
	90    ;login:  VOL. 37, NO. 3

REPORTS
10th USENIX Conference on File and Storage
Technologies (FAST ’12)

San Jose, CA
February 14–17, 2012

Opening Remarks and Best Paper Awards

Summarized by Rik Farrow (rik@usenix.org)

Bill Bolosky began the conference with the statistics. FAST
2012 set lots of records: largest number of submissions and
accepted papers, lowest acceptance rate, and largest number
of attendees. Bill wondered if it was just that the economy is
getting better, or that the conference is that popular.

They also tried something new this year: short papers that
are refereed the same way as longer papers. Bill then showed
an image representing the words found in paper subjects and
abstracts. Obvious words, such as “storage” and “system,”
were most prominent, followed by “file,” “data,” “deduplica-
tion,” “flash,” and “performance” (approximately—check out
the video). “Cloud” is still a tiny word, but Bill expects that
will grow.

Jason Flinn took over and described the first Test of Time
award, for ideas that appeared at FAST over 10 years ago; it
was presented to Sean Quinlan and Sean Dorward for “Venti:
A New Approach to Archival Storage.” Next, he announced
the Best Paper awards: “Recon: Verifying FS Consistency at
Runtime,” by Daniel Fryer et al., and “Revisiting Storage for
Smartphones,” by Hyojun Kim et al.

Keith Smith of NetApp and Yuanyuan (YY) Zhou of UCSD
will be the chairs of FAST ’12.

In this issue:

10th USENIX Conference on File and Storage
Technologies (FAST ’12)   90
Summarized by Dulcardo Arteaga, Rik Farrow, Daniel Fryer, Doowon
Kim, Michelle L. Mazurek, Dutch Meyer, Swapnil Patil, and Yiqi Xu

Conference Reports

	 ;login:  JUNE 2012   Conference Reports    91

REPORTS is offset by the temporary mapping tables. Zhang explained
that the overall metadata requirements are much smaller.
Keith Smith from NetApp asked whether the authors had
considered a richer interface, an idea that Zhang thought was
promising. Ethan Miller from UCSC followed up on Smith’s
question to note that an object interface would provide the
same benefits, even though it moves much of the manage-
ment from the file system to the device.

The Bleak Future of NAND Flash Memory
Laura M. Grupp, University of California, San Diego; John D. Davis,

Microsoft Research, Mountain View; Steven Swanson, University of

California, San Diego

Laura Grupp presented her team’s ominously titled paper,
“The Bleak Future of NAND Flash Memory.” Their goal is
to project the evolution of NAND-based flash into the year
2024 to determine if the current reliability and performance
will be derailed by technical limitations. Their findings are
mixed. By some metrics, flash will continue to improve, but
in other ways it will decline.

It is widely understood that current NAND-based flash
drives are fast and reliable but have a relatively high cost-
to-capacity ratio. Moving forward, capacity will no doubt
increase, but with current processes and technologies,
the increased density will incur increased error rates and
decreased performance. To anticipate the future of NAND
flash, Grupp and her team combined measurements of mod-
ern flash architectures with projected trends in manufactur-
ing to model the capacity, latency, and throughput of flash
going into the future.

Grupp explained that capacity will increase with the bit
density of each cell. Current technologies include single-
level cells (SLCs), which store a single bit; multi-level cells
(MLCs), which store two bits; and triple-level cells (TLCs)
which store three bits but are not really triple-level cells (they
have eight levels). Cell size decreases by scaling, following
Moore’s Law. Current processes are between 25 nm and 34
nm, with industrial working groups predicting 6.5 nm by
2024. These factors suggest a 43-fold increase in capacity
over that period. To test performance, Grupp and her co-
authors used an in-house testing system to analyze 45 flash
chips from six companies with a variety of bit densities and
manufacturing processes. Fitting the results to an exponen-
tial curve suggests a twofold increase in latency for every
order of magnitude increase in density. In concluding, Grupp
noted that we can improve density and cost, but performance
and reliability will decline.

Nauman Rafique from Google asked why the authors con-
sider the provided scenario to be bleak. Grupp replied that

Implications of New Storage Technology

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

De-indirection for Flash-based SSDs with Nameless
Writes
Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi

H. Arpaci-Dusseau, University of Wisconsin—Madison

Yiying Zhang presented her research on a new “Nameless
Writes” interface to solid state disks (SSDs). SSDs generally
include a Flash Translation Layer (FTL) that maps logical
to physical addresses. This allows the device to perform
wear-leveling behind an opaque address space. However, this
indirection incurs mapping table space cost and performance
overheads. Zhang proposed eliminating these overheads by
largely removing the address translation table and stor-
ing physical data addresses directly in the file system. In
the proposed interface, file systems do not specify a logical
address when issuing a write. Instead, the SSD acknowledges
completed write requests with the data’s physical address.

Realizing a nameless writes interface required address-
ing a number of problems. Writes are always placed in new
physical locations, which forces metadata modifications to
cascade address updates to new physical references up the
length of the file system tree. To address this problem, Zhang
uses a traditional write interface for file system metadata,
including traditional on-device address translation. Since
file systems generally store far more data than metadata, the
cascading updates can be eliminated while preserving most
performance and cost advantages. Physical address migra-
tion is also a challenge. With nameless writes, SSDs move
data beneath running file systems, just as they do today. This
requires that callbacks be sent to the file system informing
it of any planned moves, while a temporary mapping table in
the SSD ensures that requests are routed appropriately.

To evaluate their system, Zhang and her team created an SSD
emulator, ported ext3 to the nameless writes interface, and
evaluated against a page-mapped FTL, a hybrid FTL, and a
nameless-writes FTL. The effort required 4360 lines of code
changes to ext3. Their SSD emulator operates as a pseudo-
block device and stores results in memory. They found that
their nameless writes indirection mapping table required
only 2%–7% of the metadata overheads and performed up to
20 times better on a workload of random writes.

Following the talk, Geoff Kuenning from Harvey Mudd Col-
lege asked the community why we don’t simply write a file
system that is designed specifically for the SSDs, and remove
the FTL entirely. Zhang replied that she thought the device
should control its own wear leveling. Margo Seltzer asked
if the space savings from removing the FTL mapping table

	92    ;login:  VOL. 37, NO. 3

completely, as is done today with GPUs. Yang said it was an
interesting and likely effective approach, but that it would
break the block interface, which has value. Steven Swanson
from UC San Diego asked if the authors see potential benefit
in increasing concurrency by using a polling thread with
multiple outstanding requests. Yang believed the results
would depend on the application logic. In some cases it might
benefit, so it’s a scenario worthy of further consideration.

Back It Up

Summarized by Yiqi Xu (yxu006@cs.fiu.edu)

Characteristics of Backup Workloads in Production
Systems
Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen

Smaldone, Mark Chamness, and Windsor Hsu, EMC Corporation

Fred Douglis started by highlighting some special character-
istics of a backup system, e.g., it stores the data using aggre-
gation instead of small files. Other characteristics include
that backup data is replicated and that the backup data on a
weekend usually has full 100 GB tar-type, while workdays
have incremental 1 GB tar-type. He pointed out that analysis
of primary storage abounds, while there is little charac-
terization of backup systems. Their work can validate past
design decisions using more extensive data and provide data
for future analyses. The work is also motivated by the fact
that it is predicted that there will be eight exabytes of data on
disk-based, purpose-built backup appliances by 2015. Their
two-pronged analysis covers a study of both breadth and
depth, with statistics from over 10,000 systems and using
detailed metadata traces from several production systems
storing almost 700 TB of backup data.

Fred compared backup file size to primary storage file size.
The former is orders of magnitude larger, so that traditional
optimizations do not work for backups. Backup files also have
many fewer files and directories, as well as flatter hierarchy
because of many files per directory, and backup systems
also use catalogs. The weekly churn is around 20%, so the
system should be able to reclaim data on a regular basis.
That’s why deduplication helps. Primary data deduplication
is reported to be 3x–6x, while backup data is >60x dedupe
for some, 384x max. He went on to sensitivity analysis of
chunk size and cache size. With many different kinds of data
sets, he proposed merging chunks to analyze deduplication
rates across a range of chunk sizes without having to access
the whole content. They used content-defined merging and
considered the overhead of metadata with smaller chunks.
The rule of thumb is 15% better deduplication rate for each
smaller power of 2 in chunk size, but about 2x the metadata.
The best deduplication chunk size is 4 KB, and 8 KB consid-

consumers are accustomed to technologies improving, but
we will not see this with flash. Michael Jadon from Radian
Systems was optimistic that future precision improvements
in voltage measuring would lower SSD latencies, but Grupp
reiterated that the model only tracks current trends and does
not include assumptions about future discoveries. David
Rosenthal from Stanford University added that there is
insufficient manufacturing capacity for flash to completely
replace magnetic disks anyway, and that many of the limita-
tions discussed apply to other technologies, such as Memris-
tor. Abhijit Paithankar from VMware asked if the authors
studied power consumption, but they had not considered this
extensively. Kirk McKusick asked how the memory lifetime
changes as we move to MLC and TLC. The author referred
him to the paper, saying “It’s a dramatic decline.” TLC will
only survive 500 program-erase cycles per block.

When Poll Is Better than Interrupt
Jisoo Yang, Dave B. Minturn, and Frank Hady, Intel Corporation

Jisoo Yang explained how the next generation of NVRAM
will see interrupt overhead as a major source of latency. His
work seeks to quantify the costs and to reduce them.

Conventionally, disks use a hardware interrupt to notify the
scheduler when an I/O operation completes. The scheduler
correspondingly wakes the thread waiting on that operation.
This implies that between requesting and completing the
operation, the requesting thread loses its context, freeing
other threads in the application to do work. With a very low
latency device, Yang argues, the overheads of handling this
asynchronous I/O will start to dominate. It may be more
efficient for the CPU to directly poll the device for comple-
tion. To test the claim, the team experimented with proto-
type hardware. They measured a DRAM-emulated PCIe SSD
using the new NVM Express interface. They found that tra-
ditional interrupt-driven I/O had a 6.3 microsecond latency,
while polling had only a 4.4 microsecond latency. Further,
the asynchronous nature of interrupt-driven I/O left only 2.7
microseconds for an application to make any progress, limit-
ing the benefit of asynchronous I/O.

John Groves of Dell Storage asked whether it would be better
to have a polling loop in place of the entire interrupt handler.
Yang clarified that each CPU in their implementation has
a dedicated polling loop. Yan Li from UC Santa Cruz asked
how the results should be interpreted in light of the preced-
ing talk, “The Bleak Future of NAND Flash Memory.” Yang
responded that he expects the next-generation processes to
move away from NAND and to make significant improve-
ments in performance. Kai Shen from the University of
Rochester noted that even with polling, OS overhead is sub
stantial. He wondered if it is worthwhile to remove the OS

	 ;login:  JUNE 2012   Conference Reports    93

Philip compared the two approaches, replication with dedu-
plication and replication with deduplication and delta com-
pression. He discussed the properties of stream-informed
delta compression, its pros being fast compression of data
and small memory footprint, and cons being dependence on
locality and cache, and some resource cost. The data set he
used is very different from the previous one: multiple months’
backups with varying sizes. The results from delta compres-
sions are shown on multiple datasets, compared with a full
index simulator. The results show that two super features are
better than an index with one. More features do not necessar-
ily improve compression, because of a fixed cache size. The
results also show that one feature compression is within 14%
of using an index. As a result, delta improvement is from 1.8x
to 3.1x and the effective network throughput is 1–2 orders
of magnitude faster than the old approach without delta
compression.

Overhead and limitations were also discussed, with more
space requirement per chunk and more CPU and I/O con-
sumption on the source and destination. The sketching is
also claimed to slow down the writes for non-duplicates by
20% and scales linearly with the number of streams at the
destination. They also discussed compression loss because
of shared caching size and the real case results from custom-
ers. Philip concluded his talk by listing the related works
and stating that delta locality closely matches deduplica-
tion locality for backup datasets; in addition, the work has
low cost and good scalability, and it allows customers to
protect twice as much data by moving it across a WAN.
Cristian Ungureanu from NEC asked why 3.1x compression
improvement results in 1–2 orders of magnitude in network
throughput. Philip answered that it’s due to the performance
variation in non-delta compressions.

Power Consumption in Enterprise-Scale Backup Storage
Systems
Zhichao Li, Stony Brook University; Kevin M. Greenan and Andrew W.

Leung, EMC Corporation; Erez Zadok, Stony Brook University

Zhichao Li claimed that disk backup is a prime candidate for
power management, but there is no previous power measure-
ment research and so assumptions are often made that disks
will dominate power. The authors measured four enterprise
backup controllers and two kinds of enclosures. They used
a power meter for accurate measurement while exclud-
ing other factors such as networking, cooling, and internal
subcomponents. First, Zhichao presented numbers for idle
power consumption—when deduplication is being performed,
CPU and RAM cost power. He used watts per TB to measure
the different models and found that newer controller models
are more efficient. The case for enclosures is similar. He
concluded that deduplication saves space, because it saves

ering maintenance and cleaning. For caching, they proposed
replaying traces with varying cache sizes and reported
results on the warm cache. The results show that for writes,
chunk-level LRU caching needs large chunks to be effective
for writes and that container-level LRU caching works well.
Read cache behavior is similar but for much larger caches,
due to data caching.

Fred covered the related work on deduplication and data
characterization and concluded that high churn means
throughput must scale with primary storage capacity growth.
Backup systems are very different from primary systems.
They need high locality and deduplication for hit rate high
performance; 8 KB is a sweet-spot chunk size.

Dutch Meyer asked if 8 KB chunk average is an effective
average they would measure or a statistical average they
expect to get (it makes a difference if chunks break on zeros
very often). Fred said that they are actually pretty close, that
their system doesn’t do anything special about zeros, and
that if all zeros on a block define a block boundary, then it’s
going to cause a problem. Primary storage often has many
files whose last chunk is smaller than the rest. If we get TBs
of data on one file, then the last chunk is just noise. Dutch
Meyer did set chunk boundary on zeros when he did his
work and found it interesting that EMC doesn’t. Dutch said
it’s really dependent on what the average means, and they
took the discussion offline. Geoff Kuenning asked if data
is quite anonymized and can they have it. Fred replied that
they cannot make any promises and cannot join in a reposi-
tory, at least for the foreseeable future, but they welcome
interns to join them and have access to the data and work on
it. Someone asked whether storage speed depends on chunk
size. The answer was no. Arkady Kanevsky from Dell asked,
if database churn is very quick in the dataset, is that charac-
teristic or anomalous? Fred reviewed the slides and said it’s
an indication of how long the user would keep the backup, and
it’s really a choice of the user. John Groves asked if they are
chunking with bins and Fred answered yes.

WAN Optimized Replication of Backup Datasets Using
Stream-Informed Delta Compression
Philip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu, EMC

Corporation

Philip Shilane started his presentation by showing the
demands and challenges in improving offshore replication
performance. Afterwards he talked about his idea and dem-
onstrated an example of deduplication, with delta compres-
sion sketches matching similar chunks. He compared his
work by searching through several sketch index options (full
index, partial index, and stream-informed cache) and analyz-
ing their advantages and disadvantages. He further exempli-
fied his idea by animating a discovery of similarity in data.

	94    ;login:  VOL. 37, NO. 3

block bitmap and the block pointer should agree with each
other. He further explained that the check happens on the
transaction boundary just before the commit block reaches
the disk. The design depends on the interpretation of meta-
data and comparison with the old version, without depend-
ing on the agnostic file system. He proposed an interface to
invoke for different types of file systems. The write cache is
used for delaying the update, and the read cache is for storing
the hot cache of the read metadata.

Daniel discussed the evaluation of the implementation,
detection effectiveness, and performance overhead. They
simulated metadata error corruption by injecting wrong
metadata before it was written. The errors they catch are
inclusive of all the errors found by e2fsck except for a special
flag that isn’t being used in ext3. Cache size also affects one
of the benchmarks evaluating throughputs, because the 128
MB cache size takes away some cache from the system.

Wenguang Wang from Apple asked what happens after
catching an inconsistency; is stopping all I/O an option? Yes,
they hold and fail stop. Several other options are possible,
including stopping all writes, remounting read-only, taking a
snapshot and continuing, and micro-booting the file system
or kernel. Ethan Miller from UC Santa Cruz asked what kind
of issue to expect when delayed commit is implemented in
the FS. Daniel responded that ext3 also group commits with
5–10 thousands of blocks at a time. Keith Smith from NetApp
asked for advice for future file system writers to make check-
ing easy. Daniel said they like Btrfs, with back pointers that
require less data to track; he also recommended figuring out
and writing consistency problems in a declarative language
like SQL. Someone asked if this kind of delay is tolerable in
synchronous, production workloads with increased latency
for commit block; they took the discussion offline. Atul Adya
from Google asked if they considered applying this tech-
nique to other applications such as distributed file systems.
Daniel said that they thought about this and will probably
find transaction models and distributed invariants. Chris
from Nebula asked why they do this work in the block layer.
He maintains a subset of this kind of code for xfs within the
file system. Daniel admitted that it is more practical for real
systems this way, but placing the function on the block layer
also has the benefit of taking it out of the kernel and placing it
with the hypervisor if they don’t trust the operating system,
and that filesystem format doesn’t change quickly.

Understanding Performance Implications of Nested File
Systems in a Virtualized Environment
Duy Le, The College of William and Mary; Hai Huang, IBM T.J. Watson

Research Center; Haining Wang, The College of William and Mary

Duy Le started by pointing out an inadequacy in the investi-
gation of impacts of nested file systems. Existing literature

hardware such as the controller/enclosure and networking
devices. It also reduces disk I/Os. Zhichao went on to disk
power management—spin down/power down of disks has
limited savings on power consumption. Other components in
the enclosure drain more power. Disk spin-down at scale also
demonstrates that in order to save power, many enclosures
in a controller need to spin down their disks. He then looked
at power proportionality in the controller. The results show
that power varies more by model than by workload, because
the controller consumes more power than needed. And in
the enclosure the percentage power increase is less than the
workload change, which proves again that controller/enclo-
sures consume more power than disks.

Zhichao’s conclusions were: (1) controller/enclosures are
power hungry, (2) current systems are not power propor-
tional, and (3) new hardware is more efficient. Future work
will focus on aged backup, primary storage, CPU, and RAM
power consumptions when built-in sensors are available.

Brent Welch from Panasas asked how realistic it is for the
controller to populate 50 enclosures, because the controller
also has to do RAID to protect drives. At what point does the
deduplication controller spend more time on RAID rebuilds
than on decompression? Will they really recommend that
customers load 50 enclosures? Zhichao replied, it depends
on whether the customer wants larger capacity with lower
power cost, and how much customers are willing to pay.

File System Design and Correctness

Summarized by Yiqi Xu (yxu006@cs.fiu.edu)

Recon: Verifying File System Consistency at Runtime
Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun

Benjamin, Ashvin Goel, and Angela Demke Brown, University of Toronto

n Awarded Best Paper!

Daniel Fryer presented work on an online filesystem-check-
ing layer between the file system and block layers. He showed
us that metadata is important while fragile in file system
consistency. And metadata is more error-prone because of
file system bugs and will cause data loss. Current solutions
rely on the correctness of file systems such as journals,
checksums, and RAID. Offline checking is often used, but it
is slow, requires taking the file system offline, and produces
error-prone repair.

Daniel’s team proposes making sure that every update results
in consistency. However, consistency properties are global
and may require a full scan run; furthermore, fsck at every
write is not possible. Thus, fast, local consistency invariants
are introduced to keep data consistent before it becomes per-
sistent. Daniel demonstrated an example in ext3, where the

	 ;login:  JUNE 2012   Conference Reports    95

showed a crash scenario in which two files claim a shared
block. He then introduced No-Order File System (NoFS),
which uses back pointer-based consistency, where owners
of objects are found through the back pointer; the important
assumption is that object and back pointer are written atomi-
cally. He revisited the crash scenario to show how using a
back pointer works. He then showed how allocation structure
consistency is maintained. The creation of new objects can
proceed without complete allocation information. The valid-
ity bitmap is used to track checked objects. He elaborated
the case with a scenario determining allocation information.
Implementation details include two threads responsible for
metadata and data scan in the background. Note that sched-
uling of scans can be configured while idle or periodically.

In evaluating NoFS, Vijay answered three questions: is
it robust? how much is the overhead? and does the back-
ground scan lower performance? They put a pseudo device
driver between the file system and disk to discard writes to
selected sectors to simulate crash. As a matter of fact, NoFS
detected all the inconsistencies, and orphan structures were
reclaimed. There proved to be minimal overhead in terms
of throughput, and ext3 demonstrates lower throughput in
cases where there are order points in writes. However, scan
reads interleaved with file system I/Os really affect through-
put, and accesses on non-verified objects have penalties, such
as stat. Vijay concluded that trust is implicit, and removing it
is key to robust, reliable storage systems.

Peter Macko from Harvard asked about the memory over-
head of this approach. Vijay replied that one extra block
for the bitmap is acceptable. Bill Bolosky from Microsoft
Research asked how big the file system is. Vijay answered
that it’s a 50 G partition with 1–5 GB of data. Bill responded
that a 3 TB surface scan takes 4–5 hours. How does this
system work when it’s close to full? Does it wait a long time
for writing (finding a free block)? He mentioned the work he
was doing on distributed file systems, which are often full.
Ashvin Goel from the University of Toronto asked if this
approach works for all disks. Vijay answered, as long as the
back pointer is atomically written together with data block
on the disk, it can be achieved on the device. Someone asked
where the back pointer is stored. Vijay answered that in the
implementation it is inside the data block. But when out of
band area can be used, they can store it there. Keith Smith
from NetApp commented that if a file system grows big
enough, it will not be able to handle the extra block. He asked
if files created on disk can be in the same order as created in
the applications. Vijay said no, since it’s not the consistency
they provide. Dave Anderson from Seagate Technology rec-
ommended that Vijay apply this technique to other problems.
Vijay said yes, it’s applicable to hierarchy problem domains.
Brad Morrey from HP Labs asked about the extra CPU cycles

exists around I/O scheduler, storage allocation, and virtu-
alized FS on the virtual machines. However, assumptions
made on one layer of file system may hurt two-layer schemes.
The authors combine six file systems (ext2, ext3, ext4, rei-
serfs, xfs, and jfs) as host and guest file systems to find the
best combination with varied I/O behavior and interactions.

In their setup, they partitioned the physical disk into equal
partitions and formatted six of them to six different file
systems, which in turn used a flat file to act as disk image for
a virtual block device. The last partition was used as a direct
block device for baseline measurement.

The results show that guest file system and host file system
choice are bi-directionally affecting each other in perfor-
mance. While writes are more critically affected by the
additional layer, read sometimes can achieve even better
performance. Latency is sensitive to nested file systems. Duy
then zoomed in on some specific combinations of guest and
host file systems for detailed analysis on reads and writes. He
showed some findings, including the effectiveness of guest
file system block allocation, I/O scheduler’s effectiveness on
the guest file system, and journaling performance impact.
Finally, he listed five pieces of advice for file system choice/
tuning for different workloads and circumstances.

Erez Zadok from Stony Brook University asked why they did
not shuffle the host file systems on each of the partitions.
This could result in zone-constant angular velocity, which
is said to have up to 25% marginal variance on performance.
Duy replied that they have demonstrated a less than 5%
performance difference and determined that it is a negligible
factor in the evaluation, since 42 combinations will cost a lot
more in time. Zadok then asked whether it will be different
when they put different kinds of workloads/access patterns
on the partitions. John Groves from Dell asked whether the
container file is pre-allocated (yes) and did they use direct
I/O to avoid upper-level I/Os going to page caches of the
underlying file system (yes). Ric Wheeler from Red Hat com-
mented that NOOP is often used in the upper level in a virtu-
alized environment. Duy said that guest CFQ / host deadline
was the best combination they found, so they tended to use
this setting. Dutch Meyer (University of British Columbia)
asked whether images are raw (yes) and can the findings/
approaches be generalized at the disk management layer. The
topic was taken offline. Was disk flushing disabled for accu-
rate measurement? They made sure all caches got flushed.

Consistency Without Ordering
Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau, University of Wisconsin, Madison

Vijay Chidambaram pointed out that crash inconsistencies
are caused by ambiguity about logical object identity. He

	96    ;login:  VOL. 37, NO. 3

Optimizing NAND Flash-Based SSDs via Retention
Relaxation
Ren-Shuo Liu and Chia-Lin Yang, National Taiwan University; Wei Wu,

Intel Corporation

Ren-Shuo Liu presented a technique for optimizing flash
performance by opportunistically relaxing the requirements
for longterm data retention. He noted that there are two
main reliability specifications in flash: bit error rate and data
retention time. The latter specifies how long the data should
stay durable on stable storage. Error correcting codes (ECCs)
are used to ensure that both criteria are met, but as flash
density increases, the raw reliability degrades. This forces
manufacturers to slow down writes to mitigate the worsen-
ing bit error rate and to strengthen ECCs.

However, data retention time of one year is overly con-
servative for the majority of data. Liu’s team proposes a
retention-aware FTL that initially relaxes the data retention
specification to two weeks, and if data is not overwritten in
one week, it can be reprogrammed with the stronger reten-
tion policy. The result is that long-lived data is eventually
given the longer retention policy, but data overwritten within
a week can use a weaker ECC to speed up writes by a factor
of two.

To evaluate the approach, Liu used 11 workloads gathered
from Microsoft Research Cambridge (MSR-C) and synthetic
workloads, including TPC-C and Hadoop benchmarks, to
estimate the average lifetime of a block of data. As a point of
reference, in the MSR-C workload 86% of writes are over-
written in less than one hour. These workloads were evalu-
ated on disksim 4.0 and SSDsim, using the retention-aware
FTL design. The results suggest that a 2 to 5.7-fold improve-
ment in performance is possible.

Several in attendance, including Sam Noh from Hongik Uni-
versity and Dave Anderson, asked Liu to clarify the durability
assurances of long-lived data. Liu explained that background
processes always convert long-lived data to normal reten-
tion mode, so there is no longterm relaxation of durability
requirements. Another participant asked if any effort has
gone into understanding the effects of the garbage collector.
Liu responded that only writes originating from the guest
use the weaker ECC. Data movement due to garbage collec-
tion always uses full ECC. Liu was also asked if the same
performance improvement could be had if the controller was
made more powerful, to accommodate stronger ECC, but that
conversation was taken offline. Geoff Kuenning from Harvey
Mudd College asked Liu to clarify the methodology around
measuring the cleaning that occurs due to long-lived data
being moved to a high retention cell. Liu assured Kuenning
that the cleaning process was included in the simulation.

this approach introduces. Vijay answered that there is no
noticeable increase, because the check occurs between the
disk and memory. Someone from Seoul National University
asked how the back pointers are removed when deleting files.
Vijay said their approach is lazy deletion. He talked about
having version number consistency if necessary. Vijay said
that only bitmaps are kept in memory and they don’t keep any
structures, so there is no need to free many objects.

Flash and SSDs, Part I

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

Reducing SSD Read Latency via NAND Flash Program
and Erase Suspension
Guanying Wu and Xubin He, Virginia Commonwealth University

Guanying Wu presented his research on making the pro-
gram-erase cycle of NAND flash memory suspendable. To
rewrite a page of NAND flash memory, the drive must com-
plete a program-erase cycle, which first erases the page and
then reprograms it. The erase operation is performed with a
long pulse of erase voltage to expel electrons from the cells.
The subsequent programming requires a series of charges in
which a short pulse is attempted, then tested. This program-
ming is retried with successively higher voltage pulses until
it is successful. This process can be 10x–100x slower than
a read, which only requires measuring the cell voltage. The
problem is that a program-erase cycle blocks out all reads to
the chip where the block exists, causing higher latency.

To improve read performance, Wu and his team developed
a method for making the program-erase cycle suspendable.
This allows read requests that arrive during a lengthy pro-
gram-erase operation to be quickly fulfilled and the rewrite
to be resumed later. This suspension may occur at different
points in the program-erase cycle, each requiring a different
mechanism. If suspension is needed during a program opera-
tion, suspension occurs between program pulse and verify
operations. During the erase cycle, the erase operation is
stopped and the duration remaining is noted. The erase can
continue when the interrupting read request completes. In
evaluating the system, Wu found that write latency increased
by a few percent, which he considered trivial. Read latency
decreased by 50% or more. He concluded that suspending the
program-erase cycle for reads is a feasible solution, and one
that significantly improves read performance.

Umesh Maheshwari from Nimble Storage noted that this
approach seems to work best for lightly loaded systems, and
Wu agreed. Dave Anderson (Seagate Technology) asked
if flash lifetimes are degraded because of the extra wear
involved in restarting program-erase cycles, but Wu had not
performed that experiment at the time of the presentation.

	 ;login:  JUNE 2012   Conference Reports    97

whether the design depends on deferring writes until a full
erase block is available, and cited sync operations in TPC-C
as an example. Min responded that in sync operations, the
system works as best effort.

Poster Session I

Summarized by Dulcardo Arteaga (dulcardo@gmail.com)
Only posters that were not represented by papers are
summarized here. See static.usenix.org/events/fast12/
poster.html for PDFs and descriptions of all posters.

CSPE: Cloud Storage Provisioning Decided by Rate of
Return and Workload Characteristics
Jianzong Wang, Rui Hua, Changsheng Xie, Jiguang Wan, Yanjun

Chen, Peng Wang and Weijiao Gong, Wuhan National Laboratory for

Optoelectronics

This project presents a model that evaluates current work-
load on a cloud and its tendency to determine the benefit of
purchasing/leasing new disks. They used the Internal Rate
of Return (IRR) model used in economics to solve the “pur-
chase or not” problem. They also used one module to detect
workload peaks and another to trace the workload.

Reliable Energy-Aware SSD-based RAID-6 System
Mehdi Pirahandeh and Deok-Hwan Kim, Inha University

This project presents an approach for periodic estimation of
reliability and energy consumption and a model of RAID6
that saves energy. The idea is converting pages into packages
to reduce the amount of work during writes. Their evaluation
shows that there is improvement in the energy consumption.

InnoDB DoubleWrite Buffer as Read Cache Using SSDs
Woon-Hak Kang, Gi-Tae Yun, Dong-In Shin, Yang-Hun Park, and Sang-

Won Lee, Sungkyunkwan University; Bongki Moon, University of Arizona

Woon-Hak Kang presented this work to extend and move
the double write buffer of InnoDB to an SSD to exploit the
capacity and low latency of this kind of device. Besides the
functionality of writing dirty pages to guarantee atomicity,
they propose using the double-write buffer as a cache for
random reads, consequently improving the performance of
reading and for writes. The evaluation shows a significant
improvement in performance for reads but not for writes
when comparing the use of HDD to SSD.

Mitigating the Network Impact in Large Scale DFSs
Gustavo Bervian Brand and Adrien Lébre, Ecole des Mines de Nantes

This project evaluates the performance of different distrib-
uted file systems based on different topologies, comparing
when data servers/metadata servers are located behind a

SFS: Random Write Considered Harmful in Solid State
Drives
Changwoo Min, Sungkyunkwan University and Samsung Electronics;

Kangnyeon Kim, Sungkyunkwan University; Hyunjin Cho, Samsung

Electronics; Sang-Won Lee and Young Ik Eom, Sungkyunkwan University

Changwoo Min presented a new file system for solid state
disks (SSDs) that’s designed to address two fundamental
limitations of these devices—random write performance and
limited lifespan. As SSD technology matures, lifespan is a
concern because each bit added to a memory cell decreases
the number of accurate rewrites by an order of magnitude.
Meanwhile, random write workloads significantly degrade
performance and further shorten the lifespan of SSD.

Min described SFS, which is a file system specifically
designed to remedy these problems. The file system employs
a log-based design, which is suited to the unique character-
istics of SSDs. By writing in a log structure and carefully
grouping requests to match the size of an erase block, SFS
effectively transforms random writes on the SSD into better-
performing sequential writes and removes most internal
fragmentation. When writing, it groups data according to
hotness, so that future updates are less likely to require mov-
ing otherwise cold data. As a metric for hotness, SFS tracks
write count and divides by the age of the block. It groups
blocks together using an iterative refinement technique
inspired by k-means clustering.

Min’s team evaluated their system on three classes of SSD,
using two synthetic workloads—TPC-C and a workload
collected by UC Berkeley—and compared the results to ext3
and Btrfs. The results showed that SFS requires up to 6.1x
fewer erase operations. The system is effective at making
segment fullness bimodal, with more segments being either
completely full or completely empty. As future work, Min is
applying the file system to magnetic disk-based storage. His
early investigations show some “promising results.”

Min was asked if indirection at the file system level could
cause additional write amplification. He answered that this
is not what they have seen. In practice, total block erase
counts are lower. Seungjae Baek from the University of Pitts-
burgh noted that grouping according to hotness has a long
history and asked about comparisons to other schemes. Min
directed Baek to comparisons in the paper. Umesh Mahesh-
wari from Nimble Storage asked how the designers matched
their segment size to that of the flash drive, and was particu-
larly concerned about misaligned blocks. Min acknowledged
that misalignment degrades performance, but the research-
ers had selected the file system parameters used by directly
measuring the erase block size of their flash drives. Did Min’s
team have any plans to productize the file system? They were
still discussing that possibility. Finally, one attendee asked

	98    ;login:  VOL. 37, NO. 3

Timeslices are grouped into epochs; an epoch ends when all
tasks have spent their timeslice or there are no pending I/O
requests. Because reads are faster than writes, reads are
penalized more by interfering writes. The authors introduce
interference management by servicing reads quickly and
delaying writes until the reads complete. This minimizes the
opportunity for interference.

To exploit I/O parallelism while still respecting their
timeslice management, the authors require some cost
accounting method for parallel requests. They have two
models: a linear cost model, and probabilistic fair sharing.
The linear cost model calculates I/O cost as a function of
request size, calibrated by times to service reads and writes
of different sizes. The probabilistic fair sharing model tries
to estimate the amount of concurrency occurring. They used
the linear cost model for the results in the rest of the talk.

Anticipatory I/O was used on disks to improve performance
hits due to deceptive idleness. It’s not necessary for flash
performance, but they use it for fairness. Deceptive idleness
can cause an epoch to end early, robbing some process of the
remainder of its timeslice. Also, a write issued immediately
before a group of read requests is bad. The question is how
long to wait, without wasting valuable I/O time. Their default
is to wait for half of an average request service time.

They evaluated fairness by measuring the I/O slowdown
ratio—the amount a request’s response time is degraded
compared to running alone. For N tasks, proportional
slowdown means that each task should experience no more
than a factor of N slowdown. They show that the NOOP,
CFQ, and SFQ(D) schedulers slow down reads dramatically,
while writes are faster than proportional; FIOS achieves
fairness, with both reads and writes faster than propor-
tional slowdown. Quantum-based scheduling is fair, but
relatively slower. Stan showed how FIOS also performs well
under asymmetric read/write loads. Running SPECweb
and TPC-C simultaneously showed that FIOS maintained
fairness under real workloads. Finally, performance on a low-
power CompactFlash system showed better read efficiency
than the other schedulers and fair write performance.

Stan reiterated that fairness was their primary concern.
I/O anticipation is important for fairness, even though it’s
not important for pure throughput. The I/O scheduler must
be robust in the face of differing flash architectures. The
authors believe that the FIOS approach to fairness might also
be applicable to other domains such as virtual machines and
the cloud.

Geoff Kuenning (Harvey Mudd) asked what their definition
of fairness was on the slide showing asymmetric I/O. Their
measure was equal latency—how much each task is slowed
down. Geoff thought that this was a matter of opinion, but

WAN/LAN. This evaluation attempts to demonstrate that
there is a need to include the factor of topology when design-
ing a distributed file system.

Their experiments compared a variety of topologies with
different numbers of nodes, and their performance, based
on different configurations, varies considerably, due to the
overhead in the network traffic.

vPFS: Bandwidth Virtualization of Parallel Storage
Systems
Yiqi Xu, Dulcardo Arteaga, and Ming Zhao, Florida International

University; Yonggang Liu and Renato Figueiredo, University of Florida;

Seetharami Seelam, IBM T.J. Watson Research Center

Yiqi Xu proposed vPFS, which adds to existing parallel file
systems the ability to differentiate I/O requests from differ-
ent applications, then meet per-application quality of service.
This approach was implemented on top of PVFS, which is
a user-level distributed file system. A proxy was created to
intercept the I/O traffic and tag it according to the applica-
tions, and a scheduling algorithm is applied at that point to
meet the quality of service.

Experiments show that using different applications with
different QoS can meet application requirements without
generating overhead in the I/O.

OS Techniques

Summarized by Daniel Fryer (dfryer@cs.toronto.edu)

FIOS: A Fair, Efficient Flash I/O Scheduler
Stan Park and Kai Shen, University of Rochester

Stan described the increasing adoption of flash-based stor-
age, and how there’s been very little work in I/O scheduling
for flash. In particular, synchronous writes have been a
bottleneck for I/O, and they continue to be on flash devices.
Then he described the characteristics of flash devices that
distinguish them from disks, particularly the lack of seek
latency, the large erase granularity, the need to erase before
write, and variations between vendors. He then gave an
example of why “fairness” in flash I/O scheduling matters:
during conflicting reads and writes both response time and
variance increase greatly. Each vendor’s devices react dif-
ferently. This was also demonstrated for requests issued in
parallel—some devices give better results than others.

This led to the development of FIOS, with fairness as a first-
class concern. They try to use fairness but also efficiency
by exploiting I/O parallelism, and also use I/O anticipation
(delaying I/O briefly) to help achieve this. The approach of
FIOS is timeslice management: give tasks equal amounts
of time to access the device (possibly non-contiguously).

	 ;login:  JUNE 2012   Conference Reports    99

speed, data needs to be fetched from global GPU memory into
the local processing unit memory. Global memory is divided
into interleaved banks, and threads accessing the same
bank simultaneously cause a conflict, leading to serializa-
tion. Shredder’s solution is to coordinate threads so that
they cooperate to fetch data for a task from separate banks,
leading to parallel bank access. Then the threads can work in
isolation on device local memory.

Shredder was implemented using C++ and CUDA, and bench-
marked on an NVIDIA Tesla c2050 hosted on a 12-way Xeon.
The basic GPU approach achieved 1 GBps. Using pipelined
CPU->GPU transfers, this can be improved to 1.75 GBps.
Finally, using the coalesced threads loading local processing
unit memory, they achieve 2.25 GBps. Pramod then presented
a case study on incremental MapReduce, where some input
has changed; they want to recompute along the path from
this changed input using the other unchanged intermediate
results. The problem is that using fixed-size chunking would
throw all the chunk boundaries off if data is inserted or
deleted, so they use content-based chunking to partition data
before running the MapReduce process.

Someone from EMC BRS asked what their baseline multicore
performance was, since OpenSSL gets 350 MBps on a single
core for SHA1. Did they need all 12 cores to get 500 MBps?
It seems slow for a multicore, and it was suggested that they
could get the same performance by tuning their CPU imple-
mentation. Pramod disagreed, but discussion was deferred.
Brent Callaghan (Apple) wanted to know whether they did
hashing in the GPU as well as the chunking. Pramod clari-
fied that they are only finding chunk boundaries, although in
theory they could do the hashing as well. Someone from UC
Santa Cruz wondered what the difference was between this
and scientific computation, since there has been work done
on using GPUs for scientific workloads. Pramod differenti-
ated the two by suggesting that scientific applications are
often N^3, N^4 while chunking is linear, so it’s all about trans-
fer bandwidth.

Adding Advanced Storage Controller Functionality via
Low-Overhead Virtualization
Muli Ben-Yehuda, Michael Factor, Eran Rom, and Avishay Traeger, IBM

Research—Haifa; Eran Borovik and Ben-Ami Yassour

Avishay noted the need for new functionality in storage con-
trollers (e.g., deduplication or compression) that has already
been implemented elsewhere. The conventional approach has
been to port the functionality from its original environment
onto the storage controller itself. This has the advantage of
low overhead but incurs a high engineering and maintenance
cost. Another approach is to perform the function on a sepa-
rate machine, which he calls the “gateway” approach. This
avoids the cost of porting the software, but incurs a runtime

didn’t want to push the matter. Someone from Google asked
whether they planned to look at ticket-based schedulers,
where tickets are issued proportional to I/O sizes, to give
them parallelism without anticipation. Stan explained that
these policies aren’t specific to FIOS—FIOS was the artifact
that came out of looking at these policies—and that they
could try a ticket-based approach. Vasily Tarasov (Stony
Brook) wanted to know whether they ran experiments with
different priorities assigned to tasks. The authors had not,
but Stan suggested that they could do scheduling within each
priority class, or hand out different-sized timeslices.

Shredder: GPU-Accelerated Incremental Storage and
Computation
Pramod Bhatotia and Rodrigo Rodrigues, Max Planck Institute for

Software Systems (MPI-SWS); Akshat Verma, IBM Research—India

Pramod Bhatotia started with a fundamental problem: given
that the total volume of data is growing rapidly, how can we
efficiently store and process it all? One major technique is to
eliminate redundancy. Redundancy elimination is expensive,
however, and is a three-step process. First, a file is broken
into chunks, then the chunks are hashed, and finally the
hashes are matched to establish whether or not a duplicate
exists. “Content-based chunking,” introduced in SOSP ’01,
uses a sliding window over a file rather than fixed chunks.
This can keep boundaries stable under small insertions or
deletions in the data. Unfortunately, it is very CPU intensive,
which can be a bottleneck.

Content-based chunking throughput on a multicore machine
is about 0.5 GBps, but about 1 GBps with a standard GPU-
based design. This is a 2x improvement, but still not good
enough—the target I/O bandwidth they’re trying to support
is 2.5 GBps! The reason for the performance gap is because
GPUs are designed for compute-intensive workloads, not
data-intensive workloads.

Buses run from host memory to CPU, from the CPU to GPU
(PCI), and inside the GPU, which is divided into a set of mul-
tiprocessors with local memory and a global pool of shared
memory. The CPU can only access this global memory, and
not the private memory of the compute units. First, data
is transferred to device memory, then the CPU launches
threads on the GPU, which loads data from global GPU
memory into its local memory for fast access, and eventually
pushes results back to the host.

There are several scalability problems here. The cost of data
transfer across the PCI bus is comparable to the time spent
in the chunking kernel. Shredder pipelines data transfer by
dividing GPU global memory into two portions, and loads one
while chunking is being executed on the other. The second
problem is memory access conflicts on the device itself. For

	100    ;login:  VOL. 37, NO. 3

add only 6 µs of latency to a random 4k synchronous write.
They improve read throughput by a factor of 7 and write
performance by 6 times. Finally, they present the incremen-
tal improvements of each of their optimizations, showing
that after the work they’ve done they match the bare metal
performance at the end. When they cut the controller down
to four cores again, they take a performance hit because of
the competing polling threads, but they can tweak thread
priorities and affinities to overcome this.

Their conclusion is that virtual infrastructure can be used
with near zero performance overhead. This provides the
benefits of the high performance and low hardware cost of
native integration combined with the shorter time to market
and simpler development of the gateway approach.

Lakshmi Bairavasundaram (NetApp) wanted to know, if
cores were assigned statically, how would they deal with situ-
ations where VMs were being supplied by multiple vendors?
Avishay responded that you only need to configure it once,
when you figure out what software you are deploying on your
controller. Dutch Meyer of UBC asked if the presenter could
comment on virtual storage appliances. Avishay said that his
understanding was that they run extra functionality outside
of the controller.

Mobile and Social

Summarized by Swapnil Patil (svp@cs.cmu.edu)

ZZFS: A Hybrid Device and Cloud File System for
Spontaneous Users
Michelle L. Mazurek, Carnegie Mellon University; Eno Thereska, Dinan

Gunawardena, Richard Harper, and James Scott, Microsoft Research,

Cambridge, UK

In this talk, Michelle Mazurek presented a new file system
for mobile/home networked devices through the use of new
hardware components and a combination of storage system
techniques. The goal of this file system, called ZZFS, is to
provide spontaneous data access with good trust and control
over data storage. Michelle first presented a user study from
traces in the LiveMesh and Dropbox service; this study was
driving the design of their ZZFS system. Key observations of
this study include: (1) users are busy and want spontaneous
response from the system, (2) users do not know their data
needs a priori, and (3) users place/organize their data in a
planned and reasoned manner.

Because battery life is a key concern on many mobile devices,
ZZFS relies on an existing hardware component, the Somnil-
oquy NIC, that provides on-demand network interface card
wakeup with some on-board flash. One hardware assumption
ZZFS made was that users rely on broadband connections at
home with weak 3G-based connections on mobile devices.

performance cost as well as the additional cost of the gate-
way hardware.

A third way is a hybrid approach: running a VM on a storage
controller. Unfortunately, virtual machines have a bad repu-
tation for overhead. Storage controllers are special-purpose
devices with finely tuned resource control. Virtual machines
provide a large number of features, not all of which are
needed on a storage controller—they need the fault isolation
and the separate environment, but they don’t need resource-
sharing, the ability to overcommit, or migration. So they
thought that perhaps they could customize virtual machines
to make them suitable for use on storage controllers.

Avishay defined external communication as the I/O between
client and VM; internal communication is the communica-
tion between the VM and the controller. In their approach,
the I/O interfaces are directly assigned to the VM, although
servicing interrupts and I/O completions require a hypervi-
sor context switch. To communicate between the VM and the
controller they use a virtual I/O block device built on top of
shared memory, but it also requires hypervisor switches to
handle the interrupts and I/O completions.

Their main approach to avoiding the latency of the hypervi-
sor is polling. They run a polling thread on the guest VM
which polls the NIC, avoiding the need for an interrupt.
The block request is put into shared memory by the VM; the
host detects this request by its own polling thread. When
the request on the controller is complete, the host process
puts the completion in shared memory, where it is detected
by the original polling thread on the VM, finishing the I/O
path with no interrupts. They also statically allocate CPU
cores and memory, since they can establish resource usage
parameters beforehand. The VM is configured to poll when
idle instead of sleeping, since they don’t need to share with
other VMs. They minimize memory management overhead
by backing the VM’s memory with HugePages.

To benchmark, they configured two servers, each with
a pair of quad-core 2.9 GHz Xeons and 16 GB RAM. One
server functioned as a load generator, the other served as an
emulated storage controller. They compared their VM-based
solution to a “bare metal” implementation with four cores
assigned to the host. Storage was emulated by an 8 GB RAM
disk to avoid the I/O bottleneck of a physical disk.

Their first evaluation is response latency during a ping flood.
They show that with no polling, the bare metal solution takes
24 µs, but the VM uses 89 µs. On the other hand, with polling
enabled both solutions take 21 µs. On the Netperf bench-
marks, guest and host polling show the best performance
among the configurations they tried, except on TCP receive
throughput, which they claim is because no real work is
being done. They calculate that in the optimized case, they

	 ;login:  JUNE 2012   Conference Reports    101

writes, most apps write sufficient random data that the appli-
cation performance is adversely affected. Application perfor-
mance is also dependent on the quality of the storage media.
In terms of systems software, applications target their writes
either to a file system (in-memory, cached file system) or to
a SQLite database. Both FS and DB behave differently; in
particular, the synchronous writes used by many apps cause
the DB writes to be much slower than FS writes.

Geoff Kuenning (Harvey Mudd) said that an Apple I/O study
showed that most apps do a lot of synchronous I/O. Since you
make similar observations, is it just that plain stupid apps
are the problem? Nitin said that the common theme is the
presence of App-OS modularity and interface boundaries—
which is not good in all cases, particularly when performance
is a victim of that modularity. Eno Thereseka (MSR) asked,
does it really matter if storage is the bottleneck in end-to-
end experience? Nitin replied that as the users of the phones
and apps, they found that app performance is highly variable
depending on how one uses the apps and phones; since all
measurement is at the user level, they captured as much end-
to-end performance as possible using black-box phones.

Serving Large-scale Batch Computed Data with Project
Voldemort
Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and

Sam Shah, LinkedIn Corp.

Roshan Sumbaly presented their large-scale batch process-
ing system built on a key-value store. LinkedIn runs large
Hadoop applications that need to bulk-load massive amounts
of data in a system that is online and is processing active
requests. LinkedIn relies on the Voldemort key-value store
that was inspired by Amazon’s Dynamo paper. In this work,
LinkedIn developers extended Voldemort to overcome per-
formance degradation due to index creation and mutation.

Extensions to Voldemort included incremental bulk load-
ing, data error minimization and mitigation, and ease of
use through configuration management. Two existing
approaches, including a Hadoop-based insertion tool and
multi-cluster deployment, failed due to performance interfer-
ence and management complexity. Instead, the authors used
Hadoop’s parallelism and fault tolerance to build an inter-
mediate table construction phase that relied on easy rollback
using versioned datasets. They also added simple rebalancing
protocols to drive changes in the data-to-memory ratio to
mitigate bottlenecks due to memory utilization. Results from
their production system show that LinkedIn’s extensions
help run large data pipelines while maintaining sub-5 ms
latency for active users.

Konstantin Shvachko (eBay) asked how rollback worked
with new versions. Roshan said that rollback is more than

ZZFS used a combination of well-studied storage systems
techniques, including flat namespace metadata service,
policy-driven I/O director service, and I/O offloading for
effective power management. The authors built a prototype
of their ideas and evaluated the performance of ZZFS’s
design for spontaneous and ad hoc data access.

Margo Seltzer (Harvard) asked about the few random slow
requests in write latency. Michelle said the problem was
probably with the WiFi router in the experimental setup.
Jason Flinn (Michigan) said that centralized storage has
advantages, but he agreed with Michelle’ about it being
hard to trust and asked for thoughts on how that could be
improved. Michelle said that all trust-based issues are more
about the experience; several companies have had bad experi-
ences with user data and trust—this affects people’s attitudes
toward using centralized systems. John Berry (Riverbed)
asked about the cache coherency policies in the system: for
example, updates to the shared music repository. Michelle
answered that if a device is on, the updates are sync’d and
serialized. John asked whether there could be races in the
middle of a song. Michelle replied that ZZFS relies on the
Everest system at MSR (published few years ago) which uses
serialization through the primary copy of the data.

Revisiting Storage for Smartphones
Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu, NEC Laboratories

America

n Awarded Best Paper!

Nitin presented work on the performance of storage systems
in smartphones. Mobile devices are becoming increas-
ingly diverse in hardware, software, and application eco-
system. Most existing work has studied network and CPU
performance; much work has also been adopted by system
developers to make better use of these two resources. The
authors studied the performanceof a suite of popular apps on
a Google Nexus phone with Android OS. Although both the
hardware and the systems software were commodity, the
authors patched the OS with some measurement and moni-
toring extensions. To measure the storage I/O behavior, this
work used different storage media devices (i.e., SD cards);
this enhanced the study to be more device agnostic.

Several lessons emerged from this work. For SD cards, the
results showed high disparity between random and sequen-
tial I/O performance; the device specifications are “bloated,”
because vendors report sequential speeds instead of slow
random I/O speeds. Furthermore, the authors also observed
that the storage device performance has not improved as
much as the network speed performance over the past few
years. In terms of applications, it was observed that although
there are only half as many random writes as sequential

	102    ;login:  VOL. 37, NO. 3

Stripes are constructed based on arrival order, containing
non-consecutive block numbers. Sub-stripe parity is used for
write requests smaller than the stripe size. Evaluation shows
DS-RAID results in fewer extra reads and writes, with less
cleaning cost, than standard RAID5.

The Peril and Promise of Shingled Disk Arrays (How to
Avoid Two Disks Being Worse Than One)
Quoc M. Le, JoAnne Holliday, and Ahmed Amer, Santa Clara University

Shingled disks promise to increase storage density for disk
drives, but must be used carefully because updates to written
tracks may overwrite neighboring tracks. This work evalu-
ates the behavior of shingled disks when used in array con-
figuration or when faced with heavily interleaved workloads
from multiple sources. There are three evaluation workloads:
pure (sequential workloads), striped (interleaved workloads),
and dedicated (one workload per disk). As might be expected,
more interleaving results in more disk activity as bands are
relocated. Proper use of shingled disks may therefore require
rethinking traditional disk array layouts.

A Unified Object Oriented Storage Architecture
Andy Hospodor, Ethan Miller, Rekha Pitchumani, Yangwook Kang,

and Darrell Long, University of California, Santa Cruz; Ahmed Amer,

Santa Clara University; Yulai Xie, Huazhong University of Science and

Technology

This work presents a unified storage architecture based on
object-oriented storage. The goal is to decouple metadata
from data, allowing management of objects rather than
blocks. This architecture can apply to a range of devices
including magnetic, optical, SSD, tape, and even shingled
disks. The presenters suggest that such an architecture
should be designed from scratch, rather than attempting to
extend SCSI. The architecture will provide typical methods
such as read and write, as well as new methods including
find, append, replicate, merge, and sort. An OO storage device
should use a publish-subscribe model to allow operating
systems to access these methods.

Challenges in Long-Term Logging and Tracing
Ian F. Adams and Ethan L. Miller, University of California, Santa Cruz

Long-term logs and traces are important, as some trends in
system use aren’t apparent in the short term. We have good
tools for capturing log and trace data, but not for maintaining
it over the long term: it’s too much data, there are occasional
hiccups in collection, and log formats change. The present-
ers propose periodically transforming older data to coarser
resolution, so it takes less space and is easier to work with,
while keeping fine-grained logs for particularly interest-
ing events. They also suggest annotating logs and traces to
indicate events like maintenance, nodes or processes going

just symlink repointing. It also involves closing an mmaped
index, updating the current versions, and then updating
symlinks. Rollbacks are worst-case scenarios to handle
production problems. Dan Peek (Facebook) asked, why not
have one large ring instead of many small rings? Roshan
replied, because there is a chance that rebalancing work may
increase for a single ring.

Work-in-Progress Reports (WiPs)

Summarized by Michelle L. Mazurek (mmazurek@cmu.edu)

Generating Realistic Datasets for Deduplication
Analysis
Vasily Tarasov and Amar Mudrankit, Stony Brook University; Will Buik,

Harvey Mudd College; Philip Shilane, EMC Corporation; Geoff Kuenning,

Harvey Mudd College

Research and industry have developed many different
deduplication protocols. Comparing them is difficult because
evaluation depends so heavily on the dataset used. What
is needed is a benchmarking dataset that is large, realistic,
versatile, easy to distribute, and with parameters that are
easy to tune. This work attempts to develop such a dataset
by observing and emulating the way that real file systems
mutate over time.

Disk-Failure Injection Framework for Fault-Tolerant
Systems Research
Yathindra Naik, Mike Hibler, Eric Eide, and Robert Ricci, University of

Utah

It is important to understand how modern complex stor-
age stacks will behave in the face of disk failures. This work
builds a framework for injecting disk errors for testing. The
framework should be realistic, controllable, repeatable,
scalable, and scriptable. Using Emulab, the presenters model
delayed I/O, corrupt reads and writes, and sector errors. In
progress: more realistic failure models that reflect the real-
istic frequency and distribution of these errors. A prototype
will be available soon.

DS-RAID: Efficient Parity Update Scheme for SSDs
Jaeho Kim and Jongmin Lee, University of Seoul; Jongmoo Choi, Dankook

University; Donghee Lee, University of Seoul; Sam H. Noh, Hongik

University

Current SSDs provide low reliability, a high error rate, and
a limited erase count, with multi-level cells exacerbating
the problem. Current approaches to applying RAID5 (strip-
ing) to SSDs have limitations related to small writes and
the inability to write new data until a stripe becomes full.
Parity pages must be written too frequently, increasing wear.
This work uses dynamic striping to solve these problems.

	 ;login:  JUNE 2012   Conference Reports    103

Signed certificates attest to the object’s properties, poli-
cies, and access history. Overhead for the implementation is
expected to be below 3%.

Accelerating Data Deduplication by Exploiting
Pipelining and Parallelism with Multicore or Manycore
Processors
Wen Xia, Huazhong University of Science and Technology and University

of Nebraska—Lincoln; Hong Jiang, University of Nebraska—Lincoln;

Dan Feng, Huazhong University of Science and Technology; Lei Tian,

University of Nebraska—Lincoln

Deduplication is important for storage efficiency, but the pro-
cess of chunking and fingerprinting data is time-consuming
and CPU-intensive. The presenters propose P-Dedupe, which
exploits parallelism and pipelines to avoid this computation
bottleneck. P-Dedupe divides the data stream into multiple
sections that can be chunked and processed in parallel, with
the boundaries between sections requiring special process-
ing to account for the sliding windows used in chunking.

High-Throughput Direct Data Transfer Between PCIe
SSDs
Jun Suzuki, Masato Yasuda, Masahiko Takahashi, Yoichi Hidaka, Junichi

Higuchi, Yoshikazu Watanabe, and Takashi Yoshikawa, NEC Corporation

Data reallocation and backup are examples of data being
transferred between devices without modification. Cur-
rently, this transfer must traverse main memory of the server
hosting the I/O devices; this link can become the bottleneck.
The presenters propose DirectConnect, a method to trans-
fer this data directly, using memory in a PCIe-to-Ethernet
bridge as an intermediate buffer for DMAs of the source
and destination devices. Prototype evaluation shows high
throughput even when server bandwidth is narrow.

Grouping Data for Faster Rebuilds: The Art of Failing
Silently
Avani Wildani and Ethan Miller, University of California, Santa Cruz

In big systems with erasure coding for reliability, rebuild
time after failure is inevitable and slow—up to six hours to
rebuild a 300 GB disk. The goal of this work is to reduce the
impact of rebuild by striping intelligently. Data is grouped
into access groups that correspond to real-life working sets
for applications, users, or projects. Striping these access
groups strategically can ensure that a rebuild halts progress
for only a few users or projects rather than all of them—one
project must rebuild all of its data, rather than rebuilding
some data for each of many projects. Ongoing work includes
evaluation with probabilistic fault injection, modeling cor-
related failures, and measuring overall impact of rebuilds.

down, etc. Another idea is to combine traces with snapshots
of system state, so you can use the trace as a record of the
change between snapshots. Finally, it’s important to periodi-
cally check for format consistency and note anomalies and
problems, so that log parsers don’t break or, even worse, fail
silently when processing a lot of log data.

Dynamic Block-level Cache Management for Cloud
Computing Systems
Dulcardo Arteaga, Douglas Otstott, and Ming Zhao, Florida International

University

Block-level network storage is used in cloud systems to pro-
vide VM storage and allow fast VM migration as well as VM
availability. However, as cloud systems increase in size, there
are scalability problems. This work uses dynamic, block-level
client-side caching to improve performance at scale. This
approach exploits data locality in VM data access, while sup-
porting dynamic and flexible cache configuration. Each host
contains one cache, which all the VMs on that host share.
Within this cache are virtual caches for each VM so they
don’t interfere with each other. When the VM migrates, the
virtual cache is flushed. Preliminary results show improved
throughput using the IOzone benchmark.

CASE: Exploiting Content Redundancy for Improving
Space Efficiency and Benchmarking Accuracy in
Storage Emulation
Lei Tian and Hong Jiang, University of Nebraska—Lincoln

Storage benchmarking is very sensitive to content, with the
same operations on different content potentially inducing
very different performance results. As a result, benchmarks
must retain data content. CASE aims to provide flexible,
space-efficient, timing-accurate, and content-aware storage
emulation for benchmarking. CASE is implemented using
data deduplication over fixed-size chunks. Preliminary
results indicate that CASE saves up to two orders of magni-
tude in storage space.

Trusted Storage
Anjo Vahldiek and Eslam Elnikety, MPI-SWS; Ansley Post, Google; Peter

Druschel and Deepak Garg, MPI-SWS; Johannes Gehrke, Cornell; Rodrigo

Rodrigues, MPI-SWS

Storage is complex, involving millions of lines of code,
operating systems, file systems, drivers, etc. This complex-
ity means vulnerability to bugs, viruses, and operator errors
that threaten integrity, confidentiality, and durability. The
presenters developed a trusted storage architecture that
enforces user-provided policies for application objects like
files. Policies may be based on user ID, hardware or software
configuration, quota, time, or location, and govern the condi-
tions under which objects can be read, updated, or deleted.

	104    ;login:  VOL. 37, NO. 3

becomes more of a concern, and since billing for storage is
usually by quantity used, deleting unused data is important.

Their approach to providing a cloud-backed NFS service
avoids modifying the client NFS/CIFS stack. Instead, they
implemented a caching proxy server. The proxy can provide
lower latency, perform write-back caching, and encrypt
before forwarding requests to the cloud storage service. On
the back-end, they use a log-structured file system. When
writing, each segment is uploaded by the proxy all at once
and is stored as an object in the cloud. For reads, they take
advantage of the ability to do random access on the content of
these segments. There is also a garbage-collecting log cleaner
process, which can run on the proxy or on a compute node in
the cloud.

To maintain confidentiality, the log-cleaning process does
not need to have the encryption key for the file system, which
can remain safely on the proxy. They do need to make some
metadata available, so they structure their metadata as a
four-level tree. The top two levels are the log checkpoints
and the inode map, which locate the most recent versions of
inodes in the log. These levels are unencrypted. Below these
are the inodes and data blocks, which do have encrypted
contents. Michael then presented a diagram of the proxy
architecture. At the front-end are NFS or CIFS interfaces
to handle client requests. Since they do writeback caching,
they write to the local disk before replying to the client to
announce that a write is durable. Once they have accumu-
lated a log segment’s worth of data, they can encrypt it and
use cloud-specific back-ends (S3, WAS) to store the log seg-
ment in the cloud.

Their design is predicated on high-bandwidth connections
to the cloud service provider. One of the major problems is
latency, which is partly a function of location. Measuring
performance with varying object sizes and amounts of con-
currency, they showed that 32 concurrent connections could
saturate a 1 Gbps link.

To benchmark their system, they ran a kernel source unpack,
checksum, and compile process. Michael compared a local
NFS server, a purely remote NFS server, BlueSky with a
warm cache, and BlueSky with a cold cache. They also evalu-
ated cache hit ratios and the effect they had on client perfor-
mance. With about a 50% hit rate, they were able to keep read
latencies within 2x or 3x of the purely local solution. They
could write at local speed until the proxy ran out of disk space
for logging, at which point they were limited by bandwidth to
the cloud. Michael then presented a final benchmark, based
on SPECsfs2008. BlueSky performed similarly to the local
NFS system with unconstrained network bandwidth; with
a constrained network it scaled to about 90% of the local
throughput before dropping off and becoming erratic. They

Toward an Economic Model of Long-Term Storage
Daniel C. Rosenthal, University of California, Santa Cruz; David S.H.

Rosenthal, Stanford University Libraries; Ethan L. Miller and Ian F.

Adams, University of California, Santa Cruz; Mark W. Storer, NetApp;

Erez Zadok, Stony Brook University

People want to store their content indefinitely, but want to
pay for that storage up-front rather than on a continuing
basis. The cost of indefinite storage is difficult to predict,
depending on future events ranging from regular disk
replacement to natural disasters. The presenters use Monte
Carlo modeling to simulate hypothetical futures for a storage
system. They calculate tradeoffs between cost and the likeli-
hood of data survival, in an attempt to value the endowment
needed to preserve data.

Emulating a Shingled Write Disk
Rekha Pitchumani, University of California, Santa Cruz; Yulai Xie,

Huazhong University of Science and Technology; Andy Hospodor,

University of California, Santa Cruz; Ahmed Amer, Santa Clara

University; Ethan L. Miller, University of California, Santa Cruz

Shingled disks can more than double disk capacity, but, due
to their architecture, random writes may destroy data. In
particular, in-place overwrites can be destructive. Research
and development of how to best manage shingled disks is
hindered because they are not yet available for testing. The
presenters’ goal is to emulate shingled disks by providing a
device driver that mimics their operations. The driver uses
a mapper that maintains knowledge of which tracks are
overwritten by which writes, so reads to overwritten tracks
return the overwritten rather than the original content.
Future work includes adding the ability to report physical
geometry. The emulator can be useful even after shingled
disks become available as a platform for consistent and con-
trollable testing. The emulator is currently being evaluated
and will be released soon.

Cloud

Summarized by Daniel Fryer (dfryer@cs.toronto.edu)

BlueSky: A Cloud-Backed File System for the Enterprise
Michael Vrable, Stefan Savage, and Geoffrey M. Voelker, University of

California, San Diego

Michael introduced BlueSky by stating that since many ser-
vices are moving towards the cloud, they wanted to explore
the idea of a network file server backed by cloud storage.
Existing cloud storage acts like another level in the storage
hierarchy, but with different characteristics. The interface
usually only supports writing complete objects, but if one
supports random reads, latencies are high enough that the
additional penalty of random access doesn’t matter. Privacy

	 ;login:  JUNE 2012   Conference Reports    105

requiring the involvement of many devices. Existing erasure
codes are not designed with minimal recovery I/O in mind.

Their solution is to create an algorithm that minimizes the
amount of data needed for recovery under any XOR-based
erasure code. Before describing the details, Osama presented
an overview of the general process of erasure coding, start-
ing with a block of file system data. The encoding is done by
a matrix multiplication, and then the result is distributed
into stripes after encoding. He gave an example of the type
of decoding equation that results from this process. Their
algorithm finds a decoding equation for each failed bit while
minimizing the total number of symbols needed for recon-
struction, given the code generator matrix and a list of failed
symbols. They do this by constructing a directed graph, with
the weights on the edges representing the number of symbols
involved in the equation. The lowest-cost path through the
graph minimizes the number of symbols involved. These
solutions can be precomputed and stored for later use.

Their second contribution was to address the problem of
degraded reads—disks that are temporarily unable to deliver
data. To optimize read performance to deal with this, they
invented a new class of codes called “rotated Reed-Solomon
codes.” Standard coding schemes compute different symbols
from single rows, whereas rotated codes span multiple rows.
This means that each coding disk is using slightly different
symbol sets. Osama presented some examples of what kind
of access has to be done during failure and how the rotated
Reed-Solomon codes require fewer reads.

Jay Wiley asked how their graph-based algorithm compared
to Hafner’s work using matrix methods. Osama couldn’t
remember, so they took it offline. If their symbol size was
100—500 MB for performance reasons, Jim Molina of West-
ern Digital wondered, what kind of correction capacity would
they have? It was clarified that the block size doesn’t affect
correction capacity, which is a function of redundancy.

NCCloud: Applying Network Coding for the Storage
Repair in a Cloud-of-Clouds
Yuchong Hu, Henry C.H. Chen, and Patrick P.C. Lee, The Chinese

University of Hong Kong; Yang Tang, Columbia University

Patrick noted how outages or vendor lock-in makes depend-
ing on a single cloud provider for storage risky. The obvious
solution is to take advantage of multiple-cloud storage, using
a proxy to stripe data across the clouds using an MDS encod-
ing scheme where any K out of N clouds can reconstruct the
original data. Repair would then involve downloading all the
data from the functioning clouds to determine what to write
to a new cloud. This could incur a high repair cost due to
bandwidth usage equivalent to the size of the whole dataset.

also found that while fetching full segments was helpful for
the compile benchmark, it had a negative impact on SPECsfs.

Based on S3’s pricing model for bandwidth and operation
counts, they calculated the costs of BlueSky. The main point
was that by aggregating writes into log updates and by allow-
ing random reads, they decreased usage costs dramatically.

Brent Callaghan (Apple) asked whether they had thought
about multiple proxies accessing the same data store; he also
wanted to know if they had thought about backup. Michael
explained that they’d thought about some of the issues but
hadn’t implemented any of their ideas. There are several rea-
sons why you might want to have multiple proxies: for higher
scalability or for geographically distributed access. One
approach would be to have multiple proxies writing to sepa-
rate logs in the cloud and rely on some kind of opportunistic
concurrency, or maybe implement distributed logging. For
backups, as long as you don’t garbage-collect all your log seg-
ments, you can get information from a previous checkpoint.

Someone from Nimble Storage wondered whether log struc-
turing was worth it, given the complications of cleaning. Why
couldn’t you just increase throughput with higher concur-
rency? Michael explained that the major reason is cost; you
pay an operation cost on a per-object basis. The cleaning can
run in the cloud, so you don’t pay transfer charges.

Someone from Red Hat asked what their benchmark NFS
server was, because the numbers looked horrible. They were
referred to the numbers in the paper, but it was a Linux
server with a couple of disks. The numbers might have been
different had they used a high-performance storage server.
Joe Tucek of HP Labs asked whether they had thought about
the different consistency models provided by the different
cloud services. Michael replied that, because BlueSky is log-
structured, they’re not overwriting data in place, so eventual
consistency doesn’t cause them as much trouble. They don’t
have different versions of objects; they’re either there or not
there. If something just isn’t there, they could retry, timeout,
or report an error to the client.

Rethinking Erasure Codes for Cloud File Systems:
Minimizing I/O for Recovery and Degraded Reads
Osama Khan and Randal Burns, Johns Hopkins University; James Plank

and William Pierce, University of Tennessee; Cheng Huang, Microsoft

Research

Osama Khan discussed the rapid growth in the total quan-
tity of stored data, projecting a 44-fold growth over 10 years,
particularly in the cloud. With this much data, replication
is not a cost-effective means to achieve reliability. Erasure
coding is a natural solution to this problem, but with tradi-
tional erasure-coding approaches, recovery is a slow process

	106    ;login:  VOL. 37, NO. 3

focusing on operation, I/O size, and offset, but their approach
is valid for any trace. Vasily said that there are two main use
cases for traces: (1) workload analysis and characterization
and (2) trace replay. He mentioned that trace replay has some
problems.

Vasily showed why statistics matter. Although traces col-
lected on the same machine and in the same environment
might differ on Monday and Tuesday, for example, it’s the
overall statistical modeling of properties such as I/O rate and
read-write ratio that are important to consider in evaluating
systems.

He explained their design goals: (1) accuracy, (2) concise-
ness, (3) flexibility, and (4) extensibility. Vasily explained
that the first problem they encountered was that workload
can change in the trace over time. He explained the feature
functions within a chunk and said that they can put the value
into a multi-dimensional histogram. He then said they could
generate benchmark plugins and explained what the plugins
are. In the evaluation of their work, he argued that the aver-
age relative error is less than 10% across all parameters and
systems, and there was a 17x–25x size reduction. Vasily then
discussed their future work: (1) more accurate parameters,
systems, and traces; (2) file system traces; (3) automatic
selection of parameters; and (4) operations on models.

Joe Tucek from HP Labs asked about the difference between
Monday and Tuesday traces. Vasily replied that many
assume the traces will be the same day-to-day, but there may
be significant differences in the pattern of use, while the
overall load remains the same. They want to develop meta-
cases and be able to work from that. Someone from VMware
asked about the chunk sizes used in deduplication. Vasily said
that he understood the issue, but that they didn’t include the
information about chunk sizes in the paper. Someone from
Microsoft asked if it takes an expert to choose from their
library of functions that can create particular traces. Vasily
said they had published a tool named Distiller that helps with
this with good results. Josh Berry of Riverbed Technology
asked if they had looked at latency-dependent workloads.
Vasily said that this is a known problem with traces, and they
did experiment with adding in random delays or having no
delays (infinite speed).

scc: Cluster Storage Provisioning Informed by
Application Characteristics and SLAs
Harsha V. Madhyastha, University of California, Riverside; John C.

McCullough, George Porter, Rishi Kapoor, Stefan Savage, Alex C. Snoeren,

and Amin Vahdat, University of California, San Diego

John McCullough started by explaining provisioning
hardware for cluster applications. There are many goals for
provisioning, but he focused only on achieving SLA (perfor-

Their system, NCCloud, applies the idea of “regenerating
codes” to the problem of repair in bandwidth-constrained
situations. Regenerating codes aim to reduce the amount of
data needed to perform reconstruction of a failed node by
selectively downloading portions of the data stored on each
node, where the nodes themselves may perform some com-
putation on the data during the reconstruction process. Up
to this point, regenerating codes have primarily been studied
from a theoretical perspective. To keep NCCloud simple, they
would like to avoid any computation on the storage nodes.

NCCloud relies on their implementation of a functional
minimum-storage regenerating code (F-MSR). Reconstruc-
tion is based on random linear combinations of existing
chunks. Unlike a “systematic” code, they don’t keep the
original data around, but only the linearly combined code
chunks. This makes actual decoding expensive. They propose
F-MSR for rarely read long-term archival applications. One
challenge that arises is ensuring that after reconstruction,
the MDS properties of the original encoding are preserved
and that any subsequent repair will preserve properties as
well. F-MSR reduces repair bandwidth cost by 25%. They
compare NCCloud with F-MSR to Reed-Solomon–based
RAID-6. F-MSR has higher response time during writes, due
to encoding overhead, which they expect will be masked by
network latency unless N is very large. Reconstruction time
is lower, due to less bandwidth use. In summary, NCCloud
realizes an implementation of a regenerating code, which
preserves storage cost but uses less repair traffic.

Someone asked what the odds were of losing data from a
single cloud provider, much less two. Patrick argued that
there are many new cloud providers, and we can’t guarantee
that they are all equally reliable or available. The questioner
said that he thought that the math was really interesting, but
he didn’t think the economics of it made sense.

Poster Session II
See static.usenix.org/events/fast12/poster.html for PDFs and
descriptions of all posters.

A Little Bit of Everything

Summarized by Doowon Kim (dwkim@cs.utah.edu)

Extracting Flexible, Replayable Models from Large
Block Traces
V. Tarasov and S. Kumar, Stony Brook University; J. Ma, Harvey Mudd

College; D. Hildebrand and A. Povzner, IBM Almaden Research; G.

Kuenning, Harvey Mudd College; E. Zadok, Stony Brook University

Vasily Tarasov described what their traces look like. In gen-
eral, a timestamp is a common field, but other fields depend
on what events are traced. The authors used block traces

	 ;login:  JUNE 2012   Conference Reports    107

iDedup: Latency-aware, Inline Data Deduplication for
Primary Storage
Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar Voruganti,

NetApp, Inc.

Kiran Srinivasan began by explaining the overview and
context of iDedup. He said that storage clients are connected
to primary storage via NFS, CIFS, or iSCSI, and the primary
storage is connected to secondary storage through NDMP
or other methods. In this hierarchy, dedupe can save more
than 90% in secondary storage. However, primary storage
has some unique characteristics. First, performance and
reliability are key features. Second, RPC-based protocols are
very latency sensitive. Third, only offline dedupe techniques
have been developed. He said iDedup is for inline or fore-
ground dedupe for primary storage and has little impact on
latency-sensitive workloads. Kiran compared offline dedupe
to inline dedupe. He explained why inline dedupe for primary
storage is required. He said that this is because provisioning
and planning is easier, with no post-processing activities,
and allows efficient use of resources. He then explained the
key features of iDedup. First, it minimizes inline dedupe per-
formance overheads. Second, it has a tunable tradeoff. Last, it
can be combined with offline techniques.

Kiran talked about inline dedupe challenges. First, it has
read path challenges. This is because dedupe causes disk-
level fragmentation. Second, it has write path challenges,
because it produces CPU overheads in the critical write path
and extra random I/Os in the write path due to the dedupe
algorithm. He then talked about their approach: iDedup
provides a solution to read path issues which are dedupe-only
sequences of disk blocks, as well as keeping a smaller dedupe
metadata as an in-memory cache to write path issues.

Kiran explained that the iDedup architecture has two
design-tunable parameters: threshold and dedupe metadata
(fingerprint DB) cache size. Kiran then explained the iDedup
algorithm and its four phases.

In their evaluation setup, they replayed real-world CIFS
traces. Kiran compared iDedup to a system with no iDedup
and with full dedupe. They tested three dedupe metadata
cache sizes: 0.25, 0.5 and 1 GB. Results showed less than a
linear decrease in dedupe saving, and that the ideal threshold
is the biggest threshold with the least decrease in dedupe sav-
ing. Fragmentation for other thresholds is between the base-
line and threshold 1. CPU utilization demonstrated a larger
variance compared to the baseline, but the mean difference
was less than 4%. Finally, Kiran showed that the result of
latency impact for longer response times is larger than 2 ms.

Margo Seltzer asked about the result graph (in Figure 7)
comparing the deduplication ratio to the minimum sequence
threshold. Kiran answered that they chose to use 4 as the

mance) goals and minimizing cost for a single application
while emphasizing storage. He said that the challenge is a
very large configuration space, making solving this problem
non-trivial. The current state-of-the-art solution is just to
apply rules-of-thumb from experience, and use trial-and-
error with various configurations. Their goal is to discover
what a low-cost configuration is now and what a low-cost
configuration will look like in the future. They do this by first
measuring “in-the-small” and modeling application perfor-
mance, in order to predict “in-the-large.” He explained scc
(Storage Configuration Compiler). If cluster building blocks,
an application model, and SLA specification are put into scc,
it produces a spectrum of cost for different configurations.

John explained cluster building blocks. Servers have many
components, such as cores, RAM, storage, I/O, and network.
You also need an application model to use scc. The model has
tasks (computation), datasets (storage), edges between tasks
and datasets (I/O), and edges among tasks (dependencies).
In his example of the model, photo-sharing, there are three
datasets: photos, thumbnails, and tags. The related tasks are
single operations with known sizes for writing or reading
from the datasets. John said that if you use only a hard disk
and single core, the cost will be really low. However, if you
use a lot of SSDs, the cost will be high. The guiding principle
is to meet SLA. He said ILP minimizes cost.

John talked about validation. They built three applications:
photo-sharing, product search, and Terasort. He showed that
scc meets the SLA at lower cost for all three.

Sanghyun Cho from University of Pittsburgh asked whether
the author had considered including costs such as power.
John answered that currently they did not include power
bills. Fred Douglis of EMC asked whether they can handle
very large models and had tried perturbing the inputs. John
answered that for larger models they use a gradient descent
to pick the best solution. In terms of perturbing, some of
that can be done by swapping out parts. Ben Reed of Yahoo!
said that this work reminded him of the Starfish project
in the database community, as they had both a process-
ing and a working-set model built by profiling. John said
he wasn’t familiar with Starfish, but they did get feedback
from unnamed storage providers. Ben said that just tuning
the software configuration made huge differences. John
said that this sounds interesting to pursue, but complex.
Someone from Google wondered about using scc for a cluster
that would have multiple, simultaneous uses. John said they
planned to look into that in the future. Randal Burns (Johns
Hopkins) pointed out that this is not the way people deploy
in the cloud. John said they want to extend their model to
support cloud deployments. Rik Farrow asked if scc is avail-
able for use, and John replied that he would have to ask his
co-authors.

	108    ;login:  VOL. 37, NO. 3

case they used LRU, but, overall, the cost model will not be
changed.

Lifetime Management of Flash-Based SSDs Using
Recovery-Aware Dynamic Throttling
Sungjin Lee and Taejin Kim, Seoul National University; Kyungho Kim,

Samsung Electronics, Korea; Jihong Kim, Seoul National University

Lee said that flash-based SSDs are becoming an attrac-
tive storage solution for enterprise systems, but poor write
endurance results in the limited lifetime of SSDs hampers
wideradoption of SDDs. The SSD lifetime is determined by
the number of bytes that can be written to the SSD and the
number of bytes written per day. Mobile phones and desktop
PCs that are not write-intensive can achieve the required
lifetime, but with write-intensive workloads such as on
enterprise servers, a reasonable lifetime cannot be guar-
anteed. Flash has a self-healing capability that increases
flash lifetime related to the logarithm of the time between
erasures. Current schemes such as reducing WAF and
incoming write traffic can improve overall SSD lifetime but
cannot guarantee the required SSD lifetime. Static throttling
limits the maximum throughput of SSDs but is also likely to
throttle performance uselessly and to underutilize the avail-
able endurance.

Lee introduced Recovery-Aware Dynamic Throttling
(READY). READY’s design goals are to guarantee the
required SSD lifetime, minimize average response times,
and minimize response time variations. READY consists of
three modules: the write demand predictor, the throttling
delay estimator, and the epoch-capacity regulator. The write
demand predictor can predict future write traffic for throt-
tling by exploiting cyclic behaviors of enterprise applications.
Throttling delay should match future write demand, increas-
ing if demand exceeds epoch capacity, decreasing if demand
falls short of capacity, and remaining unchanged if demand
equals capacity. The epoch-capacity regulator can throttle
write performance by applying the same throttling delay to
every page write and increasing a throttling delay later to
reclaim the overused capacity.

The team evaluated four SSD configurations: NT, ST, DT,
and READY. Results showed that NT cannot guarantee the
required SSD lifetime, READY achieves a lifetime close to
five years, and ST and DT exhibit a lifetime much longer than
five years. NT exhibited the best performance, and READY
performed better than ST and DT while guaranteeing the
required lifetime. Finally, READY showed shorter response
time variations than ST/DT, and ST exhibited the most
significant response time variations. Future work involves
implementing READY in a real SSD platform and supporting
latency-aware performance throttling.

best threshold. Margo then asked about prior work done on
inline deduplication at UCB. Kiran answered that this work
was similar, but completely redone. Joseph Glider of IBM
Almaden Research asked whether their traces include con-
tent information. Kiran said that they used content hashes.
Glider then asked whether they consider the age of an entry
before ejecting it from the cache. Kiran answered that they
do not use LRU. The policy they use is based on hashes for
blocks that have been previously used for deduplication. Vas-
ily Tarasov (Stony Brook) asked if they preserve the dedup
information when moving from primary storage to second-
ary. Kiran answered that they didn’t but it was a good idea.

Flash and SSDs, Part II

Summarized by Doowon Kim (dwkim@cs.utah.edu)

Caching Less for Better Performance: Balancing Cache
Size and Update Cost of Flash Memory Cache in Hybrid
Storage Systems
Yongseok Oh, University of Seoul; Jongmoo Choi, Dankook University;

Donghee Lee, University of Seoul; Sam H. Noh, Hongik University

Yongseok Oh explained that hybrid storage systems ben-
efit from combining SSDs and HDDs. One of the important
characteristics of flash-based SSD is that it maintains
over-provisioned space (OPS). Typical SSDs have a fixed OPS
size in which optimal size is unknown, so one of their goals
was to determine the optimal size of OPS. According to Oh,
as OPS increases, the performance cost of garbage collection
(GC) decreases but the cache miss rate increases. Overall,
the performance is going to be bad, but optimal OPS size can
produce the best performance possible.

Oh presented various cost models and then moved into
an explanation of his evaluation setup. He used a hybrid
storage simulator and flash cache layers (FCLs). OP_FCL
shows near-optimal performance, and optimal performance
depends on workload characteristics. OP-FCL dynamically
adjusts cache spaces according to workloads. Considerable
OPS is used to lower garbage collection cost. Most caching
space is used to maintain read data. Optimizing the lifetime
of the flash is left as future work.

Umesh Maheshwari of Nimble Storage said the paper was
very interesting and he thought it is very useful in real SSD
developing. Then he asked whether read cost’s dependence
on garbage collection cost was their assumption or their
experience. Oh answered (with his advisor’s help) that in
reality, the read should not be affected by garbage collection,
but that their assumption was valid because they experi-
enced that. Someone from Google wondered how a cache
policy like LRU or FIFO affects the cost model. Oh answered
that they did not look at other replacement policies. In this

