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024, ‘username’: ‘jsmith1’}]

Finally, if the user wants to locate everyone named “John Smith” from Ithaca
(area code 607), the phonebook application can issue the following range query to
HyperDex:

[x for x in c.search(‘phonebook’,

	 {‘last’: ‘Smith’, ‘phone’: (6070000000, 6080000000)})]

[{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024, ‘username’: ‘jsmith1’}]

Atomic Read-Modify-Write Operations

HyperDex offers several atomic read-modify-write operations which are impos-
sible to implement in key-value stores with weaker consistency guarantees. These
operations, in turn, enable concurrent applications that would otherwise be impos-
sible to implement correctly using non-atomic operations. For instance, using
standard get and put operations, an application cannot ensure that its operations
will not be interleaved with operations from other clients.

The canonical example for needing atomic read-modify-write operations involves
two clients who are both trying to update a salary field. One is trying to deduct
taxes—let’s assume that they are hard-working academics being taxed at the maxi-
mum rate of 36%. The other client is trying to add a $1500 teaching award to the
yearly salary. So one client will be doing:

v1=get(salary), v1 = v1 - 0.36*v1; put(salary, v1)

while the other client will be doing:

v2=get(salary), v2 += 1500; put(salary, v2)

where v1 and v2 are variables local to each client. Since these get and put opera-
tions can be interleaved in any order, it is possible for the clients to succeed (so
both the deduction and the raise are issued) and yet for the salary to not reflect the

	 ;login:  JUNE 2012   An Introduction to HyperDex    45

results! If the sequence is get from client1, get from client2, put from client2, put
from client1, the raise will be overwritten—a most undesirable outcome.

Atomic read-modify-write operations provide a solution to this problem. Such
operations are guaranteed to execute without being interrupted by or interleaved
with any other operation.

The word “atomic” is often associated with poor performance; however, Hyper-
Dex’s atomic operations are inexpensive and virtually indistinguishable from a
put, thanks to the use of value-dependent chains. The head of each object’s value-
dependent chain is in a unique position to locally compute the result of the atomic
operation and, should it succeed, pass the operation down the chain as a normal
put. Should the operation fail, the remainder of the value-dependent chain does not
need to be involved at all.

HyperDex supports a few different atomic instructions, the most general of which
is a conditional_put. A conditional_put performs the specified put operation if and
only if the value being updated matches a specified condition.

Continuing with the sample phonebook application, consider extending the appli-
cation for use in login authentication. The phonebook table must then be extended
to include a password attribute. Intuitively, a user should only be able to change
his/her password when it matches the password that he/she used to log in. The
phonebook application can do this by using conditional_put:

c.conditional_put(‘phonebook’, ‘jsmith’,

	 {‘password’: ‘currentpassword’},

	 {‘password’: ‘newpassword’})

True

c.get(‘phonebook’, ‘jsmith1’)

{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075552048,

	 ‘password’: ‘newpassword’}

Although this toy example omits certain implementation details relating to secure
password storage, it is clear that the conditional_put operation enables behavior
that is otherwise impossible to achieve with normal get and put operations. Any
attempt to change the password without providing the previous password will fail:

c.conditional_put(‘phonebook’, ‘jsmith’,

	 {‘password’: ‘wrongpassword’},

	 {‘password’: ‘newpassword’})

False

As expected, the conditional_put failed because the password is not, in fact,
“wrongpassword”.

HyperDex offers additional atomic operations. In many applications, the clients
will want to increment or decrement a numerical field in the style of Google +1 and
Reddit up/down votes. While implementing this is trivial with conditional_put, the
implementation may require multiple attempts as the conditional_put operations
fail in the face of contention. Atomic increment operations, in contrast, will not fail
spuriously, and do not require the user to have retrieved the old value before start-
ing the operation.

We further extend our sample phonebook application to track the number of times
each user’s information is viewed by adding a “lookups” attribute. The phonebook

	46    ;login:  VOL. 37, NO. 3

application can consistently manage this counter using the atomic_increment
operation:

c.atomic_increment(‘phonebook’, ‘jsmith1’, {‘lookups’: 1})

True

The atomic increment is as inexpensive as a put operation. This enables our appli-
cation to log each lookup quickly and efficiently.

Asynchronous Operations

So far, we submitted synchronous operations to the key-value store, where the
client had just a single outstanding request and waited patiently for that request to
complete. In high-throughput applications, clients may have a batch of operations
they want to perform on the key-value store. The standard practice in such cases is
to issue asynchronous operations, where the client does not immediately wait for
each individual operation to complete. HyperDex has a very versatile interface for
supporting this use case.

Asynchronous operations allow a single client library to achieve higher through-
put by submitting multiple simultaneous requests in parallel. Each asynchronous
operation returns a small token that identifies the outstanding asynchronous
operation, which can then be used by the client, if and when needed, to wait for the
completion of selected asynchronous operations.

Every operation we’ve covered so far in the tutorials (e.g., get) has a corresponding
version prefixed with async_ for performing that operation asynchronously. The
basic pattern of usage for asynchronous operations is to initiate the asynchronous
operation, do some work, perhaps issue more operations, and then wait for selected
asynchronous operations to complete. This enables the application to continue to
do other work while HyperDex performs the requested operations.

Here’s how we could insert the “jsmith” user asynchronously:

d = c.async_put(‘phonebook’, ‘jsmith1’,

	 {‘first’: ‘John’, ‘last’: ‘Smith’,}

	 ‘phone’: 6075551024})

d

<hyperclient.DeferredInsert object at 0x7f2bbc3252d8>

do_work()

d.wait()

True

d = c.async_get(‘phonebook’, ‘jsmith1’)

d.wait()

{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024}

Notice that the return value of the first d.wait() is True. This is the same return
value that would have come from performing c.put(...), except the client was free to
do other computations while HyperDex servers were processing the put request.
Similarly, the second asynchronous operation, async_get, queues up the request on
the servers, frees the client to perform other work, and yields its results only when
wait is called.

This allows for powerful applications. For instance, it is possible to issue thou-
sands of requests and then wait for each one in turn without having to serialize the
round trips to the server. Note that HyperDex may choose to execute concurrent

	 ;login:  JUNE 2012   An Introduction to HyperDex    47

asynchronous operations in any order. It’s up to the programmer to order requests
by calling wait appropriately.

Fault Tolerance

HyperDex provides a strong fault-tolerance guarantee to its clients. Anywhere
during the preceding tutorial, feel free to kill off up to two of the nodes in the sys-
tem. You will be able to continue the tutorial, as the value-dependent chains will
detect the failures and route around them. If you bring up new nodes, they will be
integrated into the chains seamlessly by the coordinator. The particular fault-tol-
erance level f, which determines the number of simultaneous failures a space can
withstand, is entirely up to the application to determine. Of course, there are trade
offs; while a large f will yield a more robust system, it will also increase opera-
tion latencies, and the improvement in actual reliability is subject to diminishing
returns. The critical issue here is that this tradeoff is not part of the HyperDex
substrate but is left up to applications to determine.

Performance

In an accompanying report [5], we carefully quantify HyperDex’s performance
using the industry-standard YCSB benchmark against Cassandra and MongoDB.
While a similar performance study is beyond the scope of this introduction to
HyperDex, we will report the major takeaway: HyperDex is very fast. It is approxi-
mately 2 to 13 times faster than the fastest of the other two NoSQL systems. There
are two reasons for this huge gap in performance, which is even more striking
because the other two systems are left in their preferred configurations, where
they provide weak fault-tolerance and consistency guarantees. First, hyperspace
hashing provides an enormous speedup for search-oriented operations. There
is a qualitative difference between systems that enumerate objects by iterating
through the keyspace and HyperDex, which can use the hyperspace to efficiently
pick the desired items, so the 13x improvement could have been even higher if the
benchmark’s dataset had been larger. Second, HyperDex has a more streamlined
implementation that is 2 to 4 times faster than Cassandra and MongoDB even at
traditional get/put workloads. The precise details of the comparisons are in the
technical report, and the beauty of open source is that there is tangible proof in a
public repository that anyone can trivially check out and execute.

Summary

The emergence of large-scale Web applications has significantly altered the
trajectory of distributed storage systems. From the radically different require-
ments of Web applications, NoSQL systems have emerged to fill the gap left by
traditional databases. Early NoSQL systems used simple techniques, such as
consistent hashing and parallel RPCs, to distribute their data, and thus were not
able to make nuanced tradeoffs between desirable properties. In this article we
presented HyperDex, a new high-performance key-value store that provides strong
consistency guarantees, fault-tolerance against failures whose maximum size can
be bounded, and high performance coupled with a rich API. These techniques are
made possible through the use of hyperspace hashing and value-dependent chain-
ing, two novel techniques for laying out and managing data. We hope that Hyper-
Dex, with its strong consistency and fault-tolerance guarantees, high performance,
and rich API, will enable a new class of applications that were not served well by
existing NoSQL systems.

	48    ;login:  VOL. 37, NO. 3

Acknowledgments

We would like to thank the HyperDex open source community for their contribu-
tions, feedback, and support. In addition, we would like to highlight the extensive
contributions of Pawel Loj and By Zhang, who have submitted substantial func-
tionality to improve HyperDex.

References

[1] 10gen, Inc.: http://www.mongodb.org, accessed November 29, 2011.

[2] Apache Software Foundation: http://hbase.apache.org, accessed November 29,
2011.

[3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert Gruber,
“Bigtable: A Distributed Storage System for Structured Data,” Proceedings of OSDI,
November 2006, pp. 205–218.

[4] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-
lapati, Avinash Lakshmanx, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels, “Dynamo: Amazon’s Highly Available Key-value
Store,” Proceedings of SOSP, October 2007, pp. 205–220.

[5] Robert Escriva, Bernard Wong, and Emin Gün Sirer, “HyperDex: A Distributed,
Searchable Key-Value Store for Cloud Computing,” Computer Science Department,
Cornell University Technical Report, December 2011.

[6] Avinash Lakshman and Prashant Malik, “Cassandra—A Decentralized Struc-
tured Storage System,” Proceedings of LADIS, October 2009.

