
 ;login: FEBRUARY 2012 Conference Reports 75

CONFERENCE
14th International Workshop on High
Performance Transaction Systems (HPTS)

Pacific Grove, CA
October 23–26, 2011

Datacenter Trends 101
Summarized by Eugenia Gabrielova (eugenia.g@uci.edu)

Internet-Scale Datacenter Economics: Where the Costs
& Opportunities Lie
James Hamilton, Amazon

James kicked off HPTS by saying it is his favorite conference,
primarily because of the people in the room. He then claimed
there has been more innovation in the past five years than
in the previous fifteen, primarily due to advances in cloud
computing and the accessibility it provides to application
developers. Datacenters are expensive and don’t really help
innovation—when you are spending millions or billions of
dollars, you do things the way you know it will work.

At Amazon, there are always multiple datacenters under
construction. In the past four years, AWS has evolved into a
phenomenal business generating tons of revenue and passing
on savings to customers. Amazon was approximately a $2.7
billion annual revenue enterprise in 2000. Now, every day
Amazon Web Services adds enough capacity to have support
ed all of Amazon.com’s infrastructure in the company’s first
five years. There is a competitive advantage in having better
infrastructure.

The talk shifted to everything below the OS, because that is
generally where the money goes. Charts often show people
costs, but at a really large scale these costs are very minor
relative to the costs of servers and power distribution. As a
rule of thumb, “If you want to show people your infrastruc-
ture, you’re probably spending too much.” In the monthly
costs of a datacenter, servers (not power distribution) domi-
nate. However, server costs are decreasing, while network-
ing costs are creeping up. Networking is a problem precisely
because it is “trending up,” so it is broken—this is a huge
opportunity for innovation.

In this issue:

14th International Workshop on High Performance
Transaction Systems (HPTS) 75
Summarized by Michael Armbrust, Yingyi Bu, Aaron Elmore, Rik
Farrow, Eugenia Gabrielova, Hatem Mahmoud, Andy Pavlo, Steve
Revilak, and Pinar Tozun

Conference Reports

Every two years, 75–100 systems, database, and applica-
tion developers and researchers gather at Asilomar for the
Workshop on High Performance Transaction Processing
Systems (HPTS). The name, something of a misnomer,
stems from its origin in 1985, when Jim Gray, Dieter
Gawlick, Andreas Reuter, and other luminaries invited
practitioners and academics to discuss the challenges and
successes in the area of large, scalable, high-throughput
systems. Today, I think of HPTS as the place where people
with large-scale problems come to talk with people who
like to solve large-scale problems. The crowd is a seamless
blend of researchers and practitioners and infrastructure
suppliers and consumers.

Each HPTS seems to have a dinstinctive flavor. A few years
back, it seemed that all the large online service providers
were talking about how they used Lucene to solve large-
scale problems. This year, there was a lot of talk about inte-
grating NoSQL solutions into large-scale services. HPTS
feels a lot like HotOS, but with more emphasis on data and
less emphasis on operating systems. This year Rik Farrow
went to HPTS to soak in the ambience, learn a bit about
the community, and coordinate student scribes so that we
could bring a taste of HPTS to the USENIX community.
Unlike many USENIX workshops, HPTS is not based on
paper submissions; the written record mostly consists
of personal blog postings, a collection of presentations,
and some less-than-one-page submissions. These reports
are the closest thing you’ll find to an HPTS proceedings,
although Web surfing will reveal several personal blog
reports.

—Margo Seltzer, USENIX Acting Executive Director

 76 ;login: VOL. 37, NO. 1

found in finance, automation, and measurement. The pur-
pose of IEEE 1588 is simple installation, support for hetero-
geneous clock systems, and minimal resource requirements
on networks and host components.

PTP uses a master/slave model to synchronize clocks
through packets over unicast and/or multicast transport. It
follows a simple protocol: master and slave devices enabled
with PTP send messages through logical ports to synchro-
nize their time. Of the five basic PTP devices, four are clocks.
Each clock determines the best master clock in its domain,
including itself. It is very difficult to achieve high precision,
so some hardware-assisted time stamping can be used to
help accuracy (which is more complex than it sounds). A few
key lessons in working with PTP are that shallow, separate
networks are preferable; anything too hierarchical will prove
difficult to manage and synchronize. Accuracy depends
largely on hardware and software abilities and interaction.
Additionally, GPS satellite visibility is needed for the GMC
(Grand Master Clocks, the most accurate).

Krishna closed by encouraging audience members to submit
to ISPCS 2012, which will take place in San Francisco. Learn
more at http://www.ispcs.org. A central theme of the Q&A
was whether these time precision techniques are accessible
to the average application developer. How can an average
application, subject to layers of virtualization and delays,
take advantage of precision timing? The main takeaway
was that, with some planning, developers can certainly take
advantage of advances in time synchronization. The slides
for this talk can be found at http://www.hpts.ws/sessions/
Synchronization.pdf.

Not Your Traditional Data Management Session
Summarized by Andy Pavlo (pavlo@cs.brown.edu)

Enterprise Supercomputing
Ike Nassi, SAP

Ike began with a harsh denunciation and lamentation about
current enterprise computing hardware, which supports only
a single TB of DRAM on a single motherboard. That limita-
tion makes it difficult for servers to be used for enterprise
computing systems, because they often have a much greater
working set size. Ike strongly believes it is time to re-exam-
ine our current predilection for shared-nothing architectures
and that the database research community should take
advantage of developments in high-performance computing
research from the past 25 years, which has favored a shared-
everything architecture. Large memory systems on the scale
required by SAP are simply not being built; thus Ike sought to
create one himself.

Ike presented a new DBMS server architecture, currently
under development at SAP, which uses a virtual shared-

Another area with great potential for innovation is cooling
systems, which have remained the same for about 30 years.
Fans moving air is expensive, and moving water is also
fairly expensive. Datacenters of the future could be designed
beautifully with eco-cooling, no AC required. In the mean-
time, modular and pre-fabricated datacenters are regaining
popularity, because of how quickly they can be deployed.
Making datacenters better isn’t just a technical advantage, it
is an enormous business advantage.

Bruce Lindsay (Independent, ex-IBM) commented on the
declining cost of network ports. Someone asked about Open-
Flow, and James said that Google supports Quagga for rout-
ing, and OpenFlow comes from Stanford. Both open up the
infrastructure by allowing the control plane to run centrally,
with cheap hardware for running the data plane.

Someone noted that standard practice in the computer indus-
try is to “prepare for the worst.” James replied that there
are test sites running with high-voltage direct current and
many high-profile datacenters have very robust strategies for
ensuring uptime (such as fully dedicated power generators).
However, due to high demand, it can be hard to know which
workloads will be running in a datacenter at a given time.

Slides from this talk can be found at http://mvdirona.com/
jrh/TalksAndPapers/JamesHamilton_HPTS2011.pdf.
James can be reached at James@amazon.com.

The Rise of Dark Silicon
Nikos Hardavellas, Northwestern University

Dr. Hardavellas was unable to make it to HPTS this year but
has made the slides for his talk available at www.hpts.ws/
sessions/Hardavellas.pdf.

The Hitchhiker’s Guide to Precision Time
Synchronization
Krishna Sankar, Egnyte

Before he become Lead Architect at Egnyte, Krishna was a
Distinguished Engineer at Cisco Systems. In his free time
he enjoys working as a technical judge for FIRST LEGO
League Robotics. He began his talk by emphasizing that time
synchronization is different from time distribution. There
is incredible value in offering time precision in an applica-
tion. Ocean observatory networks, industrial automation,
cloud computing, and many other fields would benefit. Time
synchronization is also slowly finding its way into routers
and blade server fabrics.

Krishna gave an overview of IEEE 1588 v2 PTP (Precision
Time Protocol), which concerns the sub-microsecond syn-
chronization of real-time clocks in components of a network
distributed measure and control system. This capability is
intended for relatively localized systems, like those often

 ;login: FEBRUARY 2012 Conference Reports 77

Margo Seltzer asked whether making certain assumptions
about the physical layout of the graphs could be exploited.
That is, could performance be improved if the system stored
the data in a way that optimized for a particular processing
algorithm? Randal responded that such techniques would be
unlikely to work for attribute-rich graphs, since there is no
optimal ordering. Roger suggested that he put the answer in
their database and be done with it, eliciting laughter. Mike
Ubell asked whether the cache was throttling IOPS, and
Randal said yes, that there is lots of bookkeeping and page
structures to manage. James Hamilton asked why not have
the database use memory directly, and Randal said that is
where they are going. They want to get away from local and
global data structures. James pointed out that databases had
already done this. Mohan asked about latches, and Randal
replied that they want only locks that matter, such as a read
lock on dentry and on mapping.

Someone suggested proper indexing, declaration of graph
processing, having the database make decisions in advance.
Randal replied that that is ground that has been trod before.
Someone else pointed out that it seemed they were looking for
storage memory that had DRAM-like characteristics. Randal
agreed, saying that without a memory hierarchy his talk
would be a no-op.

Flexible Hardware for Flexible Data Intensive Software
Arun Jagatheesan, Samsung

Arun Jagatheesan from Samsung shared his perspective
on new hardware trends and configurations for big-data
systems and supercomputing platforms. He was specifi-
cally focused on the flexibility of both the hardware systems
(i.e., allowing administrators to configure the hardware)
and the software platforms that they support (i.e., allowing
users to execute variegated workloads). Arun began with an
overview of the flash-based Gordon system that he helped
to develop while at the San Diego Supercomputer Center in
2009. Arun said that the three main lessons that he learned
from this project were (1) not all the configuration options
that one needs are available in hardware, (2) there is a nebu-
lous tradeoff between flexibility and performance, and (3)
manufacturers, applications, users, and administrators are
unprepared for new hardware.

From this, Arun then introduced his more recent work on
Mem-ASI at Samsung. Mem-ASI is a memory-based storage
platform for multi-tenant systems that is designed to learn
the access patterns and priorities of applications and react to
them accordingly in order to improve throughput. Such pri-
orities could be either service-level hints from applications,
service-level requests from the computing platform’s infra-
structure, or simply how the individual application accesses
data. This additional information could be used by the

everything paradigm built on a single rack cluster. In SAP’s
new system, the database executes on a single instance of
Linux, while underneath the hood the ScaleMP hypervisor
routes operations and data access requests over network-
ing links (i.e., no shared buses) to multiple, shared-nothing
machines. By masking the location of resources through a
coherent shared-memory model, Ike argues that they are able
to minimize the amount of custom work individual applica-
tion developers have to do in order their database platforms.

The early morning audience was languid, but several
skeptics, such as Margo Seltzer, were concerned that the
data links between machines would not match the speed of
DRAM. Ike assured these doubters that high-performance
communication links such as InfiniBand would be sufficient
for this system. He also remarked that the system currently
does not support distributed transactions; thus there is no
message passing needed between nodes. Roger Bamford
(Oracle) asked, why divide the system into so many cores, and
Ike replied that they need the RAM. Adrian Cockcroft asked
how common failures are. Ike said that this is a lab test so
far, and in thirty days there were no failures. Margo Seltzer
said she loved this project, which reminded her of late ’80s
shared memory multiprocessor systems such as Encore. Ike
said that unlike the early systems, which used busses, their
system is using fast serial connections, and he suggested
that people not be blinded by what happened in the past. Both
Margo and James Hamilton wondered about the problem
of having a NUMA architecture, especially when the ratio
of “near” memory to “far” memory reaches 10 to 1. Ike said
that he lied, that all memory is used as if it were L4 cache.
Roger pointed out the cost of going to the cache coordinator,
and Ike replied that identifying the location of memory has a
constant cost.

Forget Locality
Randal Burns, John Hopkins University

Randal Burns, a systems research professor at Johns
Hopkins, raised the issue that the canonical optimizations
used in DBMS systems were insufficient to achieve high-
performance data processing (i.e., > 1 million IOPS) on large
and complex graph data sets. This is because any algorithm
that must perform a scan of the entire data set or a random
walk in the graph cannot take advantage of locality in the
data. Thus, optimizations such as partitioning, caching, and
stream processing are rendered impotent.

Randal then discussed ongoing work at Hopkins that seeks
to understand the main bottlenecks that prevent modern
systems from scaling to larger I/O operation thresholds.
His work shows that low-level optimizations to remove lock
contention and interference can improve throughput by 40%
over file access through the operating system.

 78 ;login: VOL. 37, NO. 1

ficulties in programming against eventual consistency.
HBase also provides a simple consistency model, flexible
data models, and simplified distributed data node manage-
ment. MongoDB usage for Craigslist archival and Foursquare
check-ins were briefly highlighted.

After detailing NoSQL databases and use cases, Adam
presented takeaways for the database community. First, and
most contentiously, is developer accessibility. Adam said
that the ability of a programmer to set up and start using a
NoSQL db really mattered. Bruce Lindsay (ex-IBM) strongly
objected to the question on “whether first impressions made
within five minutes of database setup and use matter.” Margo
Seltzer (Harvard) countered that a new generation of devel-
opers, who use frameworks such as Ruby on Rails, do make
decisions on accessibility and that these developers should
matter. Adam furthered the argument by claiming acces-
sibility will matter beyond minutes in schema evolution,
scaling pains, and topology modifications. Database devel-
opment should also examine the ecosystem of reuse found
in some NoSQL projects. This is exemplified in Zookeeper,
LevelDB, and Riak core becoming reusable components for
systems beyond their initial development. Lastly, the NoSQL
movement espouses the idea of polyglot persistence, where
a specific tool is selected for a task. Selecting various data
solutions can create painful data consistency issues, as an
enterprise’s data becomes spread among disjoint systems.

In closing, Adam presented several open questions. These
focused on data consistency, datacenter operational trade-
offs, assistance for scaling up, the ability to compare NoSQL
data stores, and next-generation databases. A question by C.
Mohan (IBM) about the need for standardization of a query
language drew mixed reactions.

The Present and Future of Apache Cassandra
Jonathan Ellis, DataStax

Jonathan Ellis, of DataStax and a major contributor to
the Apache Cassandra project, outlined developments in
the recent version 1.0 release and goals for future Cassan-
dra releases. Inspired by Google’s BigTable and Amazon’s
Dynamo, Cassandra began as a project at Facebook before
becoming an Apache incubator project. Cassandra’s popu-
larity is partly due to the ability for multi-master (and thus
multi-datacenter) operation, linear scalability, tunable
consistency, and performance for large data sets. Cassandra’s
user base today includes large companies such as Netflix,
Rackspace, Twitter, and Gamefly.

For release 1.0 of Cassandra, leveled compaction was intro-
duced to improve the reconciliation of multiversion data files.
Advantages over the previous size-tiered compaction include
improved performance due to lower space overhead and
fewer average files required for read operations. Addition-

system for more intelligent scheduling and resource manage-
ment. Arun believes that such a model could both improve
performance and possibly reduce energy consumption.

James Hamilton said he could understand the power savings,
but not the factor of 4 for performance gains. Arun said that
the idea is that you can change something on the memory
controller to change what is happening at the transport layer.
James asked if this had to do with the number of lanes com-
ing off the core, and Arun replied that it is not about lanes but
about what you can do behind those lanes.

Mapping the NoSQL Space
Summarized by Aaron Elmore (aelmore@cs.ucsb.edu)

The NoSQL Ecosystem
Adam Marcus, MIT

Adam Marcus provided a brief history of the origins of
NoSQL, beginning in the late 1990s with Web applications
developed using open source database systems. Applica-
tions that saw increased load began wrapping stand-alone
DBMSes to allow for sharding to achieve scale. Additionally,
relational operations were removed and joins were moved to
the application layer to reduce costly database operations.
These modifications led to the creation of databases that
went beyond traditional SQL stores and came to be referred
to as Not Only SQL (NoSQL). With a plethora of recent
NoSQL options, Adam lightheartedly introduced Marcus’s
Law, which tells us that the number of persistence options
doubles every 1.5 years.

The majority of NoSQL stores rely on eventual consistency
and are built using a key-based data model, sloppy sche-
mas, single-key transactions, and application-based joins.
However, exceptions to these properties were highlighted,
including alternatives to data models, query languages,
transactional models, and consistency. For example, while
many NoSQL databases utilize eventual consistency, many
alternatives exist, such as PNUTS’s timeline consistency or
Dynamo’s configurable consistency based on quorum size.
With a basic understanding of NoSQL properties, real-world
usage scenarios were outlined.

Recently, Netflix has undergone a transition from Oracle to
Cassandra, to store customer profiles, movie watching logs,
and detailed customer usage statistics. Key advantages that
motivated the migration include asynchronous datacen-
ter replication, online schema changes, and hooks for live
backups. More information about this migration is detailed
in Adrian Cockcroft’s paper at http://www.slideshare.net/
adrianco/migrating-netflix-from-oracle-to-global
-cassandra. Contrasting Cassandra, Facebook chose HBase
for the new FB Messages storage tier, primarily due to dif-

 ;login: FEBRUARY 2012 Conference Reports 79

major key are clustered on the same replication group of stor-
age nodes. Operations are simple CRUD (create, read, update,
and delete), read-modify-write (or compare-and-set style),
and iteration. CRUD may operate on one or more records
with the same major key. ACID transactions are provided
but may not span multiple API calls. Iteration is unordered
across major keys and ordered within major keys. Manage-
ment and monitoring of the system are available through a
command-line interface and Web-based console. Oracle’s
NoSQL database is built upon the battle-tested, high-
throughput, large-capacity, and easy-to-administer Berkeley
DB Java Edition/High Availability. Since Berkeley DB JE/HA
was built for a single replication group, features such as data
distribution, sharding, load balancing, multi-node backups,
and predictable latency (which was highlighted as a difficult
goal) were required to achieve better scaling.

Hashing a major key, modulo the number of partitions, iden-
tifies the group of nodes responsible for storing replicas of
a data record; this group provides high availability and read
scalability. The Rep[lication] Node State Table (RNST) iden-
tifies the best node to interface within a replication group.
The RNST is stored at the driver and is updated by responses
sent to the client. From the RNST the driver can determine
a group’s master, staleness of replicas, last update time,
number of outstanding requests, and average trailing time for
a given request. Replication is single-master, multi-replica,
with dynamic group membership provided by election via the
Paxos protocol. Durability can be configured at the driver or
request level, and there are options for disk sync on both the
master and replicas and replica acknowledgment policies.
Consistency can be specified on a per-operation basis as well,
with options to read from (1) the master, (2) any replica that
lags no more than a specified time-delta from the master, (3)
any replica that is at least as up-to-date as a specific version,
or (4) any replica (i.e., with no consistency guarantees). The
presentation concluded with an evaluation of the database’s
performance and scale-out capabilities.

Mohan asked about multi-node backup. They can do that, but
it will not be consistent. As with Cassandra, they can take a
snapshot for a consistent backup. Roger asked how they are
supporting read-modify-write. Charlie said that the applica-
tion does a get, does operations, then a put-if-version, and,
conditionally, updates. Mohan wondered if reads are guaran-
teed to see the final versions, and Charlie answered that he
would cover that later, but there are no guarantees.

There was vigorous discussion after Charlie finished. Mohan
asked if the data and operations log were stored on the same
disk. Margo Seltzer, who is also involved with Oracle NoSQL,
said that they use a log-structured data store and that data
and log are stored the same way. James Hamilton wondered
if they could migrate off a node if it gets hot, and Charlie

ally, individual nodes can construct local secondary indexes
on columns; however, denormalization and materialized
views are necessary to avoid join operations. Improvements
mentioned but not discussed were compression, expiring
columns, and bounded worst-case reads.

An interesting application that was developed for Cassandra
was the ability for eventually consistent counters. Every
node in the system maintains a list of counter values associ-
ated with each node. Any local modification for the counter
performed only modifies the replica’s value of the counter.
To ascertain the value of the counter, all replica values are
summed. This allows for concurrent modifications to the
counter without needing synchronization between nodes.

Heavy optimizations were undertaken to improve read and
write performance for Cassandra, including JVM tuning
and garbage collection. Future advances in Cassandra will
involve easing administration and use, improving the query
language, support for range queries, and introducing entity
groups. Pat Helland (ex-Microsoft) asked how to improve the
performance of random reads for large data sets. Jonathan
said a reliance on SSD would be needed to make significant
gains. Someone wondered why Facebook had moved from
Cassandra to HBase; Jonathan answered that it was mostly
a personnel issue within Facebook. Mehul Shah (Nou Data)
asked about the advantages of developing in Java. Jonathan
said they included core consistency, memory management,
immutable collections, and a rich ecosystem. The last ques-
tion was about the largest install of Cassandra. Jonathan
thought that it was around 400 nodes and 300 TB of data.

Oracle’s NoSQL Database
Charles Lamb, Oracle

Charles Lamb began the presentation on Oracle’s latest data
store with what NoSQL means to Oracle. A NoSQL database
encompasses large data, distributed components, separation
of OLTP from “business intelligence,” and simplified data
models, such as key-value, document stores, and column
families. Lamb said that Berkeley DB alone does not meet
all of these requirements and that the focus of the Oracle
NoSQL DB is a key-value OLTP engine. Requirements for the
database include support for TB to PB scale data sets, up to
one million operations per second, no single point of failure,
predictably fast queries, flexible ACID transactions, support
for unstructured or semi-structured data, and the ability to
have a single point of support for the entire stack, from hard-
ware up to the application.

The system has multiple storage nodes, potentially residing
in multiple datacenters, and is accessed by a jar deployed
within the application. This jar, or driver, maintains informa-
tion about the state of each storage node. Data is accessed
using major and minor keys, and all records with the same

 80 ;login: VOL. 37, NO. 1

writes; or (3) scraping the commit log and writing it to EBS
every 30 seconds. Also, there are multiple restore modes,
multiple ways to do analytics, and multiple methods for
archiving. Backups are PGP encrypted and compressed, with
the lawyers keeping the keys for encryption. If S3 gets broken,
they also make an additional copy to another cloud vendor.

Adrian pointed out that they find cloud-based testing to be
frictionless. As an example, he asked a Netflix engineer to
spin up enough Amazon instances to perform one million cli-
ent writes per second. It took a couple of experiments to come
up with the correct number of nodes, 288, to do this, and a
total of two hours and about $500 of Amazon charges.

Margo Seltzer asked the size of their biggest database. It is
currently 266 GB. Adam Marcus (MIT) asked if engineers
had their own machines, to which Adrian replied that they
used Jenkins for build testing,and had a special Eclipse plu-
gin for working with EC2.

Towards Improved MySQL Scalability and Reliability
Ryan Huddleston, RightNow

Summarized by Rik Farrow (rik@usenix.org)

Ryan described RightNow as a company that provides
MySQL as a service. Located in Bozeman, Montana, the
one-thousand-person company provides database services,
on the company’s servers, for over two thousand customers
worldwide. The US military is one of their larger customers.
RightNow uses the Percona Server MySQL port and has paid
companies like Percona to add features to MySQL. In 2001
they paid to have the Innodb file-per-table feature added.
They found they needed to switch from ext3, the default
Linux filesystem, to XFS, because file deletion time was scal-
ing with file size. Someone asked if this is still an issue with
ext4, and Ryan said it was. James Hamilton asked if create

table was an issue, and Ryan said it never had been an issue.

Ryan discussed their technique for migrating customers
between shared servers when a customer’s load becomes too
great. James Hamilton wondered how they prevent a single
customer from dominating a server. Ryan said they had a
system that keeps track of load and can migrate a customer to
another node. It keeps track of queries and can queue queries
that will take a long time and move the queries from real-
time to batch. Ryan said that their goal is to remain an open
source company and that they plan to push all patches up to
Maria DB (a branch of MySQL).

Bruce Lindsay asked whether adding a column requires them
to delete a table. Ryan said it does. They add tables/columns
on a slave server, move data in batches, cut over columns and
tables, then drop tables and columns. Then they snap the cus-
tomer to the slave and alter the master while doing updates.
The entire process appears to occur with no delay for queries.

replied, Not in this version. They do use hashing for even data
distribution. Shel Finkelstein (SAP) asked about time-based
consistency. Charlie explained that data is tagged with a
Java-based timestamp. Mehul Shah wondered if they can
continue operations after a partition, and Charlie said they
could do reads but not writes without access to the master for
that major key. Mehul then wondered if they can move parti-
tions around and Charlie replied, Not in this release.

Someone asked if the drivers knew about all partitions. They
get initialized on the first request and can connect to any rep-
lication nodes. Roger asked Charlie to describe their access
control model. Charlie said that the assumption is that the
system is in a DC, producing an “OMG” response.

Big Data Experiences & Scars

Netflix Goes Global
Adrian Cockcroft, Netflix

Summarized by Hatem Mahmoud (hatem@cs.ucsb.edu)

Adrian Cockcroft described the process of migrating Netflix
to a public cloud in order to provide highly available and glob-
ally distributed data with high performance. The migration
focuses on the control plane (e.g., users’ profiles, logs), not the
actual movie streaming, which is done using CDN. Amazon
AWS was chosen as the public cloud to host Netflix’s services
because it is big enough to allocate thousands of instances
per hour as needed. Adrian mentioned a remarkable idea in
his presentation: the notion of design anti-patterns, that is,
that design is better defined by undesirable properties than
by desirable ones.

The Netflix migration involved a bi-directional replication
phase in which data was replicated between Oracle and
Simple DB, while backups remained in the datacenter via
Oracle. Later on, replication of new account information to
the datacenter was eliminated. Each data item is replicated
to three different zones (i.e., different buildings with differ-
ent power supplies within the same datacenter). This keeps
all the copies close for fast synchronization. There is a trad-
eoff between recoverability and latency; to achieve the lowest
latency a write operation must acknowledge once it is done
on at least one replica, while to achieve the highest recover-
ability a write operation has to wait for all three replicas to
be updated before acknowledging the user. The middle path
is to use a quorum of two replicas. Overall, Netflix’s data
are distributed across four Amazon regions, plus a backup
region. Remote replication can be also achieved through log
shipping.

Backup is done by: (1) taking a snapshot (full backup) periodi-
cally by compressing SSTable and storing it to S3; (2) doing
incremental compressed copying to S3 triggered by SSTable

 ;login: FEBRUARY 2012 Conference Reports 81

second. Their load is 55% read and 45% write, over 6 PB of
data (2 PB with three replicates), all compressed using LZH.
Margo asked if they lose all the users within a DC if it goes
down, and Kanna replied that they do offline backups to
other DCs. Cris Pedregal-Martin asked if they had non-peak
hours. Kanna answered that Monday between 12 and 2PM is
their peak, so in a sense, yes. Adam asked if they planned on
upstreaming their patches to HBase. Kanna said that they do,
as most of what he talked about is open source.

Someone asked about network speed. Kanna said they use
1G at hosts and 10G at the top of racks. Mike Caruso asked
what type of changes they made to the schema. Kanna said
that making threads longer meant writing metadata back to
HBase, so they fixed that as an example. Then he said there
is lots more work to be done, such as fixing the problem of a
single HDFS Name Node and having fast hot backups. Mohan
asked if all users are mapped to US DCs, and Kanna said yes.
Cris asked if they ever lose messages, and Kanna said that
they don’t know, but they do sample, and sampling looks good.

Big Analytics
Summarized by Michael Armbrust (marmbrus@cs.berkeley.edu)

Big Data at eBay
Tom Fastner, eBay

There are a number of important use cases for analytics over
big data at eBay, spanning daily decisions such as A/B testing
for experiences or treatments on ebay.com all the way to sup-
porting long-term and multi-step programs such as the buyer
protection plan. Tom Fastner described the architecture of
their system and some of the challenges they have experi-
enced operating at such a large scale (50+ TB/day of new data
and 100+ PB/day processed by 7,500+ users and analysts).

Analytics at eBay is supported by three separate platforms,
each with its own strengths but with some common capa-
bilities. At the high end they run EDW (Enterprise Data
Warehouse) systems based on Teradata for all transactional
data, sharing it with a wide user base and supporting >500
concurrent requests per minute. For the application logs and
other structured or semi-structured data, they use a low-end
enterprise-class Teradata system. The world’s largest Tera-
data installation (256 nodes, 36 PB of spinning disks able to
hold 84 PB of raw data with compression) is supporting use
cases on very large, but still structured, data. This platform
is called Singularity. The dominating data use today is user
behavior information. It also serves as a DR for the EDW
data, as most of that data is required to be joined to the user
behavior data for analytics.

The ability to easily work with semi-structured data is
important for several reasons. First, the use of semi-struc-

Someone exclaimed, “This was all fixed 25 years ago!” Ryan
calmly replied that if they were doing this on Oracle, it would
cost them $25 million a year. Instead it costs them $100,000
for support of MySQL.

Storage Infrastructure Behind Facebook Messages
Kannan Muthukkaruppan, Facebook

Summarized by Hatem Mahmoud (hatem@cs.ucsb.edu)

Kannan Muthukkaruppan explained why Facebook has
moved from Cassandra to HBase as a storage system for
Facebook messages, the architecture used, and the lessons
learned from that experience.

HBase is used to store small messages, message metadata
(thread/message indices), and the search index, while large
messages and message attachments are stored in Hay-
stack. HBase was chosen for its high write throughput, good
random read performance, horizontal scalability, automatic
failover, and strong consistency. Besides, by running HBase
on top of HDFS the system takes advantage of the fault toler-
ance and scalability of HDFS, as well as the ability to use
MapReduce to do analytics.

Each of the datacenters that host Facebook’s data is con-
sidered a cell that is managed by a single HBase instance. A
cell contains multiple clusters, and a cluster spans multiple
racks. Each user is assigned initially to a random datacenter,
although the user may later be migrated to another datacen-
ter via a directory service. Typically, a datacenter consists
of several buildings. Thus each data item stored in HBase is
replicated three times, in three different buildings.

The migration to HBase took more than a year. Shadow test-
ing was used before and after rollout. To account for potential
bugs, Scribe was used to write offline backups to HDFS,
both locally and at remote datacenters. The developers had
to introduce several modifications to HDFS to improve reli-
ability, including sync support for durability, multi-column-
family atomicity, several bug fixes in log recovery, and a new
block replacement policy to reduce the probability of data
loss. Also, to improve availability, the developers introduced
rolling upgrades to account for software upgrades, online
alter table to account for schema evolution, and interrupt-
ible HFile compaction to account for cluster restarts and load
balancing. The developers also added several modifications
to improve performance and solicit fine-grained metrics.

Someone asked whether they have an additional sharding
layer on top of HBase. Kanna said yes, but that HBase only
works within a single DC. Margo Seltzer asked if users are
mapped to cells randomly. Kanna said yes and that they can
migrate users later. Overall, they average 75+ billion read-
write IOPS per day, with a peak of 1.5 million operations/

 82 ;login: VOL. 37, NO. 1

Finally, at the top of the stack is the SCOPE language. Influ-
enced heavily by SQL and relational algebra, SCOPE provides
developers with a declarative language for manipulating data
using a SQL-like language extended with C# expressions.
The SCOPE optimizer, which is based on the optimizer found
in Microsoft SQL Server, decides the best way to parallelize
the computation while minimizing data movement.

Since Cosmos is a hosted service, it’s important to allocate
resources fairly among the system’s many users. This is
accomplished by defining the notion of a virtual cluster (VC).
Each VC has a guaranteed capacity, but can also take advan-
tage of idle capacity in other VCs. Within any given VC the
cost model is captured in a queue of work (with priority).

Harumi Kuno from HP Labs asked Ed to elaborate on how
they divide cluster resources. Ed responded that each VC is
provided with tokens that represent some amount of process-
ing cores, I/O bandwidth, and memory. Mike Caruso asked
if they do any migration of data, and Ed said that they have,
because they bring up or shut down clusters.

Scal(a)ing up Big Graph Analytics
Tyson Condie, Yahoo! Research

Tyson Condie presented ScalOps, an embedded domain-spe-
cific language in the Scala programming language designed
for running machine-learning algorithms over big data.
ScalOps expands on current systems such as MapReduce and
Spark by providing a higher-level language based on rela-
tional algebra that natively supports successive iteration over
the same data.

A motivating example for their system is performing spam
classification for Yahoo! Mail. Their first prototype used Pig
to extract labels and generate a training set which was then
used to train a model using sequential code. This code was
executed repeatedly until a satisfactory model was found.
Unfortunately, this process was suboptimal, for several
reasons. First, since their tools did not natively support the
iteration, they needed to construct a fractured workflow
using Oozie. Second, the sub-sampling required to fit the
data on a single machine hurt the accuracy of the classifier.
Finally, copying data to a single machine can be very slow.

An obvious improvement is to parallelize the training algo-
rithm. This, however, does not fit nicely into the MapReduce
model. Thus, real-world implementations often involve using
fake mappers that cross-communicate, eliminating many
of the fault-tolerance benefits of the MapReduce model.
While systems like Spark provide an improvement over such
practices, by allowing users to explicitly cache data for sub-
sequent iterations, explicit caching is a point-solution that
limits opportunities for optimization. In contrast, ScalOps is
a Scala DSL that is capable of capturing the entire analytic
pipeline. It supports Pig Latin and has a looping construct

tured data greatly simplifies the process of modeling the data
and results in a system that is less vulnerable to changes.
Additionally, the resulting de-normalization of the data can
result in improved performance, as the data is already joined.
Singularity enables processing over this semi-structured
data by providing developers with SQL functions that extract
individual items and sequences from the key/value pairs
stored in a given row.

The final platform of their data analysis system is a Hadoop
cluster running on 500 commodity nodes, used primarily for
structuring unstructured data and for finding patterns that
are difficult to express in SQL.

There is no silver bullet to cover all forms of analytics on a
single platform. Integration across the three platforms is key.
eBay deployed a self-service data shipping tool and is working
on a transparent bridge between Teradata and Hadoop.

Mike Caruso asked if they had ever compared performance.
It is not worth the effort; Hadoop is cheaper but less efficient
than Teradata or EDW. Stephen Revilak (University of Mas-
sachusetts) asked how big their DBA team was. Tom said
they had four DBAs and an offshore support contract.

Cosmos: Big Data and Big Challenges
Ed Harris, Microsoft

Ed Harris presented Cosmos, a multi-petabyte storage and
query execution system. Used in Microsoft’s Online Service
Division, Cosmos is designed for large-scale back-end com-
putation, such as parsing data from Web crawls, processing
search logs, and analyzing clickstream data. Cosmos is run
as a service within Microsoft; users provide the data and que-
ries to be run, without having to worry about the underlying
infrastructure. At a high level, Cosmos is broken into three
major layers: storage, execution, and the SCOPE language.

The storage layer is organized around the concept of extents.
An extent is an immutable block of data, up to 2 GB in size.
The storage layer automatically handles compression and
ensures that each extent is replicated to three different
extent nodes for fault tolerance. Multiple extents are concat-
enated to form a stream, and the storage layer is also respon-
sible for maintaining the namespaces of available streams.

On top of the storage layer, the execution engine is respon-
sible for taking a parallel execution plan and finding comput-
ers to perform the work. For better performance, the system
ensures that computation is co-located with data when
possible. The execution model is based on Dryad, which is
similar to MapReduce but more flexible, since it allows the
expression of arbitrary DAGs. The execution engine, by man-
aging failures and restarting computation as needed, also
shields the developer from some of the flakiness inherent in
running jobs on large clusters of commodity machines.

 ;login: FEBRUARY 2012 Conference Reports 83

concurrency control. Shah answered that larger transactions
could be built out of ACU primitives if needed.

Not all operations need the strong consistency of ACU, so
applications can mix strong and weak consistency operations
for the same data store. This introduces subtle interactions,
such as weakly consistent operations that are not serialized
against strongly consistent operations. Developers are not
used to thinking about these interactions, and that typically
results in workarounds in higher layers. Armando Fox (UC
Berkeley) asked if the operations are not serializable, due to
core operations checking different targets. Shah answered
that they are serializable, because a read-write dependency
exists between the operations. If they were strongly consis-
tent operations, they would be serialized by the system.

With the assumption that partitions will occur, CAP presents
a choice between consistency and availability. However, the
terms in CAP are not crystallized. Consistency could include
notions of recency, isolation, or integrity. Availability could
encompass uptime, latency, or performance. Partition tolera-
tion could be supporting a single node or a minority partition.
Shahed claim that CAP is not a theorem to be applied, but
more of a principle. With the many semantics that exists for
consistency and availability, an ideal single system should
support various consistency options that span a spectrum
from consistency (transactions) to availability (eventual
consistency). This was likened to isolation levels, which are
easy to understand, configurable, and compatible.

Several options exist when adding consistency to a weakly
consistent system. Layering services, coordinated compo-
nents, and an integrated approach are techniques to provide
a consistency primitive, such as ACU, to a weakly consistent
database. The integrated approach still requires insight into
mixed consistency operations, but these complexities are
abstracted from application developers. Shah said that if
you are starting over, your system design would benefit from
relaxing a strongly consistent core rather than strengthening
a weakly consistent core. Eventual consistency is required
and, at the same time, is not enough, and now is the time to
rigorously examine our understanding of consistency.

Flexible OLTP Data Models in the Future
Jags Ramnarayan, VMware

Jags Ramnarayan presented his view of the future of OLTP
databases. He noted the high demand that exists currently for
databases that can support low latency, predictable perfor-
mance, graceful handling of large spikes in load, big data
support, and in-memory operations on commodity hard-
ware. Data input is increasingly trending toward streaming
and bi-temporal behavior. Additionally, rapid application
development requires a more flexible schema to support
frequent changes. Most significantly, while a single database

that can efficiently capture iteration. It runs on top of the
HyracksML + Algebricks runtime, which provides the system
with a relational optimizer and a data-parallel runtime.

Ed Harris (Microsoft) asked how they knew when iteration
for a given algorithm was complete. Tyson replied that for
global models the UDF would specify completion, and for
local models computation terminates when all messages
stop. Mike Stonebraker asked why they didn’t use R, given its
popularity with analysts. Nothing in their system precludes
the use of R UDFs. Mike Caruso asked how opaque UDFs are
and if this is a problem for optimization. There is no visibil-
ity into the UDFs, but the looping construct can look at the
underlying AST and perform algebraic optimizations.

Consistency Revisited
Summarized by Aaron Elmore (aelmore@cs.ucsb.edu)

Eventually Consistent Is Eventually Not Enough
Mehul Shah, HP

In an analysis of eventual consistency, Mehul Shah shared
experiences and insights with building a large distributed
key-value store at HP. Some applications need scalable solu-
tions to support high availability and globally distributed
data. Traditional DBMSes have limited scalability, due to
their consistency requirements, resulting in the creation of
NoSQL databases that dropped ACID and traditional mod-
els to achieve scale. This equates to traditional databases
providing CP and NoSQL databases providing AP. Eventual
consistency then becomes the standard tool to enable avail-
ability in a distributed environment. There are two myths
about NoSQL today: eventual consistency is enough, and
adding stronger consistency later is easy.

Shah described a database built at HP as a geo-distributed,
highly available, large object store that supports a large user
base and versioned keys by use of timestamps. Conceptually
the database is similar to S3, with unique accounts owning
multiple buckets, and each bucket having a unique name
and containing many objects. Buckets have unique owner-
ship and can be shared with other users via bucket permis-
sions. With this context, two partitioned users attempting to
concurrently create the same bucket is a conflict simplified
by strong consistency, whereas eventual consistency for
metadata operations, such as bucket creation and deletion,
could result in a user viewing unowned objects.

To facilitate strongly consistent operations and prevent
undesirable situations, the Atomic Conditional Update
(ACU) was introduced as a primitive for achieving consis-
tency. Multi-key and atomic get/test/put are operations that
ACU needed to satisfy with a single RPC call. Pat Helland
asked whether this was effectively concurrency control, or
a strongly consistent tool that can be used for optimistic

 84 ;login: VOL. 37, NO. 1

mind at the same time, and still retain the ability to func-
tion.” Similarly, the goal for database systems should be to
maintain functionality despite having potentially inconsis-
tent data sources. To understand whether data is inconsis-
tent, a complete view of the data’s context may be required.
A set of weather measurements without location or time
may seem like inconsistent data but is simply lacking event
details and provenance. After challenging notions of con-
sistency, Shel provided Jim Gray’s definition of consistency:
“A transaction is a correct transformation of the state. The
actions taken as a group do not violate any of the integrity
constraints associated with the state.”

Data inconsistencies can occur for a variety of reasons. First,
inconsistencies can derive from integrity constraint viola-
tions, such as impossible address information, corrupted-
entity foreign relations, violated business rules, or domain
constraints. Second, logical impossibilities can occur. This
can include unanticipated data unknowingly being trans-
formed, incomplete data, or real-world data contradictions,
such as a location changing that clearly could not relocate.
Third, replication issues include asynchronous data feed
corruption and relaxed consistency models for replication
protocols. Fourth, many databases run with read committed
as the default isolation level, which does not guarantee serial-
izability and can result in data inconsistencies. Normann
and Ostby’s A Theoretical Study of Snapshot Isolation in
EDBT 2010 was given as a reference for inconsistencies that
can arise even when using snapshot isolation.

In an ideal world inconsistencies in data would not exist,
but databases reside in the real world and need to handle
inconsistent data sources. Every application operates with
assumptions about the consistency of data, and disjoint
applications can make different assumptions about the
same inconsistent data source. Shel introduced the concept
of outconsistency, which involves providing an “outwardly
consistent view of the data” and guidelines for how applica-
tions should operate on inconsistent sources. This provides a
regimen that enables different applications to operate on the
same data source with some understanding of methods for
dealing with inconsistencies.

Approaches for addressing outconsistency were defined
as the following techniques, which are likely to be used in
combination. Preventing inconsistent data provides an identi-
cal view to the data, relying on approaches such as strong
integrity constraints, checking business rules, and utilizing
“transactional intent” (CIDR 2011) to prevent inconsisten-
cies at the source. Tolerating inconsistent data utilizes
expected inconsistencies to transform data for the outward
view. Ignoring inconsistent data filters the outward view to
include only data consistent for the purposes of the applica-
tion. Fixing inconsistent data requires the application to take
an active role in correcting the inconsistencies in the source

instance is ACID, rarely does ACID hold for enterprise-wide
operations. This results in data silos and duplication across
databases, so enterprises must live with cleaning and de-
duplication of data. Jags concluded that people actually do
not want ACID but, rather, deterministic outcomes.

Having outlined trends, Jags provided a brief overview
of VMware’s GemFire and the similar SQL-interfaced
SQLFire. GemFire is a highly concurrent, low-latency,
in-memory and distributed key-value data store. Keys and
indexes are stored in memory, with persistence of the data
handled by compressed rolling logs. Tables can be parti-
tioned or replicated, with replicas acting as active-active
for reads, but using serialized writes by a single master for
any given key. Distributed transactions are supported, but
effort is undertaken to prune queries to a single partition for
co-located transactions. Jags mentioned that GemFire sup-
ports asynchronous WAN replication and a framework for
read-through, write-through, and write-behind operations;
however, no details were given.

While hash partitioning typically provides uniform load bal-
ancing, databases should exploit OLTP characteristics to go
beyond key-based partitioning. Jags made a key observation:
the number of entities typically grows, not the size of each
entity. Additionally, access is typically restricted to only a
few entities. If related entities can be grouped, they can be co-
located and thus minimize the number of distributed trans-
actions. To build entity groups, compounded primary keys
should be constructed, using foreign keys to capture relation-
ships between entities. Grouping will largely prune opera-
tions to single-entity groups that are co-located, allowing
for scalable cluster sizes, transactional write sets on entity
groups, serializabilty for entity groups, and joins within
a group. This does not eliminate distributed transactions
across entity groups, since access pattern complexity invari-
ably goes beyond grouping semantics. Despite the promise of
hashed keys and grouping, hotspots and complex queries cre-
ate difficult scenarios for “partition aware” designs. Smart
replication of reference data, which is frequently joined with
partitioned data, can help with this.

Looking forward and beyond the traditional SQL models,
Jags described a polyglot OLTP database. This multi-purpose
data store should support (1) continuously changing, complex
object graphs, (2) structured transactional data, and (3) flex-
ible data models, such as JSON.

Inconsistency and Outconsistency
Shel Finkelstein, SAP, and Pat Helland

Shel Finkelstein’s presentation focused on approaches to
handle views based on inconsistent data sources. He began
with a quote by F. Scott Fitzgerald, “The test of a first-rate
intelligence is the ability to hold two opposed ideas in the

 ;login: FEBRUARY 2012 Conference Reports 85

from the pseudo-code in the paper. Finally, Chris showed
that the TLA tool can automatically check Cahill’s algo-
rithm. Chris also suggested that the audience read Lamport’s
book Specifying Systems as well as TLA+ Hyperbook (http://
research.microsoft.com/en-us/um/people/lamport/tla/
hyperbook.html).

Margo Seltzer said that the testable pseudo-code actually is
a specification, and TLA+ could be thought of as a specifica-
tion language. Chris replied that the word “formal” is like
death for many people, and he steers away from using that
word. He claimed to be an escaped video game programmer
who has never proven anything in his life. Mike Caruso asked
if Lamport’s TLA+ can generate code to the state machine
level, and Chris replied that Lamport designed his tool to
be very expressive declaratively, but it cannot be used to
compute. Adrian Cockcroft wondered why he couldn’t find
Lamport’s book at Amazon, and Ernie Cohen replied that the
PDF is available for free.

Verifying Real-World Transaction-Processing Code with
Microsoft VCC
Ernie Cohen, Microsoft

Ernie Cohen argued that testing sucks, and, instead, deduc-
tive verification should be widely used in production soft-
ware development. He proposed that programmers should
be able to write contracts such as pre-conditions, post-con-
ditions, and invariants in their code. Therefore, verification
could be done in a program-centric way. Ernie clarified that
the cost of deductive verification should be comparable to
complete functional testing.

After giving the high-level vision, Ernie briefly introduced
VCC (Verified Concurrent C), which was developed by his
group. VCC allows programmers to annotate their original
C code with contracts. Then he did a live demo to show how
VCC can find bugs in a C binary search program. Ernie added
several preconditions and invariants as annotations to the
code, and then bugs such as race conditions, buffer overflow,
and value overflow were quickly caught. After the live demo,
Ernie illustrated several useful constructs in VCC, such as
data invariants, ownership, and ghost data and code. Data
invariants are invariants on objects and can be defined as
part of type declarations. Ownership is mostly used for speci-
fying the contracts of concurrent reads/writes. Ghost data
usually represent abstract states, while ghost code is actually
executable contract and only run at verification time. Ernie
also showed how to add annotations such as invariants and
ghosts to make a piece of lock-free, optimistic, multiver-
sioned transaction processing code verifiable. Finally, Ernie
said that they should add prophecy support in VCC in order
to verify properties such as “whether a timestamp obtained
from the DB will be its final timestamp.”

data. For each approach a set of challenges were discussed.
A final claim was that all data, and subsequently transaction
processing, consists only of events, reports, and decisions.
Transactions and consistency should be discussed in this
context. The work presented is just the beginning of examin-
ing the fluid relationship between applications and data.

Graefe Goetz wondered whether “kicking the can down the
road” really means “eventually consistent”? Shel countered
that “kicking the can down the road” means that something
else deals with it. It can be data cleansing applications, ser-
vices with alerts, interpolation and extrapolation, or renewal
processes, such as SAP’s APO. Roger Bamford (Oracle) asked
if Shel would consider compensating transactions, and Shel
said that this fits into this category. Shah said that he had
experience with fixing these problems, and that it comes
down to cost, earlier versus later. Can you comment a little
on costs? Shel replied that the tradeoff has to do with coping
with inconsistencies or fixing them. Mike Caruso mused that
you could have an outconsistency in one system that would
be an inconsistency in a second. Shel concluded by asking the
audience to consider whether his factoring is correct, and if it
is whether we should write applications based on it.

It May Be Fast, But Is It Right?
Summarized by Yingyi Bu (yingyib@ics.uci.edu)

Debugging Designs
Chris Newcombe, Amazon

Chris Newcombe presented a model checking–like approach
for finding bugs at the design stage. He used Stoica et al.’s
2001 Chord paper as an example. “Chord: A Scalable Peer-to-
Peer Lookup Service for Internet Applications” is one of the
most cited computer science papers (8,966 cites as of Nov. 11,
2011). However, Pamela Zave from AT&T Research recently
found eight major defects in the Chord ring membership
protocol, using exhaustively testable pseudo-code (written
using Alloy). The testable pseudo-code is remarkably simple.
The example reveals that even top work done by the best
people and reviewed by very smart peers can still have bugs!
In particular, those systems bundling concurrency control,
recoverability, failure handling, and business logic together
are very hard to debug. However, test tools can help.

Chris proposed that pseudo-code should be written in a sup-
port tool rather than only in design documents, and people
should use the tool to do exhaustive testing on the pseudo-
code so that bugs could be found at the design phase. He
proposed that TLA+ and PlusCal should be the pseudo-code
language, and he used Michael J. Cahill’s SIGMOD 2008
paper “Serializable Isolation for Snapshot Databases” as a
running example to show how to get testable pseudo-code

 86 ;login: VOL. 37, NO. 1

Trusting the Cloud
Summarized by Steve Revilak (srevilak@cs.umb.edu)

Clouds & Condos
Pat Helland

Pat asked, “What can condos teach us about cloud comput-
ing?” Quite a few things! Condos place constraints on living
environments, but they also provide benefits: for example,
most repair and maintenance work is taken care of for you.
One can take advantage of these benefits, as long as there’s a
willingness to live within the constraints. Similar trends can
be seen with other types of buildings. Retail space and office
parks are built with a notion of how the space will be used but
without knowledge of who will be using them. This allows
building developers to support a wide variety of tenants; they
build to a common set of usage patterns and impose a few
constraints on what the building tenants can do.

Cloud computing can develop along similar lines. Cloud com-
puting can provide basic services, such as stateless request
processing, session management, load balancing, provision-
ing, and scalability. These services may not fit the needs of
every conceivable cloud user, but they will fit the needs of
most cloud users. We can design cloud computing systems
according to common patterns of use, just as we do for build-
ings, even if we don’t know who the cloud’s users will be.

Laws and norms governing landlord-tenant relationships
have evolved over time and work to the advantage of both
parties. Pat believes we could benefit from a set of common
rules that govern cloud providers and cloud users. Such rules
would provide fair treatment to users and offer protection to
service providers.

In summary, our relationship with buildings has changed
over time. As we’ve done with buildings, we need to develop
usage models and constraints, as well as rights and responsi-
bilities, governing the cloud computing environment.

Mike Caruso pointed out that customers will need to tell the
cloud providers what they want/need. Pat agreed, but said
that we already know some patterns. Someone pointed out
that it took many years for landlord-tenant law to evolve.
Armando Fox said that he already uses Heroku, and it pro-
vides many of the things he wants.

Go Fast and Don’t Break Things: Ensuring Quality in the
Cloud
Scott Hansma, Salesforce.com

Salesforce began life as a CRM application. It has evolved
into a full-blown development platform that conducts 575
million transactions per day. All Salesforce customers run
in a hosted environment, and all customers use the same

Armando Fox (UCB) asked if VCC can handle runtime poly-
morphism. Ernie pointed out the C includes runtime poly-
morphism, such as function pointers. Armando asked if VCC
works for languages other than C. They may port it to C++.

Data Without Provenance Is Like a Day Without
Sunshine
Margo Seltzer, Harvard University

Margo Seltzer argued that provenance is playing an increas-
ingly important role in computer systems. It is the “how,
when, why” metadata about the data. She used Wikipedia
revision history to illustrate provenance: by looking at the
editors historically, one can gain someconfidence about the
Wikipedia content. Provenance can come from instruments,
application software, system software, or software tools.
Provenance reminds people what has happened and gives
people a way to understand why something happened. Margo
pointed out that nowadays provenance is usually managed
manually, implied, embedded, or part of a workflow system.

Margo emphasized that provenance is everywhere! Every
day, people ask questions such as “Why does Facebook rec-
ommends this ad to me?” “Where does this file come from?”
“What did the customer do before she hit this bug?” Margo
advocates that provenance be built into every system in a
layered way. The key concept there is that each layer collects
provenance and each layer associates its provenance objects
with both upper- and lower-layer provenance objects. The
example systems Margo’s group has built include a prove-
nance-aware storage system, simple provenance in Post-
greSQL, and a provenance-aware Python workflow engine.

Rusty wondered why the person who wrote an algorithm
couldn’t supply provenance, and Margo said she wants the
algorithm to include the generation of the provenance, so that
the information generated can be used to improve the algo-
rithm. Pat Helland said that machine learning is like Mul-
ligan stew, it’s “ginormous,” and Margo agreed. But Margo
said she still wants everything, which is why disk vendors
love her. Jim Waldo (Harvard) said that for non-disk vendors,
transporting all the provenance data will not be wonderful
(or cheap). Margo pointed out that this is HPTS, so with a
provenance handle you can make distributed queries on rep-
licated stores wherever you want. Margo’s group has worked
on how much provenance you are likely to want. Jim asked if
this was a ratio of provenance to data. Margo answered that
it depends. Someone asked if provenance was like using CVS,
and Margo replied that CVS is “the poor man’s provenance.”

 ;login: FEBRUARY 2012 Conference Reports 87

eliminating the need for a central provider (all of your data
lives on your mobile phone) and by encrypting communica-
tions. During the talk, Monica set up a social networking
group for HPTS attendees; several people joined and began
exchanging messages.

Monica also demonstrated how smartphone applications
could be turned into collaborative social applications. She
presented an application called We Paint, which is a collab-
orative drawing application.

Stanford has conducted several usability studies with
Musubi. The reactions have varied by age group. Some adults
believe that this is the future of social networking. College
students were indifferent; they preferred to use Facebook
and found nothing new and attractive in Musubi. Elemen-
tary school students were the most receptive; they thought
Musubi was “awesome.”

An attendee who worked at Facebook was very upset with
Monica for suggesting that Facebook might sell user data.
Monica said that people should be free to use Facebook if
they want to, but she also believes that users should have the
freedom to use different social networking platforms if they
choose to do so.

Debate Panel: Scale Up vs. Scale Out
Summarized by Pinar Tozun (pinar.tozun@epfl.ch)

Panelists: Michael Stonebraker, MIT; Mark Callaghan, Facebook; Michael

Cahill, Wired Tiger; Andy Gross, Basho

The debate panel of this year’s HPTS was about whether to
focus on scaling up, utilizing a single node in the system with
useful work as much as possible, or scaling out, increasing
the performance of the system by adding more machines. A
node was initially defined as a single processor by the panel
but during the panel it was sometimes also referred to as
a single multiprocessor machine. The panel chairs, Margo
Seltzer (Harvard) and Natassa Ailamaki (EPFL), had a
slider where 0% indicated total focus on scaling up and 100%
indicated focusing only on scaling out. The chairs asked the
panelists where on this slider they stood while building their
systems.

Michael Stonebraker chose 15% on the slider. Focus on using
all the cores available in your processor as efficiently as
possible first, but also think about how to scale out: unless
you have both in your database today, you are not going to be
successful. One size does not fit all. Different markets should
optimize their systems for their needs. In OLAP (online ana-
lytical processing), for example, a column-store beats a row-
store, and you need clever overhead cleanup and, in scientific
databases, array-based designs. He emphasized getting rid
of the shared-data structures (buffer pool, B-trees, etc.),

version of Salesforce’s software. This scenario makes qual-
ity control extremely important; upgrades must work for all
users, and upgrades cannot break functionality users have
come to depend upon.

Salesforce is intensely focused on software quality, and this
commitment to quality manifests itself in several ways.
Salesforce uses a continuous integration (CI) system to test
changes as they are committed to their source code reposi-
tory. This CI system runs 150,000+ tests in parallel across
many machines, and it will do binary searches across revi-
sion history to pinpoint the precise check-in that caused a
test to fail. Developers do not get off easy—once the CI system
has identified an offending check-in, it will open a bug for the
developer to address the problem.

Salesforce allows customers to customize their applications
with a programming language called APEX. As a best prac-
tice, Salesforce requires customers to test their APEX code
prior to deployment. These customer-written tests provide
an excellent way to regress new releases; Salesforce can run
customer-written tests against new releases to identify prob-
lems prior to deployment. (Salesforce developers are given
access to information about failing customer-written tests,
but they are not given access to the underlying customer
data.)

Finally, Salesforce maintains a Web site (http://trust
.salesforce.com) where they publish availability metrics and
service announcements. The company believes that this
transparency—publishing their uptime metrics—helps to
promote user confidence in the platform and keep the com-
pany focused on quality.

A Non-Proprietary Social Internet
Monica Lam, Stanford University

Cloud computing offers a long list of benefits, but that
list does not always include privacy. Take Facebook as an
example: Facebook provides a great user experience, and a
great platform for application development. But Facebook is
also a social intranet—all interactions pass through Face-
book’s servers, and Facebook controls access to user data.
Monica believes that social networking should be more like
email. Two people can exchange email without having to use
the same email provider, so, why should two users need to
use the same social network provider in order to have social
interactions?

Monica presented an application called Musubi, to demon-
strate how open social networking could work. Musubi is a
mobile application that runs on the Android platform and
permits peer-to-peer social networking. Social networks are
created through the users’ address book and do not require a
central service provider. This platform preserves privacy by

 88 ;login: VOL. 37, NO. 1

machines to have more IOPS is a waste of machines and
power. Mark said if they tried to get rid of the disk and be
in-memory they would need 10 times as many machines as
they have now. Michael Stonebraker said that if they are I/O
bound, they should use what is optimal for the data-ware-
house market, have column-stores with better compression,
and reduce their I/O load. Mark argued that having compres-
sion does not reduce the number of IOPS you need linearly,
and it does not solve the random I/O problem. On the other
hand, Margo Seltzer opted for focusing on scaling up first:
if you have a system that cannot saturate the memory and
CPUs you have, then you have a badly built system.

All the panelists thought open source products were great.
However, Michael Cahill said that his team cannot maintain
an open source product for their own needs. Open source
products such as MySQL also might end up having so many
versions around that it will not be clear which one should be
used. However, Mark Callaghan argued for MySQL, since
there is one main MySQL version and only two or three other
versions to choose from.

Someone asked, If you have a 160-core machine, how is
scaling up within that machine different from scaling out?
Michael Cahill said it is the same, but there are more failure
cases when you have more machines. Andy Gross said that
such a machine will make you use ideas from distributed
systems in a single machine. Another person asked what
academic researchers should focus on. Andy Gross argued
that the interesting papers are the applied ones and they are
mostly about scaling out. Michael Stonebraker advised that
academics should talk to real customers, understand their
problems first, and then try to solve them in their research.
What should we do if we had non-volatile main memory?
Andy Gross said that SSDs can be thought of in that way.

There was discussion about the NoSQL databases and
database knobs that require DBAs. Mark Callaghan argued
that NoSQL systems are good, because even though they do
not focus on performance they are easier to manage, and that
is what matters for some users. Andy Gross also supported
NoSQL systems. On the other hand, C. Mohan (IBM) argued
that NoSQL systems made users optimizers of databases,
and Stonebraker argued that SQL provides an abstract layer
on top of a database for their customers. Stonebraker also
supported the need to get rid of as many knobs as possible so
as not to be dependent on the database vendor and the DBAs.
However, Armando Fox (UC Berkeley) argued that as a cus-
tomer he would prefer not knowing about the database design
details and that people who can tune are good if they know
how to do it well.

locking, and latching bottlenecks in database management
systems in order to scale up to many cores in a node, as they
do in their VoltDB-related work. He claimed that Facebook
could have done what they are doing with a 4000-machine
cluster with only 40 machines if they had been using VoltDB.
He believes that in the next 20 years: there will be around five
gigantic public cloud vendors, so we should trust the cloud
and try to adapt our systems to its environment.

Mark Callaghan picked 90%. He leads the MySQL engineer-
ing team in Facebook; they run the MySQL at Web scale
across many machines. He tried to answer why they were
using that many machines to handle Facebook’s workload.
They know they can never be working on a single node with
Facebook’s enormous scale, so as long as the software is effi-
cient enough, they focus on how to scale out rather than how
to scale up. He believes their market requires a focus on scal-
ing out. They are mostly I/O bound and not CPU bound, and
he does not think using database designs focused on in-mem-
ory databases, such as VoltDB, will help them. To have better
IOPS and provide lower latency to their customers they need
to buy more machines and think about how to scale out.

Andy Gross put his choice at 70% , arguing for focusing on
both but favoring scaling-out. His background is in distrib-
uted systems; he likes Dynamo-like systems. Naturally, he
said, he is interested in more than one machine. He also
pointed out different ways of scaling out and scaling up: not
just thinking how to use one node or more machines better
but also dealing with how to exploit different technologies,
such as SSDs, GPUs, and FPGAs. He also said that some peo-
ple who do not have the choice of using specialized solutions
need to use general-purpose products. Public cloud environ-
ments such as EC2 are good spaces as general-purpose solu-
tions, and they also try to address problems related to power
and energy consumption for general-purpose systems.

Michael Cahill chose 0%. Working inside the storage engine,
he argued that we need to revisit the assumptions we make
in storage engines to ensure serializable isolation among
transactions. We have to find non-blocking algorithms to
get the best out of a single processor. People mostly focus on
scaling out across multiple machines, but he wants to make
contributions within a single node. People should design their
software in a way that it will work well on new hardware. He
said that big companies such as Facebook have the luxury to
focus on scaling out, but smaller companies should focus on
the storage engine first and do their best to scale up there.

Natassa Ailamaki asked for an example of a technique that is
good for scaling up but not good at all for scaling out. Michael
Cahill answered that optimistic concurrency control is
definitely a good technique for scaling up in a single node,
but since it is hard to coordinate across nodes, it is not good
for scaling out. Natassa wondered whether buying more

 ;login: FEBRUARY 2012 Conference Reports 89

and asynchronous checkpointing and a log that keeps the
stored procedures executed with their inputs so that they
can re-execute those after a failure, starting from a check-
point. Moreover, for the databases which are too big to fit in
memory, they are investigating how to do semantic caching
for the current working set of the workload. In addition, they
work on WAN replication, compression, and on-the-fly repro-
visioning in VoltDB.

Bruce Lindsay exclaimed that the CPU cycles breakdown on
the presentation was not true for the big OldSQL vendors.
Stonebraker replied that they cannot do that measurement
with the products of major vendors, since the source code is
not available, and Oracle does not permit benchmarking of
its products. C. Mohan (IBM) asked whether they support
partial rollbacks in VoltDB. Stonebraker said no. Bruce also
wondered how VoltDB will do semantic caching if indexes are
not subsetted.

HyPer-sonic: Combined Transaction AND Query
Processing
Thomas Neuman, T.U. Munich

Neuman described a main memory database system that
combines the execution of OLTP and OLAP workloads, called
HyPer, which they built at T.U. Munich. OLTP and OLAP
workloads have different characteristics. OLTP has frequent
short-running transactions that observe high data locality in
accesses and require high performance with updates; OLAP
has a few long-running transactions that touch a lot of data-
base records and need to see a recent consistent state for the
database. Most of today’s systems are optimized to be good
in either. Two separate systems are kept for each workload,
and data is transferred from the OLTP side to the OLAP side
with an ETL (extract, transform, load) process. However, this
causes both high resource consumption and the OLAP copy
to see an older version of the data.

HyPer tries to bring the query processing from OLAP
workloads to an efficient OLTP system. It has an in-memory
database design, wherein the data is partitioned and only a
single thread operates on a partition at any time. This way
they can run OLTP transactions lockless and latchless, very
similar to VoltDB design. Whenever an OLAP query needs
to be executed, the OLTP process is forked to create a virtual
memory snapshot of the database and the query processing
is done on that snapshot, which provides a fresh version of
the database for query processing. Updates from the OLTP
side to the database while a query is running are not reflected
in the database snapshot seen by the OLAP query. This is
handled efficiently because the initially forked OLAP process
shares physical memory with the OLTP process. Only when
there are updates from the OLTP process does a copy-on-
update take place and only on the updated memory locations,

New Age OLTP
Summarized by Pinar Tozun (pinar.tozun@epfl.ch)

All the Rules Have Changed
Michael Stonebraker, VoltDB

Michael Stonebraker started his talk by categorizing the
OLTP market: OldSQL, NoSQL, and NewSQL. OldSQL rep-
resents the major RDBMS vendors, which Stonebraker called
the “elephants.” They are disk-based and use ARIES (Algo-
rithms for Recovery and Isolation Exploiting Semantics),
dynamic record-level locking, and latching mainly to ensure
ACID properties. On the other hand, NoSQL is supported
by around 75 companies today and favors leaving SQL and
ACID. Finally, NewSQL suggests not leaving SQL and ACID
but changing the architecture of the traditional DBMS used
by OldSQL.

He pointed to an earlier study that shows that in OldSQL-
like databases only 4% of the total CPU cycles go to useful
work, with the remainder almost evenly shared by latching,
locking, logging, and buffer pool management. He argued we
cannot benefit much from trying to optimize those archi-
tectures, so a redesign of the DBMS architecture without
compromising SQL and ACID is needed to increase the per-
centage of the useful work. This is what NewSQL databases
are trying to achieve. Some examples of the NewSQL move-
ment are VoltDB, NuoDB, Clustrix, and Akiban.

He focused on his own work on VoltDB in this field. VoltDB is
a shared-nothing database which has hash or range parti-
tioning on the data. It gets rid of the buffer pool by deploying
an in-memory database design, because most of the OLTP
databases today can fit in the aggregate main memory of few
commodity machines. Main memory is statically divided per
core, and there is a single partition for each core in a machine.
Only a single worker thread executes transactions within
a partition. There are no shared data structures, hence, no
need for locking and latching. K-safety measures are used
by replication of the data to ensure durability. VoltDB uses
stored procedures for transactions, but on-the-fly compila-
tion of ad hoc queries is possible with minor overhead. Specu-
lative execution can be used for distributed transactions to
reduce their overhead, although VoltDB does not have such a
technique yet. Overall, in terms of performance, the NewSQL
database VoltDB achieves a 60x improvement compared to an
OldSQL vendor, offers an 8x improvement over Cassandra,
which belongs to the NoSQL movement, and has the same
performance as Memcached. Stonebraker argues that VoltDB
is good for both scaling up and scaling out.

Stonebraker also discussed some of the recent tech-
niques they introduced in VoltDB and some future work.
To deal with cluster-wide failures, they have continuous

 90 ;login: VOL. 37, NO. 1

Even though such a design is good for scaling out, the simple
way of doing it has bottlenecks. Optimistic concurrency con-
trol can hinder performance severely if the conflict rates are
high. However, this is dependent on the application. Reading
from and writing to the log might be bottlenecks, but these
can improve in the future with technology trends. On the
other hand, the meld operation, as a single-threaded opera-
tion that reads many entries in the log, might become a huge
bottleneck, because the speed of a single processor no longer
improves, so the meld operation should be optimized first.

The main idea was for the meld process to have a lot fewer
log records to check for conflicts for a transaction, by storing
more information about the transaction in each transaction’s
intention. This is mainly done by keeping version numbers
for each node of the binary tree.

Mohan asked if they broadcast the log. Everybody has to
read it. Margo Seltzer noticed a potential conflict on a slide,
and Bernstein responded that she had found a bug. Someone
asked how they handle scan operations. They currently do
not support scans.

Mobility Trends & Implications
Summarized by Yingyi Bu (yingyib@ics.uci.edu)

Data Management Challenges in Location Based
Services
Srinivas Narayanan, Facebook

Srinivas Narayanan talked about the status and vision of
location-based services in Facebook. Mobile users usually
add location check-ins, upload photos, and create events.
Srinivas emphasized that location is not only latitude and
longitude, but also people, activities, and places. In the future,
social events will be built on top of locations, and interesting
applications such as social events/friends discovery on top of
places will become very popular.

Srinivas listed several challenges. First, a good location
search needs to address queries with either strong location
bias or weak location bias, and considers rankings. Second,
social queries need to scale up and scale out; currently Face-
book uses a MySQL back-end but does not use complex que-
ries. In the future, Facebook wants to support queries more
complex than NoSQL queries. Third, everybody can have pri-
vacy policies for every data point, and to apply rules to each
data point would be expensive. Fourth, social recommenda-
tions add a new dimension (location) to personal data, which
advanced machine learning and data mining algorithms
should leverage. Fifth, data quality will be challenging;the
true real-world location for many data sources (which get
tagged by user annotations), and crowd-sourcing or machine
learning might be a solution.

to separate the update done by the OLTP (parent) process
from the OLAP (child) process.

They use a datacentric query execution model rather than
the iterator model. There is a pipeline of operators for a query.
They have a producer and consumer interface: the former
pushes the data to the current operator and the latter accepts
the data and pushes it further up to the next operator. The
functions are generated in assembly code at compile time
using LLVM, which is fast when you want on-demand compi-
lation and creates portable code. Moreover, it achieves better
data and instruction locality than the iterator model.

To evaluate HyPer they designed the CH-benchmark. This
mainly keeps TPC-C database schema and its transactions
with some additional tables from TPC-H schema, and it con-
verts TPC-H queries to be compatible with this schema. The
performance numbers are good, although the memory price
might be high unless the working set is fairly small.

Bruce Lindsey wondered how they could run serialized
transactions. It’s easy if the transactions are not touching
the same data. Mohan asked how they knew this statically
at runtime; Neuman said, Through partitioning. Mike Ubell
asked how they could get copying without copying all the
data. They used the MMU to detect when a write would occur
and created a copy only at that time. Russell Sears (Yahoo!)
commented on the use of LLVM to create queries, saying that
code generators blow away the instruction cache.

Scaling Out with Meld
Phil Bernstein, Microsoft

Phil Bernstein presented a database design where a shared
binary-tree log is the database. The log supports multiversion
concurrency control, and the most recently used parts of it
are cached in each server’s memory. In this design there is
no need for cross-talk between the servers, so the design is
very suitable for scaling out without dealing with the burdens
of partitioning, which is the more common technique for
scaling-out today.

Each server has its local (partial) copy of the log in-memory,
and it has the last committed database state. Transactions
executing on these servers append their intention log records
to these local copies of the log. At the same time, the meld
operation takes place at each server that processes the log
in log order to see whether there are any transactions that
conflict with each other. Depending on this process, the meld
operation decides which transactions to commit or abort. If
a transaction is to be committed, then the meld merges its
updates (intention log records) to the database state. The
meld operation basically performs optimistic concurrency
control for the transactions.

 ;login: FEBRUARY 2012 Conference Reports 91

The volume of road sensing data is huge, and personal trajec-
tory data is sometimes sensitive. Madden’s group developed
software to efficiently store and access such data while
providing users control over privacy.

One subproject of CarTel is CTrack, which transforms
sensed raw data to meaningful trajectories. CTrack handles
cell phone signal location points with incorrect data, using
probability-based estimation techniques, and pre-processes
this data to visualizable road traces. The other subproject
is TrajStore, a storage system for indexing and querying
trajectories. TrajStore recursively divides a region into grid
cells and dynamically co-locates/compresses spatially and
temporally adjacent segments on disk in order to minimize
disk I/Os.

Sam pointed out that there are more and more location-aware
mobile devices, from a database researcher’s view: cleaning,
matching, filtering, visualizing, and animating mobile data
at large scale is challenging.

Mehul Shah wondered why they didn’t put all the data into
a database. Sam replied that some of the group are machine
intelligence experts trained in tools that don’t look like SQL.
If you push the data into SQL, they won’t use it. Adam Mar-
cus asked to what extent this is an interface problem. Sam
said that some of the algorithmic issues haven’t been figured
out yet.

Scalability Under the Hood at Foursquare
Jorge Ortiz, Foursquare

Jorge Ortiz introduced Foursquare, a location-based social
networking service provider which has general social
networking utilities, games, and city guides At the launch
in March 2009, Foursquare used a single-node PostgreSQL
database, which served 12,000 check-ins/day and 17,000
users. At the beginning of 2010, carrying a workload of
138,000 check-ins/day and 270,000 users, the system broke
trying to serve all the reads/writes on a single database.
From then on Foursquare used MongoDB to serve reads but
still used one PostgreSQL node to serve check-in writes. In
2011, with 2.8 million check-ins/day plus 9.4 million users,
Foursquare began to use MongoDB for both reads and writes.
By October 2011, there were over 13 million users and more
than 4 million check-ins per day. Drawbacks of PostgreSQL
include connection limits, VACUUM (free space recovery),
and lack of monitoring tools; advantages of MongoDB include
auto-balancing, shard routing, and synchronization.

Jorge explained that MongoDB does not shard geography
queries. Therefore they use Google’s s2-geometry library,
which turns polygons into sets of covering tiles and turns the
geography index problem into a search problem.

Harumi Kuno (HP Labs) asked if Srinivas could say more
about the index used for queries. Srinivas said you can use
lots of predicates. Adam Marcus (MIT) pointed out that the
information is both sensitive and has many compelling use
cases, and he wondered about privacy. Srinivas said Facebook
provides you with complete control over who sees your data.
Mike Caruso wondered if they could use the location data to
reveal where someone lives. Srinivas said that he didn’t have
a specific answer for Mike, and he pointed out that Facebook
is not just an urban product.

Urban Data Analysis—Projects, Methods and Tools Used
to Describe 21st Century Cities
Oliver Senn, MIT SENSEable City Group

Oliver Senn described several interesting projects built by
their group. The Copenhagen Wheel includes sensor devices
on bikes that continuously collect data from the bikes. With
gathered sensor information from all bikes, the back-end sys-
tem can do real-time data analysis, considering both traffic
and social information. Co2go uses accelerometer traces in
smartphones to estimate CO2 emissions and enables aggre-
gated CO2 emission analysis among users. LIVE Singapore!
is an enabling platform for applications that collect, combine,
distribute, analyze, and visualize either historical or real-
time urban data. Applications such as realtime call locations,
formula one city, and raining taxis have been built on top of
LIVE Singapore! (http://senseable.mit.edu/livesingapore/).

After describing those interesting urban data analysis
applications, Oliver mentioned software tools they used in
the project, including Matlab, R, OpenMP, MPI, Boost Graph
Library, GNU Scientific Library, C++, Java, Python, awk, sed,
Oracle, MySQL, and PostgreSQL. One challenge is that the
project group has only a few computer science people, and
everyone is sticking to some tools; thus, to integrate different
components requires a lot of work. The other challenge is to
understand the data set in terms of what system produced
the data, what parts of the data should be included/excluded,
and how inconsistency should be resolved.

Someone asked about future problems/challenges. Oliver
said that one challenge is that they don’t have access to huge
clusters, so for certain tasks (e.g., graph analysis) they are
currently restricted. Also, certain data sets (such as the
LIVE Singapore data) belong to the owners (are under NDA)
and cannot be exported offshore.

Mobile Data Management in the CarTel System
Sam Madden, MIT CSAIL

Sam Madden talked about problems in mobile data manage-
ment and their solutions in the CarTel system. Applications
of mobile data management include smart tolling insurance,
urban activity monitoring, and personal medical monitoring.

At EMC, innovative thinking is sustained through diverse perspectives. The
EMC workforce is a world of more than 52,000 thought leaders working
together to drive the future of cloud computing and information management
solutions.

Through innovative products and services, EMC accelerates the journey to
cloud computing, helping IT departments to store, manage, protect and
analyze their most valuable asset – information – in a more agile, trusted and
cost-efficient way.

To learn more about EMC, visit www.emc.com. To learn about working at EMC,
visit www.emc.com/careers.

CONVERGE
GO WHERE UNIQUE TALENTS

