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T H E  C O M P U T E R  S Y S T E M S  S E C U R I T Y 
arms race between attackers and defend-
ers has largely taken place in the domain of 
software systems, but as hardware com-
plexity and design processes have evolved, 
novel and potent hardware-based security 
threats are now possible. This article pre
sents Unused Circuit Identification (UCI), an 
approach for detecting suspicious circuits 
during design time, and BlueChip, a hybrid 
hardware/software approach to detaching 
suspicious circuits and making up for UCI 
classifier errors during runtime. 

Modern hardware design processes in many ways 
resemble the software design process. Hardware 
designs consist of millions of lines of code and 
often leverage libraries, toolkits, and components 
from multiple vendors. These designs are then 
“compiled” (synthesized) for fabrication. As with 
software, the growing complexity of hardware 
designs creates opportunities for hardware to 
become a vehicle for malice. Recent work has 
demonstrated that small malicious modifications 
to a hardware-level design can compromise the 
security of the entire computing system [11]. 

Malicious hardware has two key properties that 
make it even more damaging than malicious 
software. First, hardware presents a more persistent 
attack vector. Whereas software vulnerabilities can 
be fixed via software update patches or reimaging, 
fixing well-crafted hardware-level vulnerabilities 
would likely require physically replacing the 
compromised hardware components. A hardware 
recall similar to Intel’s Pentium FDIV bug (which 
cost $500 million to recall five million chips) has 
been estimated to cost many billions of dollars 
today [3]. Furthermore, the skill required to replace 
hardware and the rise of deeply embedded systems 
ensure that vulnerable systems will remain in 
active use after the discovery of the vulnerability. 
Second, hardware is the lowest layer in the 
computer system, providing malicious hardware 
with control over the software running above. This 
low-level control enables sophisticated and stealthy 
attacks aimed at evading software-based defenses. 

Such an attack might use a special, or unlikely, 
event to trigger deeply buried malicious logic that 
was inserted during design time. For example, 
attackers might introduce a circuit that detects a 
certain sequence of bytes into the hardware that 
activates the malicious logic. This logic might 
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escalate privileges, turn off access control checks, or execute arbitrary 
instructions, providing a path for the malefactor to take control of the 
machine. The malicious hardware thus provides a foothold for subsequent 
system-level attacks. 

During the design phase, UCI flags as suspicious any unused circuitry 
(any circuit not activated by any of the many design verification tests). 
BlueChip disconnects these suspicious circuits from the rest of the trusted 
circuit. However, these seemingly suspicious circuits might actually be part 
of a legitimate circuit within the design, so BlueChip inserts circuitry to 
raise an exception whenever one of these suspicious circuits would have 
been activated. The BlueChip exception handler software is responsible for 
emulating the overall behavior of the hardware to allow the system to make 
forward progress. BlueChip’s overall goal is to push the complexity of coping 
with malicious hardware up to a higher, more flexible and adaptable layer in 
the system stack. 

Motivation and Attack Model

This article focuses on the problem of malicious circuits introduced during 
the hardware design process. Today’s complicated hardware designs are 
increasingly vulnerable to the undetected insertion of malicious circuitry to 
create a hardware trojan horse. In other domains, examples of this general 
type of intentional insertion of malicious functionality include compromises 
of software development tools [14], system designers inserting malicious 
source code intentionally [4, 9, 10], compromised servers that host modified 
source code [5, 6], and products that come pre-installed with malware [1, 2, 
13]. Such attacks introduce little risk of punishment, because the complexity 
of modern systems and prevalence of unintentional bugs makes it difficult to 
prove malice or to correctly attribute the problem to its source [15]. 

More specifically, our threat model is that a rogue designer covertly adds 
trojan circuits to a hardware design. We focus on two possible scenarios 
for such rogue insertion. First, one or more disgruntled employees at a 
hardware design company surreptitiously and intentionally insert malicious 
circuits into a design prior to final design validation with the hope that 
the changes will evade detection. The malicious hardware demonstrated in 
previous work [11] supports the plausibility of this scenario, in that small 
and localized changes (e.g., tens of lines in a single hardware source file) are 
sufficient for creating powerful malicious circuits designed for bootstrapping 
larger system-level attacks. We call such malicious circuits footholds, and 
such footholds persist even after malicious software has been discovered and 
removed, giving attackers a permanent vector into a compromised system. 

The second scenario is enabled by the trend toward “softcores” and other 
pre-designed hardware IP (intellectual property) blocks. Many system-on-
chip (SoC) designs aggregate subcomponents from existing commercial or 
open-source IP. Although generally trusted, these third-party IP blocks may 
not be trustworthy. In this scenario, an attacker can create new IP or modify 
existing IP blocks to add malicious circuits. The attacker then distributes 
or licenses the IP in the hope that some SoC creator will incorporate it and 
include it in a fabricated chip. Although the SoC creator will likely perform 
significant design verification focused on finding design bugs, traditional 
black-box design verification is unlikely to reveal malicious hardware. 

In either scenario, the attacker’s motivation could be financial or general 
malice. If the design modification remains undetected by final design 
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validation and verification, the malicious circuitry will be present in the 
manufactured hardware that is shipped to customers and integrated into 
computing systems. The attacker has achieved this without the resources 
necessary to actually fabricate a chip or attack the manufacturing or 
distribution supply chain. We assume that only one or a few individuals act 
maliciously (i.e., not the entire design team) and that these individuals are 
unable to compromise the final end-to-end design verification and validation 
process, which is typically performed by a distinct group of engineers. 

UCI and BlueChip can be used by anyone from designers to debuggers, 
but the target audience is the lead designer or system integrator who 
advances the design to the fabrications stage. Our work assumes that 
this person is trustworthy and has much to lose if the hardware contains 
malicious circuitry. This work also relies on a testing regimen based on 
simulation at the hardware description level. Here the designer with signoff 
responsibilities can view any wire in the design, during any given cycle, and 
has the ability to add or remove test cases. We assume that no extra rigging 
is required for specialized testing (e.g., boundary scan chains); what is 
simulated is what will be in the fabricated chip. 

The BlueChip Approach

F I G U R E  1 :  O V E R A L L  B L U E C H I P  A R C H I T E C T U R E .  T H I S  F I G U R E 
S H O W S  T H E  O V E R A L L  F L O W  F O R  B L U E C H I P  W H E R E  ( A )  D E S I G N E R S 
D E V E L O P  H A R D W A R E  D E S I G N S  A N D  ( B )  A  R O G U E  D E S I G N E R 
I N S E R T S  M A L I C I O U S  L O G I C  I N T O  T H E  D E S I G N .  D U R I N G  D E S I G N 
V E R I F I C A T I O N  P H A S E ,  ( C )  B L U E C H I P  I D E N T I F I E S  A N D  R E M O V E S 
S U S P I C I O U S  C I R C U I T S  A N D  I N S E R T S  R U N T I M E  H A R D W A R E  C H E C K S . 
( D )  D U R I N G  R U N T I M E ,  T H E S E  H A R D W A R E  C H E C K S  I N V O K E 
S O F T W A R E  E X C E P T I O N S  T O  P R O V I D E  T H E  B L U E C H I P  S O F T W A R E  A N 
O P P O R T U N I T Y  T O  A D V A N C E  T H E  C O M P U T A T I O N  B Y  E M U L A T I N G 
I N S T R U C T I O N S ,  E V E N  T H O U G H  B L U E C H I P  M A Y  H A V E  R E M O V E D 
L E G I T I M A T E  C I R C U I T S .

Our overall BlueChip architecture is shown in Figure 1. In the first phase 
of operation, UCI analyzes the circuit’s behavior during design verification 
to identify candidate circuits that might be malicious. Once UCI identifies a 
suspect circuit, BlueChip automatically removes the circuit from the design. 
Because UCI might identify and BlueChip remove legitimate circuits as part 
of the transformation, BlueChip inserts logic to detect if the removed circuits 
would have been activated, and it triggers an exception if the hardware 
encounters this condition during runtime. The hardware delivers this 
exception to the software layer. The BlueChip exception handling software 
is responsible for recovering from the fault and advancing the computation 
by emulating the instruction that was executing when the exception 
occurred. BlueChip pushes much of the complexity up to the software layer, 
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allowing defenders to rapidly refine defenses, turning the permanence of the 
hardware attack into a disadvantage for attackers. 

BlueChip can operate in spite of removed hardware because the removed 
circuits operate at a lower layer of abstraction than the software emulation 
layer responsible for recovery. BlueChip software does not emulate the removed 
hardware directly. Instead, it emulates the behavior of the entire hardware 
design using a simple, high-level, and implementation-independent 
specification of hardware, i.e., the processor’s instruction-set-architecture 
specification. BlueChip software emulates the effects of the removed 
hardware by emulating one or more instructions, updating the processor 
registers and memory values, and resuming execution. The computation 
can generally make forward progress despite the removed hardware logic, 
although software emulation of instructions is slower than normal hardware 
execution. 

In some respects our overall BlueChip system resembles floating point 
instruction emulation for processors that omit floating point hardware. If a 
processor design omits floating point unit (FPU) hardware, floating point 
instructions raise an exception that the OS handles. The OS can emulate 
the effects of the missing hardware using available integer instructions. Like 
FPU emulation, BlueChip uses software to emulate the effects of missing 
hardware using the available hardware resources. However, the hardware 
BlueChip removes is not necessarily associated with specific instructions 
and can trigger BlueChip exceptions at unpredictable states and events, 
presenting a number of challenges. 

Overall, BlueChip provides a separation between the responsibilities of 
the hardware and the software. The BlueChip hardware prevents attacks 
by removing suspicious circuits. The BlueChip software ensures forward 
progress by emulating instructions. If an attacker is able to control the 
BlueChip software it does not give attackers any additional capabilities— 
the BlueChip hardware still neutralizes the attack—but usurping BlueChip 
software could prevent the system from making forward progress. 

For more information about the design and implementation of our BlueChip 
hardware and software, please see our recent paper on the topic [8]. 

Detecting Suspicious Circuits

One key component of the overall system is the algorithm for detecting 
suspicious circuits. Our goal is to develop an algorithm that identifies all 
malicious circuits without identifying benign circuits. In addition, our 
technique should be impossible for an attacker to avoid, and it should 
identify potentially malicious code automatically without requiring the 
defender to develop a new set of design verification tests specifically for our 
new detection algorithm. 

Hardware designs often include extensive design verification tests that 
designers and system integrators use to verify the functionality of a 
component. In general, test cases use a set of inputs and verify that the 
hardware circuit outputs the expected results. For example, test cases for 
processors use a sequence of instructions as the input, with the processor 
registers and system memory as outputs. 
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F I G U R E  2 :  C I R C U I T  D I A G R A M  A N D  H D L  S O U R C E  C O D E  F O R  A 
M U LT I P L E X O R  ( M U X )  T H A T  C A N  P A S S  C O D E  C O V E R A G E  T E S T I N G 
W I T H O U T  E N A B L I N G  T H E  A T T A C K .  T H I S  F I G U R E  S H O W S  H O W  A  W E L L -
C R A F T E D  M U X  C A N  P A S S  C O V E R A G E  T E S T S  W H E N  T H E  A P P R O P R I A T E 
C O N T R O L  S T A T E S  ( C T L ( 0 )  A N D  C T L ( 1 ) )  A R E  T R I G G E R E D  D U R I N G 
T E S T I N G .  C O N T R O L  S T A T E S  0 0 ,  0 1 ,  A N D  1 0  W I L L  F U L LY  C O V E R  T H E 
C I R C U I T  W I T H O U T  T R I G G E R I N G  T H E  A T T A C K  C O N D I T I O N .  G O O D , 
A T T A C K ,  X ,  Y,  A N D  O U T  A R E  A L L  W I R E S  W I T H  A R B I T R A R Y  V A L U E S 
T H A T  A R E  F R E E  T O  C H A N G E  D U R I N G  S I M U L A T I O N .  F O R  S I M P L I C I T Y, 
A S S U M E  G O O D  A N D  A T T A C K  N E V E R  C A R R Y  T H E  S A M E  V A L U E .  W I R E S 
G O O D  A N D  A T T A C K  A R E  T H E  I N P U T S  A N D  W I R E  O U T  I S  T H E  O U T P U T . 
T H E  W I R E S  L A B E L E D  C T L ( X )  A R E  T H E  C O N T R O L  L I N E S  F O R  T H E I R 
R E S P E C T I V E  M U X E S .  T H E  V A L U E  O N  T H E  C O N T R O L  L I N E  O F  A  M U X 
D E T E R M I N E S  W H I C H  I N P U T  G E T S  I T S  V A L U E  P A S S E D  A L O N G  A S  T H E 
O U T P U T  O F  T H E  M U X .  T H E  0  A N D  1  L A B E L S  O N  E A C H  M U X  I N  T H I S 
F I G U R E  S H O W  W H I C H  C O N T R O L  V A L U E  D R I V E S  W H I C H  I N P U T  V A L U E 
T O  T H E  O U T P U T .

An attacker can easily craft circuits that yield 100% code coverage after 
testing, but test cases never actually trigger the attack. For example, Figure 
2 shows a multiplexer (mux) circuit that has 100% code coverage without 
outputting the attack value. If the verification test suite includes control 
states (value of “Ctl(0,1)”) 00, 01, and 10, all lines of code that make up the 
circuit will be covered, but the output value on wire “Out” will always be 
the same value as the value on wire “Good.” We apply this evasion technique 
to the attacks we evaluate and find that it does evade code coverage–based 
detection. 

Our approach is to use design verification tests to help detect malicious 
circuits, repurposing functional verification tests as security verification 
tests. If an attack circuit contaminates the output for a test case, the 
designer would know that the circuit is operating out-of-spec, detecting the 
attack. However, recent research has shown how hardware attacks can be 
implemented using small circuits that are designed not to trigger during 
routine testing [11]. This evasion technique works by guarding the attack 
circuit with triggering logic that enables the attack only when it observes a 
specific sequence of events or a specific data value (e.g., the attack triggers 
only when the hardware encounters a predefined 128-bit value). This attack-
hiding technique works because malicious hardware designers can avoid 
perturbing outputs during testing by hiding deep within the vast state space 
of a design, but can still enable attacks in the field by inducing the trigger 
sequence. A processor with 16 32-bit registers, a 16k instruction cache, 



36	 ; LO G I N :  VO L .  35,  N O.  6

a 64k data cache, and 300 pins has at least 2655872 states, and up to 2300 
transition edges. Our proposal is to consider circuits suspicious whenever a 
design includes them, but the circuit does not affect any of the outputs for 
any of the test cases. 

This section describes our algorithm, called unused circuit identification 
(UCI), for identifying potentially malicious circuits at design time. Our 
technique focuses on identifying portions of the circuit that do not affect 
outputs during testing. 

// step one: generate data-flow graph
// and find connected pairs
pairs = {connected data-flow pairs}

// step two: simulate and try to find
// any logic that does not affect the
// data-flow pairs for each simulation clock cycle
	 for each pair in pairs
		  if the sink and source not equal
	 remove the pair from the pairs set  

F I G U R E  3 :  I D E N T I F Y I N G  P O T E N T I A L LY  M A L I C I O U S  C I R C U I T S  U S I N G 
O U R  U C I  A L G O R I T H M

F I G U R E  4 :  D A T A - F L O W  G R A P H  F O R  M U X  R E P L A C E M E N T  C I R C U I T

To identify potentially malicious circuits, our algorithm performs two steps 
(Figure 3). First, UCI creates a data-flow graph for the design (Figure 4). In 
this graph, nodes are signals (wires) and state elements (to account for data 
flow across clock cycles); edges indicate data flow between the nodes. Based 
on this data-flow graph, UCI generates a list of all signal pairs, or data-flow 
pairs, where data flows from a source signal to a sink signal. This list of 
data-flow pairs includes both direct dependencies (e.g., (Good, X) in Figure 
4) and indirect dependencies (e.g., (Good, Out) in Figure 4). For more details 
on the third member of data-flow tuples, refer to our recent paper [8]. Each 
data-flow tuple effectively states that all the logic between the source and the 
sink wire can be replaced by a short-circuit-like delay line. 

Second, UCI simulates the HDL code using standard design verification tests 
to find the set of data-flow tuples where intermediate logic does not affect 
the data value that flows between the source and sink wires. To test for this 
condition, at each simulation step UCI checks for inequality for each of the 
remaining data-flow tuples. If the current value of the sink is not equal to 
the value of the source DELAY cycles ago, this implies, conservatively, that 
the logic between the two wires has an effect on the value. UCI removes this 
tuple from suspicion, as there is now a case where the intermediate logic had 
an effect and the effect was verified within the design’s specification. More 
clearly, for registers, UCI accounts for latched data by maintaining a history 
of simulation values, allowing it make the appropriate comparison of source 
and sink wire values when they are separated by state elements. 

After the simulation completes, UCI has a set of remaining data-flow tuples 
where the logic in between the source and sink wires of the tuple does not 
affect the value as it travels, possibly across clock cycles, from source to 
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sink. In other words, we could replace the intermediate logic with a wire, 
possibly including some delay state elements, and it would not affect the 
overall behavior of the circuit, in any way, for any of the design verification 
tests. 

Consider how this algorithm works for the mux-replacement circuit shown 
in Figure 2, when the attack lies dormant during the test cases (values of 
“Attack” and “Out” are not equal): 

■■ UCI creates the initial set of data-flow tuples, (Good, X, 0), (Attack, X, 0), 
(Good, Y, 0), (Attack, Y, 0), (Good, Out, 0), (Attack, Out, 0), (X, Out, 0), 
and (Y, Out, 0). 

■■ UCI considers the first simulation step where Ctl(0) and Ctl(1) are 0. Thus, 
X, Y, and Out all carry the same value as Good. UCI removes tuples (At-
tack, X, 0), (Attack, Y, 0), and (Attack, Out, 0), since X, Y, and Out don’t 
carry the same value as Attack. 

■■ UCI considers the second simulation step where Ctl(0) is 0 and Ctl(1) is 
1. Thus, X and Out carry the same value as Good, while Y carries the same 
value as Attack. UCI removes tuples (Good, Y, 0) and (Y, Out, 0), since Y 
doesn’t carry the same value as Good or Out. 

■■ UCI considers the third simulation step where Ctl(0) is 1 and Ctl(1) is 0. 
Thus, X carries the same value as Attack while Y and Out carry the same 
value as Good. UCI removes tuples (Good, X, 0) and (X, Out, 0) since X 
doesn’t carry the same values as Good or Out. 

■■ UCI finishes the simulation, and the only remaining tuple is (Good, Out, 
0). This tells the designer that the intermediate logic between wires Good 
and Out doesn’t have any real effect for the test cases. This implies that 
wires Good and Out can be short-circuited with no adverse effects. 

The resulting output from UCI for this example identifies the malicious 
circuit without identifying any additional signals. Because it systematically 
identifies circuits that avoid affecting outputs during testing, BlueChip 
connects the wire labeled “Good” directly to the wire labeled “Out,” thus 
removing the malicious logic from the design. 

BlueChip Evaluation

In our evaluation, we measure (1) BlueChip’s ability to stop attacks, (2) 
BlueChip’s ability to successfully emulate instructions that used hardware 
removed by BlueChip, and (3) the runtime overhead of our system. 

We based our hardware implementation on the Leon3 processor [7] design. 
Our prototype is fully synthesizable and runs on an FPGA development 
board that includes a Virtex 5 FPGA, CompactFlash, Ethernet, USB, VGA, 
PS/2, and RS-232 ports. The Leon3 processor implements the SPARC v8 
instruction set [12], and our configuration uses eight register windows, a 
16KB instruction cache, and a 64KB data cache, includes an MMU, and 
runs at 100MHz, which is the maximum clock rate we are able to achieve 
for the unmodified Leon3 design for our target FPGA. For the software, we 
use a SPARC port of the Linux 2.6.21.1 kernel on our FPGA board, and we 
install a full Slackware distribution on our system. By evaluating BlueChip 
on an FPGA development board and by using commodity software, we 
have a realistic environment for evaluating our hardware modifications and 
accompanying software systems. 

To evaluate BlueChip’s ability to prevent and recover from attacks, we wrote 
software that activates the malicious hardware described in our recent 
papers [11, 8]. Our prior work on developing hardware attacks focused 
on adding minimal additional logic gates as a foothold for a system-level 
attack. We explored three such footholds: the supervisor transition foothold 
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enables an attacker to transition the processor into supervisor mode to 
escalate the privileges of user-mode code, the memory redirection foothold 
enables an attacker to read and write arbitrary virtual memory locations, 
and the shadow mode foothold enables an attacker to pass control to invisible 
firmware located within the processor and take control of the system. 
Previous work has shown how these types of footholds can be used as part 
of a system-level attack to carry out high-level, high-value attacks, such as 
escalating privileges of a process or enabling attackers to log in to a remote 
system automatically [11]. 

To identify suspicious circuits, we used the Gaisler test suite that comes 
bundled with the Leon3 hardware’s HDL code, the official SPARC 
verification tests from SPARC International, and a few custom test cases we 
wrote for this experiment. 

To measure execution overhead, we used three workloads that stressed 
different parts of the system: wget fetches an HTML document from the 
Web and represents a network bound workload, make compiles portions 
of the ntpdate application and stresses the interaction between kernel and 
user modes, and djpeg decompresses a 1MB jpeg image as a representative 
of a compute-bound workload. To address variability in the measurements, 
reported execution time results are the average of 100 executions of each 
workload relative to an uninstrumented base hardware configuration. All of 
our overhead experiments have a 95% confidence interval of less than 1% of 
the average execution time. 

DOES BLUECHIP PREVENT THE ATTACKS?

There are two goals for BlueChip when aiming to defend against malicious 
hardware. The first and most important goal is to prevent attacks from 
influencing the state of the system. The second goal is for the system 
to recover, allowing non-malicious programs to make progress after an 
attempted attack. 

Attack Prevent Recover 

Privilege Escalation √ √

Memory Redirection √

Shadow Mode √ √

F I G U R E  5 :  B L U E C H I P  A T T A C K  P R E V E N T I O N  A N D  R E C O V E R Y

The results in Figure 5 show that BlueChip successfully prevents all three 
attacks, meeting the primary goal for success. BlueChip meets the secondary 
goal of recovery for two of the three attacks, but it fails to recover from 
attempted activations of the memory redirection attack. In this case, the 
attack is prevented, but software emulation is unable to make forward 
progress. Upon further examination, we found that the attack stored state 
that fell outside of our BlueChip hardware mechanisms. We believe that this 
limitation is an artifact of our current implementation and could be fixed by 
using a more sophisticated hardware analysis algorithm. 

IS SOFTWARE EMULATION SUCCESSFUL?

BlueChip justifies its aggressive identification and removal of suspicious 
circuits by relying on software to emulate any mistakenly removed 
functionality. Thus, BlueChip will trigger spurious exceptions (i.e., those 
exceptions that result from removal of logic mistakenly identified as 
malicious). In our experiments, all of the benchmarks execute correctly, 
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indicating that BlueChip correctly recovers from the spurious BlueChip 
exceptions that occurred in these workloads. 

F I G U R E  6 :  B L U E C H I P  S O F T W A R E  I N V O C A T I O N  F R E Q U E N C I E S

Figure 6 shows the average rate of BlueChip exceptions for each benchmark. 
Even in the worst case, where a BlueChip exception occurs every 200ms on 
average, the frequency is far less than the operating system’s timer interrupt 
frequency. The rate of BlueChip exceptions is low enough to allow for 
complex software handlers without sacrificing performance. 

The discrepancy in the number of traps experienced by each benchmark is 
worth noting. The make benchmark experiences the most traps, by almost 
an order of magnitude. Looking at the UCI pairs that fire during testing, 
and looking at the type of workload make creates, the higher rate of traps 
comes from interactions between user and kernel modes. This happens more 
often in make than the other benchmarks, as make creates a new process 
for each compilation. More in-depth tracing of the remaining UCI pairs 
reveals that many pairs surround the interaction between kernel mode and 
user mode. Because UCI is inherently based on design verification tests, this 
perhaps indicates the parts of hardware least tested in our three test suites. 
Conversely, the relatively small rate of BlueChip exceptions experienced by 
wget is due to its I/O (network) bound workload. Most of the time is spent 
waiting for packets, which apparently does not violate any of the UCI pairs 
remaining after testing. 

IS BLUECHIP’S RUNTIME OVERHEAD LOW?

F I G U R E  7 :  A P P L I C A T I O N  R U N T I M E  O V E R H E A D S  F O R  B L U E C H I P 
S Y S T E M S
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Although BlueChip successfully executes our benchmark workloads, 
frequent spurious exceptions have the potential to significantly impact 
system performance. 

Figure 7 shows the normalized breakdown of runtime overhead experienced 
by the benchmarks running on a BlueChipped system versus an unprotected 
system. The runtime overhead from the software portion of BlueChip is 
just 0.3% on average. The software overhead comes from handling spurious 
BlueChip exceptions, primarily from just two of the UCI pairs. The average 
overhead from the hardware portions of BlueChip, including the cases with 
zero hardware overhead, is approximately 1.4%. 

Conclusion

BlueChip neutralizes malicious hardware introduced at design time by 
identifying and removing suspicious hardware during the design verification 
phase, while using software at runtime to emulate hardware instructions to 
avoid erroneously removed circuitry. 

Experiments indicate that BlueChip is successful at identifying and 
preventing attacks while allowing non-malicious executions to make 
progress. Our malicious circuit identification algorithm, UCI, relies on the 
attempts to hide functionality to identify candidate circuits for removal. 
BlueChip replaces circuits identified by UCI with exception logic, which 
initiates a trap to software. The BlueChip software emulates instructions 
to detour around the removed hardware, allowing the system to attempt to 
make forward progress. Measurements taken with the attacks inserted show 
that such exceptions are infrequent when running a commodity operating 
system using traditional applications. 

In summary, these results show that addressing the malicious insider 
problem for hardware design is both possible and worthwhile, and that 
approaches can be cost-effective and practical. 
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