
; LO G I N : D ECEM B E R 201 0	 OV E RCOM I N G A N U NTRUSTE D COM PUTI N G BA SE	 31

M AT T H E W H I C K S , M U R P H F I N N I C U M ,
S A M U E L T . K I N G , M I L O M . K . M A R T I N , A N D
J O N AT H A N M . S M I T H

overcoming an untrusted
computing base: detect-
ing and removing malicious
hardware automatically

Matthew Hicks is a fifth-year graduate student in
computer science at the University of Illinois. His
current research focuses on the border between
hardware and system software, with a focus on
FPGAs and specialized operating systems.

mdhicks2@illinois.edu

Murph Finnicum is a graduate student in computer
science at the University of Illinois, where he also
completed his undergraduate studies in computer
engineering. His current research includes work on
ambiguity-tolerant automatic programming and
novel techniques to make Web browsers faster.

mfinnic2@illinois.edu

Sam King is an assistant professor in the Computer
Science Department at the University of Illinois. His
primary research interests are in security, operating
systems, and computer architecture.

kingst@illinois.edu

Milo Martin is an associate professor in the Com-
puter and Information Science Department at the
University of Pennsylvania. His research focuses
on making computers easier to design, verify, and
program. Specific projects include transactional
memory, adaptive cache coherence protocols, hard-
ware-aware verification of concurrent software,
and hardware-assisted memory-safe implementa-
tions of the C programming language. Dr. Martin is
a recipient of the NSF CAREER award and received a
PhD from the University of Wisconsin—Madison.

milom@cis.upenn.edu

Jonathan M. Smith is the Olga and Alberico Pompa
Professor of Engineering and Applied Science and
a professor of computer and information science
at the University of Pennsylvania. He served as a
program manager at DARPA 2004–2006 and was
awarded the OSD Medal for Exceptional Public
Service in 2006. He is an IEEE Fellow. His current
research interests range from programmable
network infrastructures and cognitive radios to dis-
information theory and architectures for computer
augmented immune response.

jms@cis.upenn.edu

T H E C O M P U T E R S Y S T E M S S E C U R I T Y
arms race between attackers and defend-
ers has largely taken place in the domain of
software systems, but as hardware com-
plexity and design processes have evolved,
novel and potent hardware-based security
threats are now possible. This article pre
sents Unused Circuit Identification (UCI), an
approach for detecting suspicious circuits
during design time, and BlueChip, a hybrid
hardware/software approach to detaching
suspicious circuits and making up for UCI
classifier errors during runtime.

Modern hardware design processes in many ways
resemble the software design process. Hardware
designs consist of millions of lines of code and
often leverage libraries, toolkits, and components
from multiple vendors. These designs are then
“compiled” (synthesized) for fabrication. As with
software, the growing complexity of hardware
designs creates opportunities for hardware to
become a vehicle for malice. Recent work has
demonstrated that small malicious modifications
to a hardware-level design can compromise the
security of the entire computing system [11].

Malicious hardware has two key properties that
make it even more damaging than malicious
software. First, hardware presents a more persistent
attack vector. Whereas software vulnerabilities can
be fixed via software update patches or reimaging,
fixing well-crafted hardware-level vulnerabilities
would likely require physically replacing the
compromised hardware components. A hardware
recall similar to Intel’s Pentium FDIV bug (which
cost $500 million to recall five million chips) has
been estimated to cost many billions of dollars
today [3]. Furthermore, the skill required to replace
hardware and the rise of deeply embedded systems
ensure that vulnerable systems will remain in
active use after the discovery of the vulnerability.
Second, hardware is the lowest layer in the
computer system, providing malicious hardware
with control over the software running above. This
low-level control enables sophisticated and stealthy
attacks aimed at evading software-based defenses.

Such an attack might use a special, or unlikely,
event to trigger deeply buried malicious logic that
was inserted during design time. For example,
attackers might introduce a circuit that detects a
certain sequence of bytes into the hardware that
activates the malicious logic. This logic might

32	 ; LO G I N : VO L . 35, N O. 6

escalate privileges, turn off access control checks, or execute arbitrary
instructions, providing a path for the malefactor to take control of the
machine. The malicious hardware thus provides a foothold for subsequent
system-level attacks.

During the design phase, UCI flags as suspicious any unused circuitry
(any circuit not activated by any of the many design verification tests).
BlueChip disconnects these suspicious circuits from the rest of the trusted
circuit. However, these seemingly suspicious circuits might actually be part
of a legitimate circuit within the design, so BlueChip inserts circuitry to
raise an exception whenever one of these suspicious circuits would have
been activated. The BlueChip exception handler software is responsible for
emulating the overall behavior of the hardware to allow the system to make
forward progress. BlueChip’s overall goal is to push the complexity of coping
with malicious hardware up to a higher, more flexible and adaptable layer in
the system stack.

Motivation and Attack Model

This article focuses on the problem of malicious circuits introduced during
the hardware design process. Today’s complicated hardware designs are
increasingly vulnerable to the undetected insertion of malicious circuitry to
create a hardware trojan horse. In other domains, examples of this general
type of intentional insertion of malicious functionality include compromises
of software development tools [14], system designers inserting malicious
source code intentionally [4, 9, 10], compromised servers that host modified
source code [5, 6], and products that come pre-installed with malware [1, 2,
13]. Such attacks introduce little risk of punishment, because the complexity
of modern systems and prevalence of unintentional bugs makes it difficult to
prove malice or to correctly attribute the problem to its source [15].

More specifically, our threat model is that a rogue designer covertly adds
trojan circuits to a hardware design. We focus on two possible scenarios
for such rogue insertion. First, one or more disgruntled employees at a
hardware design company surreptitiously and intentionally insert malicious
circuits into a design prior to final design validation with the hope that
the changes will evade detection. The malicious hardware demonstrated in
previous work [11] supports the plausibility of this scenario, in that small
and localized changes (e.g., tens of lines in a single hardware source file) are
sufficient for creating powerful malicious circuits designed for bootstrapping
larger system-level attacks. We call such malicious circuits footholds, and
such footholds persist even after malicious software has been discovered and
removed, giving attackers a permanent vector into a compromised system.

The second scenario is enabled by the trend toward “softcores” and other
pre-designed hardware IP (intellectual property) blocks. Many system-on-
chip (SoC) designs aggregate subcomponents from existing commercial or
open-source IP. Although generally trusted, these third-party IP blocks may
not be trustworthy. In this scenario, an attacker can create new IP or modify
existing IP blocks to add malicious circuits. The attacker then distributes
or licenses the IP in the hope that some SoC creator will incorporate it and
include it in a fabricated chip. Although the SoC creator will likely perform
significant design verification focused on finding design bugs, traditional
black-box design verification is unlikely to reveal malicious hardware.

In either scenario, the attacker’s motivation could be financial or general
malice. If the design modification remains undetected by final design

; LO G I N : D ECEM B E R 201 0	 OV E RCOM I N G A N U NTRUSTE D COM PUTI N G BA SE	 33

validation and verification, the malicious circuitry will be present in the
manufactured hardware that is shipped to customers and integrated into
computing systems. The attacker has achieved this without the resources
necessary to actually fabricate a chip or attack the manufacturing or
distribution supply chain. We assume that only one or a few individuals act
maliciously (i.e., not the entire design team) and that these individuals are
unable to compromise the final end-to-end design verification and validation
process, which is typically performed by a distinct group of engineers.

UCI and BlueChip can be used by anyone from designers to debuggers,
but the target audience is the lead designer or system integrator who
advances the design to the fabrications stage. Our work assumes that
this person is trustworthy and has much to lose if the hardware contains
malicious circuitry. This work also relies on a testing regimen based on
simulation at the hardware description level. Here the designer with signoff
responsibilities can view any wire in the design, during any given cycle, and
has the ability to add or remove test cases. We assume that no extra rigging
is required for specialized testing (e.g., boundary scan chains); what is
simulated is what will be in the fabricated chip.

The BlueChip Approach

F I G U R E 1 : O V E R A L L B L U E C H I P A R C H I T E C T U R E . T H I S F I G U R E
S H O W S T H E O V E R A L L F L O W F O R B L U E C H I P W H E R E (A) D E S I G N E R S
D E V E L O P H A R D W A R E D E S I G N S A N D (B) A R O G U E D E S I G N E R
I N S E R T S M A L I C I O U S L O G I C I N T O T H E D E S I G N . D U R I N G D E S I G N
V E R I F I C A T I O N P H A S E , (C) B L U E C H I P I D E N T I F I E S A N D R E M O V E S
S U S P I C I O U S C I R C U I T S A N D I N S E R T S R U N T I M E H A R D W A R E C H E C K S .
(D) D U R I N G R U N T I M E , T H E S E H A R D W A R E C H E C K S I N V O K E
S O F T W A R E E X C E P T I O N S T O P R O V I D E T H E B L U E C H I P S O F T W A R E A N
O P P O R T U N I T Y T O A D V A N C E T H E C O M P U T A T I O N B Y E M U L A T I N G
I N S T R U C T I O N S , E V E N T H O U G H B L U E C H I P M A Y H A V E R E M O V E D
L E G I T I M A T E C I R C U I T S .

Our overall BlueChip architecture is shown in Figure 1. In the first phase
of operation, UCI analyzes the circuit’s behavior during design verification
to identify candidate circuits that might be malicious. Once UCI identifies a
suspect circuit, BlueChip automatically removes the circuit from the design.
Because UCI might identify and BlueChip remove legitimate circuits as part
of the transformation, BlueChip inserts logic to detect if the removed circuits
would have been activated, and it triggers an exception if the hardware
encounters this condition during runtime. The hardware delivers this
exception to the software layer. The BlueChip exception handling software
is responsible for recovering from the fault and advancing the computation
by emulating the instruction that was executing when the exception
occurred. BlueChip pushes much of the complexity up to the software layer,

34	 ; LO G I N : VO L . 35, N O. 6

allowing defenders to rapidly refine defenses, turning the permanence of the
hardware attack into a disadvantage for attackers.

BlueChip can operate in spite of removed hardware because the removed
circuits operate at a lower layer of abstraction than the software emulation
layer responsible for recovery. BlueChip software does not emulate the removed
hardware directly. Instead, it emulates the behavior of the entire hardware
design using a simple, high-level, and implementation-independent
specification of hardware, i.e., the processor’s instruction-set-architecture
specification. BlueChip software emulates the effects of the removed
hardware by emulating one or more instructions, updating the processor
registers and memory values, and resuming execution. The computation
can generally make forward progress despite the removed hardware logic,
although software emulation of instructions is slower than normal hardware
execution.

In some respects our overall BlueChip system resembles floating point
instruction emulation for processors that omit floating point hardware. If a
processor design omits floating point unit (FPU) hardware, floating point
instructions raise an exception that the OS handles. The OS can emulate
the effects of the missing hardware using available integer instructions. Like
FPU emulation, BlueChip uses software to emulate the effects of missing
hardware using the available hardware resources. However, the hardware
BlueChip removes is not necessarily associated with specific instructions
and can trigger BlueChip exceptions at unpredictable states and events,
presenting a number of challenges.

Overall, BlueChip provides a separation between the responsibilities of
the hardware and the software. The BlueChip hardware prevents attacks
by removing suspicious circuits. The BlueChip software ensures forward
progress by emulating instructions. If an attacker is able to control the
BlueChip software it does not give attackers any additional capabilities—
the BlueChip hardware still neutralizes the attack—but usurping BlueChip
software could prevent the system from making forward progress.

For more information about the design and implementation of our BlueChip
hardware and software, please see our recent paper on the topic [8].

Detecting Suspicious Circuits

One key component of the overall system is the algorithm for detecting
suspicious circuits. Our goal is to develop an algorithm that identifies all
malicious circuits without identifying benign circuits. In addition, our
technique should be impossible for an attacker to avoid, and it should
identify potentially malicious code automatically without requiring the
defender to develop a new set of design verification tests specifically for our
new detection algorithm.

Hardware designs often include extensive design verification tests that
designers and system integrators use to verify the functionality of a
component. In general, test cases use a set of inputs and verify that the
hardware circuit outputs the expected results. For example, test cases for
processors use a sequence of instructions as the input, with the processor
registers and system memory as outputs.

; LO G I N : D ECEM B E R 201 0	 OV E RCOM I N G A N U NTRUSTE D COM PUTI N G BA SE	 35

F I G U R E 2 : C I R C U I T D I A G R A M A N D H D L S O U R C E C O D E F O R A
M U LT I P L E X O R (M U X) T H A T C A N P A S S C O D E C O V E R A G E T E S T I N G
W I T H O U T E N A B L I N G T H E A T T A C K . T H I S F I G U R E S H O W S H O W A W E L L -
C R A F T E D M U X C A N P A S S C O V E R A G E T E S T S W H E N T H E A P P R O P R I A T E
C O N T R O L S T A T E S (C T L (0) A N D C T L (1)) A R E T R I G G E R E D D U R I N G
T E S T I N G . C O N T R O L S T A T E S 0 0 , 0 1 , A N D 1 0 W I L L F U L LY C O V E R T H E
C I R C U I T W I T H O U T T R I G G E R I N G T H E A T T A C K C O N D I T I O N . G O O D ,
A T T A C K , X , Y, A N D O U T A R E A L L W I R E S W I T H A R B I T R A R Y V A L U E S
T H A T A R E F R E E T O C H A N G E D U R I N G S I M U L A T I O N . F O R S I M P L I C I T Y,
A S S U M E G O O D A N D A T T A C K N E V E R C A R R Y T H E S A M E V A L U E . W I R E S
G O O D A N D A T T A C K A R E T H E I N P U T S A N D W I R E O U T I S T H E O U T P U T .
T H E W I R E S L A B E L E D C T L (X) A R E T H E C O N T R O L L I N E S F O R T H E I R
R E S P E C T I V E M U X E S . T H E V A L U E O N T H E C O N T R O L L I N E O F A M U X
D E T E R M I N E S W H I C H I N P U T G E T S I T S V A L U E P A S S E D A L O N G A S T H E
O U T P U T O F T H E M U X . T H E 0 A N D 1 L A B E L S O N E A C H M U X I N T H I S
F I G U R E S H O W W H I C H C O N T R O L V A L U E D R I V E S W H I C H I N P U T V A L U E
T O T H E O U T P U T .

An attacker can easily craft circuits that yield 100% code coverage after
testing, but test cases never actually trigger the attack. For example, Figure
2 shows a multiplexer (mux) circuit that has 100% code coverage without
outputting the attack value. If the verification test suite includes control
states (value of “Ctl(0,1)”) 00, 01, and 10, all lines of code that make up the
circuit will be covered, but the output value on wire “Out” will always be
the same value as the value on wire “Good.” We apply this evasion technique
to the attacks we evaluate and find that it does evade code coverage–based
detection.

Our approach is to use design verification tests to help detect malicious
circuits, repurposing functional verification tests as security verification
tests. If an attack circuit contaminates the output for a test case, the
designer would know that the circuit is operating out-of-spec, detecting the
attack. However, recent research has shown how hardware attacks can be
implemented using small circuits that are designed not to trigger during
routine testing [11]. This evasion technique works by guarding the attack
circuit with triggering logic that enables the attack only when it observes a
specific sequence of events or a specific data value (e.g., the attack triggers
only when the hardware encounters a predefined 128-bit value). This attack-
hiding technique works because malicious hardware designers can avoid
perturbing outputs during testing by hiding deep within the vast state space
of a design, but can still enable attacks in the field by inducing the trigger
sequence. A processor with 16 32-bit registers, a 16k instruction cache,

36	 ; LO G I N : VO L . 35, N O. 6

a 64k data cache, and 300 pins has at least 2655872 states, and up to 2300
transition edges. Our proposal is to consider circuits suspicious whenever a
design includes them, but the circuit does not affect any of the outputs for
any of the test cases.

This section describes our algorithm, called unused circuit identification
(UCI), for identifying potentially malicious circuits at design time. Our
technique focuses on identifying portions of the circuit that do not affect
outputs during testing.

// step one: generate data-flow graph
// and find connected pairs
pairs = {connected data-flow pairs}

// step two: simulate and try to find
// any logic that does not affect the
// data-flow pairs for each simulation clock cycle
	 for each pair in pairs
		 if the sink and source not equal
	 remove the pair from the pairs set

F I G U R E 3 : I D E N T I F Y I N G P O T E N T I A L LY M A L I C I O U S C I R C U I T S U S I N G
O U R U C I A L G O R I T H M

F I G U R E 4 : D A T A - F L O W G R A P H F O R M U X R E P L A C E M E N T C I R C U I T

To identify potentially malicious circuits, our algorithm performs two steps
(Figure 3). First, UCI creates a data-flow graph for the design (Figure 4). In
this graph, nodes are signals (wires) and state elements (to account for data
flow across clock cycles); edges indicate data flow between the nodes. Based
on this data-flow graph, UCI generates a list of all signal pairs, or data-flow
pairs, where data flows from a source signal to a sink signal. This list of
data-flow pairs includes both direct dependencies (e.g., (Good, X) in Figure
4) and indirect dependencies (e.g., (Good, Out) in Figure 4). For more details
on the third member of data-flow tuples, refer to our recent paper [8]. Each
data-flow tuple effectively states that all the logic between the source and the
sink wire can be replaced by a short-circuit-like delay line.

Second, UCI simulates the HDL code using standard design verification tests
to find the set of data-flow tuples where intermediate logic does not affect
the data value that flows between the source and sink wires. To test for this
condition, at each simulation step UCI checks for inequality for each of the
remaining data-flow tuples. If the current value of the sink is not equal to
the value of the source DELAY cycles ago, this implies, conservatively, that
the logic between the two wires has an effect on the value. UCI removes this
tuple from suspicion, as there is now a case where the intermediate logic had
an effect and the effect was verified within the design’s specification. More
clearly, for registers, UCI accounts for latched data by maintaining a history
of simulation values, allowing it make the appropriate comparison of source
and sink wire values when they are separated by state elements.

After the simulation completes, UCI has a set of remaining data-flow tuples
where the logic in between the source and sink wires of the tuple does not
affect the value as it travels, possibly across clock cycles, from source to

; LO G I N : D ECEM B E R 201 0	 OV E RCOM I N G A N U NTRUSTE D COM PUTI N G BA SE	 37

sink. In other words, we could replace the intermediate logic with a wire,
possibly including some delay state elements, and it would not affect the
overall behavior of the circuit, in any way, for any of the design verification
tests.

Consider how this algorithm works for the mux-replacement circuit shown
in Figure 2, when the attack lies dormant during the test cases (values of
“Attack” and “Out” are not equal):

■■ UCI creates the initial set of data-flow tuples, (Good, X, 0), (Attack, X, 0),
(Good, Y, 0), (Attack, Y, 0), (Good, Out, 0), (Attack, Out, 0), (X, Out, 0),
and (Y, Out, 0).

■■ UCI considers the first simulation step where Ctl(0) and Ctl(1) are 0. Thus,
X, Y, and Out all carry the same value as Good. UCI removes tuples (At-
tack, X, 0), (Attack, Y, 0), and (Attack, Out, 0), since X, Y, and Out don’t
carry the same value as Attack.

■■ UCI considers the second simulation step where Ctl(0) is 0 and Ctl(1) is
1. Thus, X and Out carry the same value as Good, while Y carries the same
value as Attack. UCI removes tuples (Good, Y, 0) and (Y, Out, 0), since Y
doesn’t carry the same value as Good or Out.

■■ UCI considers the third simulation step where Ctl(0) is 1 and Ctl(1) is 0.
Thus, X carries the same value as Attack while Y and Out carry the same
value as Good. UCI removes tuples (Good, X, 0) and (X, Out, 0) since X
doesn’t carry the same values as Good or Out.

■■ UCI finishes the simulation, and the only remaining tuple is (Good, Out,
0). This tells the designer that the intermediate logic between wires Good
and Out doesn’t have any real effect for the test cases. This implies that
wires Good and Out can be short-circuited with no adverse effects.

The resulting output from UCI for this example identifies the malicious
circuit without identifying any additional signals. Because it systematically
identifies circuits that avoid affecting outputs during testing, BlueChip
connects the wire labeled “Good” directly to the wire labeled “Out,” thus
removing the malicious logic from the design.

BlueChip Evaluation

In our evaluation, we measure (1) BlueChip’s ability to stop attacks, (2)
BlueChip’s ability to successfully emulate instructions that used hardware
removed by BlueChip, and (3) the runtime overhead of our system.

We based our hardware implementation on the Leon3 processor [7] design.
Our prototype is fully synthesizable and runs on an FPGA development
board that includes a Virtex 5 FPGA, CompactFlash, Ethernet, USB, VGA,
PS/2, and RS-232 ports. The Leon3 processor implements the SPARC v8
instruction set [12], and our configuration uses eight register windows, a
16KB instruction cache, and a 64KB data cache, includes an MMU, and
runs at 100MHz, which is the maximum clock rate we are able to achieve
for the unmodified Leon3 design for our target FPGA. For the software, we
use a SPARC port of the Linux 2.6.21.1 kernel on our FPGA board, and we
install a full Slackware distribution on our system. By evaluating BlueChip
on an FPGA development board and by using commodity software, we
have a realistic environment for evaluating our hardware modifications and
accompanying software systems.

To evaluate BlueChip’s ability to prevent and recover from attacks, we wrote
software that activates the malicious hardware described in our recent
papers [11, 8]. Our prior work on developing hardware attacks focused
on adding minimal additional logic gates as a foothold for a system-level
attack. We explored three such footholds: the supervisor transition foothold

38	 ; LO G I N : VO L . 35, N O. 6

enables an attacker to transition the processor into supervisor mode to
escalate the privileges of user-mode code, the memory redirection foothold
enables an attacker to read and write arbitrary virtual memory locations,
and the shadow mode foothold enables an attacker to pass control to invisible
firmware located within the processor and take control of the system.
Previous work has shown how these types of footholds can be used as part
of a system-level attack to carry out high-level, high-value attacks, such as
escalating privileges of a process or enabling attackers to log in to a remote
system automatically [11].

To identify suspicious circuits, we used the Gaisler test suite that comes
bundled with the Leon3 hardware’s HDL code, the official SPARC
verification tests from SPARC International, and a few custom test cases we
wrote for this experiment.

To measure execution overhead, we used three workloads that stressed
different parts of the system: wget fetches an HTML document from the
Web and represents a network bound workload, make compiles portions
of the ntpdate application and stresses the interaction between kernel and
user modes, and djpeg decompresses a 1MB jpeg image as a representative
of a compute-bound workload. To address variability in the measurements,
reported execution time results are the average of 100 executions of each
workload relative to an uninstrumented base hardware configuration. All of
our overhead experiments have a 95% confidence interval of less than 1% of
the average execution time.

DOES BLUECHIP PREVENT THE ATTACKS?

There are two goals for BlueChip when aiming to defend against malicious
hardware. The first and most important goal is to prevent attacks from
influencing the state of the system. The second goal is for the system
to recover, allowing non-malicious programs to make progress after an
attempted attack.

Attack Prevent Recover

Privilege Escalation √ √

Memory Redirection √

Shadow Mode √ √

F I G U R E 5 : B L U E C H I P A T T A C K P R E V E N T I O N A N D R E C O V E R Y

The results in Figure 5 show that BlueChip successfully prevents all three
attacks, meeting the primary goal for success. BlueChip meets the secondary
goal of recovery for two of the three attacks, but it fails to recover from
attempted activations of the memory redirection attack. In this case, the
attack is prevented, but software emulation is unable to make forward
progress. Upon further examination, we found that the attack stored state
that fell outside of our BlueChip hardware mechanisms. We believe that this
limitation is an artifact of our current implementation and could be fixed by
using a more sophisticated hardware analysis algorithm.

IS SOFTWARE EMULATION SUCCESSFUL?

BlueChip justifies its aggressive identification and removal of suspicious
circuits by relying on software to emulate any mistakenly removed
functionality. Thus, BlueChip will trigger spurious exceptions (i.e., those
exceptions that result from removal of logic mistakenly identified as
malicious). In our experiments, all of the benchmarks execute correctly,

; LO G I N : D ECEM B E R 201 0	 OV E RCOM I N G A N U NTRUSTE D COM PUTI N G BA SE	 39

indicating that BlueChip correctly recovers from the spurious BlueChip
exceptions that occurred in these workloads.

F I G U R E 6 : B L U E C H I P S O F T W A R E I N V O C A T I O N F R E Q U E N C I E S

Figure 6 shows the average rate of BlueChip exceptions for each benchmark.
Even in the worst case, where a BlueChip exception occurs every 200ms on
average, the frequency is far less than the operating system’s timer interrupt
frequency. The rate of BlueChip exceptions is low enough to allow for
complex software handlers without sacrificing performance.

The discrepancy in the number of traps experienced by each benchmark is
worth noting. The make benchmark experiences the most traps, by almost
an order of magnitude. Looking at the UCI pairs that fire during testing,
and looking at the type of workload make creates, the higher rate of traps
comes from interactions between user and kernel modes. This happens more
often in make than the other benchmarks, as make creates a new process
for each compilation. More in-depth tracing of the remaining UCI pairs
reveals that many pairs surround the interaction between kernel mode and
user mode. Because UCI is inherently based on design verification tests, this
perhaps indicates the parts of hardware least tested in our three test suites.
Conversely, the relatively small rate of BlueChip exceptions experienced by
wget is due to its I/O (network) bound workload. Most of the time is spent
waiting for packets, which apparently does not violate any of the UCI pairs
remaining after testing.

IS BLUECHIP’S RUNTIME OVERHEAD LOW?

F I G U R E 7 : A P P L I C A T I O N R U N T I M E O V E R H E A D S F O R B L U E C H I P
S Y S T E M S

40	 ; LO G I N : VO L . 35, N O. 6

Although BlueChip successfully executes our benchmark workloads,
frequent spurious exceptions have the potential to significantly impact
system performance.

Figure 7 shows the normalized breakdown of runtime overhead experienced
by the benchmarks running on a BlueChipped system versus an unprotected
system. The runtime overhead from the software portion of BlueChip is
just 0.3% on average. The software overhead comes from handling spurious
BlueChip exceptions, primarily from just two of the UCI pairs. The average
overhead from the hardware portions of BlueChip, including the cases with
zero hardware overhead, is approximately 1.4%.

Conclusion

BlueChip neutralizes malicious hardware introduced at design time by
identifying and removing suspicious hardware during the design verification
phase, while using software at runtime to emulate hardware instructions to
avoid erroneously removed circuitry.

Experiments indicate that BlueChip is successful at identifying and
preventing attacks while allowing non-malicious executions to make
progress. Our malicious circuit identification algorithm, UCI, relies on the
attempts to hide functionality to identify candidate circuits for removal.
BlueChip replaces circuits identified by UCI with exception logic, which
initiates a trap to software. The BlueChip software emulates instructions
to detour around the removed hardware, allowing the system to attempt to
make forward progress. Measurements taken with the attacks inserted show
that such exceptions are infrequent when running a commodity operating
system using traditional applications.

In summary, these results show that addressing the malicious insider
problem for hardware design is both possible and worthwhile, and that
approaches can be cost-effective and practical.

ACKNOWLEDGMENTS

The authors thank David Wagner, Cynthia Sturton, Bob Colwell, and the
anonymous reviewers for comments on this work. We thank Jiri Gaisler for
assistance with the Leon3 processor and Morgan Slain and Chris Larsen
from SPARC International for the SPARC certification test benches.

This research was funded in part by the National Science Foundation under
grants CCF-0811268, CCF-0810947, CCF-0644197, and CNS-0953014,
AFOSR MURI grant FA9550-09-01-0539, ONR under N00014-09-1-0770
and N00014-07-1-0907, donations from Intel Corporation, and a grant from
the Internet Services Research Center (ISRC) of Microsoft Research. Any
opinions, findings, and conclusions or recommendations expressed in this
paper are solely those of the authors.

REFERENCES

[1] Maxtor basics personal storage 3200: http://seagate.custkb.com/seagate/
crm/selfservice/search.jsp?DocId=205131&NewLang=en.

[2] Apple Computer Inc., Small Number of Video iPods Shipped with
Windows Virus. 2006: http://www.apple.com/support/windowsvirus/.

[3] Bob Colwell, personal communication, March 2009.

; LO G I N : D ECEM B E R 201 0	 OV E RCOM I N G A N U NTRUSTE D COM PUTI N G BA SE	 41

[4] BugTraq Mailing List, Irssi 0.8.4 backdoor, May 2002: http://
archives.neohapsis.com/archives/bugtraq/2002-05/0222.html.

[5] CERT Advisory CA-2002-24 Trojan Horse OpenSSH Distribution,
technical report, CERT Coordination Center, 2002: http://www.cert.org/
advisories/CA-2002-24.html.

[6] CERT Advisory CA -2002-28 Trojan Horse Sendmail Distribution,
technical report, CERT Coordination Center, 2002: http://www.cert.org/
advisories/CA-2002-28.html.

[7] Gaisler Research, Leon3 synthesizable processor: http://www.gaisler.com/
cms/index.php?option=com_content&task=view&id=13&Itemid=53.

[8] M. Hicks, M. Finnicum, S.T. King, M.M.K. Martin, and J.M. Smith,
“Overcoming An Untrusted Computing Base: Detecting and Removing
Malicious Hardware Automatically,” in Proceedings of the 2010 IEEE Symposium
on Security and Privacy, May 2010.

[9] P.A. Karger and R.R. Schell, “Multics Security Evaluation: Vulnerability
Analysis,” technical report ESD-TR-74-192, HQ Electronic Systems Division:
Hanscom AFB, June 1974.

[10] P.A. Karger and R.R. Schell, “Thirty Years Later: Lessons from the
Multics Security Evaluation,” in ACSAC ’02: Proceedings of the 18th Annual
Computer Security Applications Conference (IEEE Computer Society, 2002),
p. 119.

[11] S.T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou,
“Designing and Implementing Malicious Hardware,” in Proceedings of the First
USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET ’08),
April 2008.

[12] SPARC International Inc., SPARC v8 processor: http://www.sparc.org.

[13] B. Sullivan, “Digital Picture Frames Infected with Virus,” January 2008:
http://redtape.msnbc.com/2008/01/digital-picture.html.

[14] K. Thompson, “Reflections on Trusting Trust,” Communications of the
ACM, vol. 27, no. 8, 1984, pp. 761–63.

[15] United States Department of Defense, “Mission Impact of Foreign
Influence on DoD Software,” September 2007.

