
	 ;login:  JUNE 2012     53

Never in my career have I experienced as many things go wrong as I did back in late
January/early February of 2012. Strangely, not one of them was in any way related
to any of the others; they just happened at the same time! Harrowing doesn’t begin
to cover our feelings in the midst of this maelstrom. I rode out hurricane Opal, as it
ripped through Alabama, with less stress. We had four unrelated near-disasters in
the span of about four days, and nearly lost 800 TB of data. This is that story, plus a
few semi-interesting lessons.

Issue 1

Our problems started with the network. We have monitors in place (e.g.,
SmokePing [1]) that monitor latency on our wide area network. Our nominal
latency is about 11 ms between our primary office site and our primary datacen-
ter site. The network between them is an OC-12 which is an optical, leased line
of about 640 Mbps traversing several carriers. We also have a 100 Mbps Internet
link which can act as a backup connection, via IPSEC VPN, when the OC-12 is
down. Occasionally, one of the OC-12 WAN providers has a maintenance or a
minor service-impacting event, and that latency will jump to around 60 ms as the
traffic takes an alternate path through the provider’s networks, maintaining the
same bandwidth. When this happens, the latency consistency (jitter) is relatively
consistent, meaning that all packets have a round trip time (RTT) tightly clustered
around 60 ms.

An example of a major event would be equipment failure on either end; this takes
down the OC-12 connection entirely. On the day of the incident, we saw latency in
the 20 ms range but very jittery, which is more characteristic of our backup link
on 100 Mbps service. This did not appear to be a standard provider-internal path
reroute. We managed to confirm this theory fairly quickly by running iperf [2]
between the two sites, yielding a paltry 50 Mbps instead of our more normal 300+
Mbps. We opened a ticket with the primary provider, the one to whom we send the
monthly check.

You may notice that the rerouted OC-12 path has much higher latency than the 100
megabit VPN path. We believe this is because the rerouted path is being directed
through a distant state before coming back to NYC, although it is difficult to say for
certain. There are several carriers who service the end-to-end circuit as we know
it. We’ve seen cases where the local loop can add a significant amount of latency
under pathological conditions. The high latency during provider maintenances is
puzzling and under active investigation.

Doug Hughes is the manager

for the infrastructure team

at D. E. Shaw Research, LLC.,

in Manhattan. He is a past

LOPSA board member and was the LISA ’11

conference co-chair. Doug fell into system

administration accidentally, after acquiring a

BE in Computer Engineering, and decided that

it suited him.

doug@will.to

Nathan Olla is a system

administrator at D. E. Shaw

Research, LLC., where his

focus is on data availability

and backup solutions. Nathan found system

administration by volunteering over a decade

ago to support something called “Linux” while

working at Dell.

When Disasters Collide
A Many-Fanged Tale of Woe, Coincidence, Patience, and Stress

DOUG HUGHES AND NATHAN OLLA

	54    ;login:  VOL. 37, NO. 3

A further troubleshooting difficulty with our WAN situation is that we don’t
actually manage the routers containing the OC-12 linecards. We have a gigabit
handoff with a partner organization who manages them for us. This means that
when we have a non-trivial difficulty we need to engage this partner organization
and the carrier organizations in a coordinated fashion. Such was this case. The
carrier checked and re-checked the lines and could not find anything wrong. We’ve
had instances where the OC-12 failback took more than 24 hours, so at first we
assumed that this was one of those cases; a particular sub-carrier has been known
to close tickets claiming nothing is wrong many times previously. In turn, we’ve
repeatedly had to reopen and insist that “No, 60 milliseconds really isn’t normal,
there’ s definitely something wrong. Please check again!” For this failure, after
three days without OC-12, we were starting to worry. The worry was less directed
than it might have been because of three other incidents that all happened while
this one was occurring, but more on that later.

After many exchanges between carrier and partner, using loopback tests on both
sides to prove the circuit was up, we isolated the problem to the datacenter side of
the circuit. Upon further examination, we found that the link between the carrier-
provided OC-12 equipment and the partner-provided OC-12 router, only about 15
meters of fiber, was the likely culprit. On the carrier side was a long range (LR)
single-mode fiber-optical transceiver, and on the partner side was an intermediate
range (IR) fiber-optic transceiver. Going by the specifications, the dB losses for
both were mismatched. Also, IR transceivers have a range of about 15 km and LR
have a range of about 40 km. It might be considered good luck that it managed
to work for four years! We suggested that both sides adopt short range (SR)
transceivers for the 15 meter distance to avoid overpowering the optical receivers
on the other end. Neither organization had SR optics on hand. Both would have had
to order the parts, leading to 2–3 more weeks of running on the 100 megabit backup
link, which was clearly unacceptable. The local carrier, however, did have an IR
transceiver on hand. So, after four days and replacing the LR transceiver we were
up and running again on the primary link!

As a side note, the users were relatively unaffected by all of this because of some
appliances we use on both ends of our WAN link. Among other useful features, the
SilverPeak appliances that we use provide dynamic compression and optimization,
network memory, and QoS:

u	 Network memory is the capacity to collect streams of data, store the patterns
that haven’t been seen before on disk buffers on both ends (keyed with a strong
checksum algorithm), and, when that pattern is recognized on the sender side,
send the checksum key instead of the entire data stream. The remote side, seeing
the key on the WAN interface, pulls the data pattern corresponding to the key
from the local disk and feeds it to the requester over the LAN interface. This
works in both directions.

u	 Compression and optimization encompasses both TCP header compression
and a standard off-the-shelf data compression algorithm to compress the data
portion of the packets. It also performs optimization on TCP patterns such as
window and buffer sizes, retransmit rates, etc., to get better usage of the available
bandwidth. Obviously, compressibility of the data in question is an important
factor, but can result in significant bandwidth reductions.

	 ;login:  JUNE 2012   When Disasters Collide    55

u	 QoS allows one to prioritize:
	 u	 What streams get priority over others, by protocol (ssh, http, nfs, general

	 TCP traffic, etc.)
	 u	 What minimum bandwidth a given protocol is guaranteed in the face of

	 contention
	 u	 What maximum bandwidth rate a protocol can consume
	 u	 Whether a stream is compressed or not (e.g., it makes no sense to try to

compress ssh or https, nor to use network memory for either. If it were repeat-
able data, it wouldn’t be secure.).

For us, QoS was the most important feature for running over the lower bandwidth
connection, followed by network memory, which meant that patterns that had
been requested before and were able to be fed to the requester at gigabit speeds. We
prioritize ssh and VNC above all others, so interactive sessions were only mildly
impacted. Not a single complaint ticket was originated.

Ponderables:

u	 Make sure that your backup links work; do periodic testing.
u	 Having QoS is very useful.
u	 Make sure that your optical transceivers are appropriately matched and appro-

priate for the distance of the fiber run.
u	 Your carrier(s) is/are likely to have escalation protocols. Make sure you know

what these are for emergencies.

Issue 2

The second issue struck in the first day of the OC-12 outage. One of our 160 TB
(raw) backup storage servers running ZFS lost knowledge of a group of about eight
disks. We configured these servers with 6 by 10 disk Raidz2 stripes. This meant
that two of the stripes were down two disks. A third disk failure in either of the
Raidz2 sets (down two disks already) would mean a very large amount of lost
backup data, because ZFS stripes blocks across all six of the Raidz2 stripe sets.

We’ve experienced peculiarities with the RAID controllers in this system before.
Each controller puts a label on every disk to indicate what logical unit (LUN) the
disk is a part of. This logical unit can be a simple pass-through, or one of several
different hardware RAID configurations. A pass-through is the same as taking a
disk that sits behind the controller, stamping a label on it, and passing it through as
a logical unit to the host OS (1:1); RAID LUNs are 1:n. The logical unit also includes
information such as whether read or write caching should be enabled, among other
things. This was the first time a controller had lost its capricious little memory of
eight disks at once. Suspiciously, they were all adjacent disks in the chassis, but we
could find no subsequent hardware problems, and there were other disks on the
same controller that had no issues.

So we did what any normal organization would do under such circumstances. We
tried pulling and reseating the disks. It didn’t help. We tried checking the SAS
cables, which also didn’t help. We tried power cycling the entire server. That didn’t
appear to help either. It turns out that the disks were physically there in the RAID
controller view, but had disappeared from the OS view. We ended up having to
re-add the RAID controller logical unit (LUN) labels onto the disks to make them
show up to the OS. Once we did that, they were visible again in zpool status, but
in a very odd way. If you remember my previous article covering ZFS (undetected

	56    ;login:  VOL. 37, NO. 3

bit flips), you’ll be familiar with the way that zpool status looks. This is how it was
showing up to us on that day (as representative of a single Raidz2 stripe with two
disks from the amnesia set):

c1t24d0	 ONLINE	 0	 0	 0

c1t25d0	 ONLINE	 0	 0	 0

c1t26d0	 ONLINE	 0	 0	 0

11422982192057997398	 FAULTED	 0	 0	 0	 was /dev/dsk/c2t0d0s0

3080189289823161725	 FAULTED	 0	 0	 0	 was /dev/dsk/c2t1d0s0

c2t12d0	 ONLINE	 0	 0	 0

Instead of a controller number, there’s a big integer. Okay, this isn’t a huge problem.
We can also see that the right column contains information about what the disk
was. Hey, that’s handy! Or is it? No amount of zpool replace, add, or remove was
able to deal with these disks. The zpool commands for removing and replacing
disks told us the disks didn’t exist, while the commands for adding told us that they
were already a member of the pool! We even tried a 14+ hour scrub of the entire
zpool, but that didn’t recover anything any better.

It turns out that each of the labels for what the disk used to be (right column) also
existed elsewhere in the status output for the 82 disks in the system. In other
words, the disk mapping was FUBAR when the disks were lost. Unfortunately,
we didn’t discover this until after I had tried some creative means of fixing these
disks. We thought about the best way to recover these disks and were using the
name from the right column before realizing that it was a conflict. I used dd to
overwrite the disk label to, hopefully, make ZFS forget about the disks so that they
could be replaced. This is a bit dangerous, but at the time we felt we had nothing to
lose since the disks were already unused by, and unusable to, ZFS. But this made
ZFS forget about eight other legitimate, functional, and otherwise healthy disks
in the system! Several stripes were now down three disks (below critical) and one
was down five disks! Hello, worst case…

Fortunately, we were able to revert this situation by carefully reconstructing
which disks were what. After many hours of trying things, we removed the eight
offending disks from the system (remember, they were adjacent) and rebooted.
The file system was still unrecoverable in this state. We re-inserted the disks and
used the Solaris format –e command followed by label to force an EFI label onto
the accidentally demolished disks. At this point, ZFS managed to detect the correct
info from the remaining disks and we could bring the zpool online. It reconstructed
the broken label on the dd’d disks and we were back to where we had been the day
before. After running another zpool scrub we determined that dd had blown away
data blocks in two legitimate files that were contained in snapshots. In other
words, we didn’t lose anything of primary value, just a copy of snapshotted copies
of two old versions of files. It could have been a lot worse.

The problem remained that the original eight missing disks still had a broken
ZFS label on them. We had to very carefully identify them since they did not have
a usable /dev/dsk identification that could be used accurately at the system level.
Using the long integer was also a failure; ZFS did not like that. Remember, we could
neither remove them from ZFS knowledge, because they were not part of the cur-
rent pool, nor could we add them to the pool, because their label said that they were
part of an existing pool. Even using zpool commands with –f would not work.

	 ;login:  JUNE 2012   When Disasters Collide    57

We had to find a disk that wasn’t already thought to be somewhere else in the sys-
tem. Using zpool information correlated with ls /dev/dsk and the MegaCLI (which
manages LUNs) command to map the single disk LUNs to disk numbers in the sys-
tem, we were able to find a single, spare disk that was not being mapped to a LUN.
This was painstaking work. Using this disk, we were able to replace one of the
disks with the large integer identifier. Then we deleted that logical unit, re-created
it, ran devfsadm to map it to a cXtXdX designation, added it to the zpool as a spare,
and were able to use it to replace the next drive, and so on, one after another, 2 TB
at a time, until we were done. Only by fixing the labels one at a time were we able
to repair the system. Other than losing two old versions of files in snapshots, we
made a full recovery, but we were perilously close to losing all of the backups on
this system.

Along the way, we had some hilarious exchanges via Jabber, like this classic:

|2012-01-30T14:31:34|1|to|N---|that’s curious -- grub prompt

|2012-01-30T14:31:48|1|from|N---|hrm.. let’s reset again

|2012-01-30T14:32:58|1|from|N---|the 4 flash drives are there

|2012-01-30T14:33:13|1|from|N---|(or 1, divided into 4 chunks, anyway)

|2012-01-30T14:33:15|1|to|N---|they were before as well

|2012-01-30T14:33:40|1|to|N---|great, my console shrunk down to a teeny

window and can’t be resized

|2012-01-30T14:34:43|1|from|N---|heh

|2012-01-30T14:34:50|1|from|N---|well, it’s at grub again

…

|2012-01-30T18:08:17|1|to|N---|zpool import -Fn + slaughter a chicken?

|2012-01-30T18:08:27|1|to|N---|i guess that won’t help

Ponderables:

u	 When you see “was” in ZFS output, make sure that it doesn’t match something
that is already there.

u	 You can use dd to wipe out a disk label, and ZFS will still be able to repair it under
many circumstances. (This saved our bacon!)

u	 Use RAID cards that do not require creating an explicit single disk logical unit.
RAID cards that do implicit pass-through of disks that are not part of hardware
RAID set logical units seem to work much better and be less confusing overall.
Certainly they are less trouble to set up on an 80-disk system.

u	 Check your sanity by double-checking your mapping for apparently missing
disks. They may not be what you think they are.

u	 Locate lights are helpful. Most RAID CLI software supports this.
u	 If you can’t replace a disk with itself because of some intermediate mapping

SNAFU, try replacing it with a spare and working step-wise through the disks to
get back to normal.

Issue 3

Sometime on the second day of the network outage, we were dismayed to find
that an NFS monitor had triggered on one of our two primary application serv-
ers (which are exact copies of each other). These servers are not very sizeable
machines, but they have enough memory to keep the ZFS adaptive replacement
cache (ARC [3]) for all of the actively served NFS files in memory. They also have a
level-2 ARC (L2ARC) MLC (multi-level cell) SSD disk for holding more than twice

	58    ;login:  VOL. 37, NO. 3

RAM for any overflow. They also have 10-gigabit network interface cards (NIC)
tuned to reduce the number of interrupts when something like a Python applica-
tion launches and requests 10,000 accesses to NFS paths. Even when un-cached on
the client, the server can feed the requested files (or lack thereof) back in ones or
tens of microseconds instead of the typical ~10 milliseconds required if they had to
be fetched from spinning media.

One of these two servers had gone unreachable. Unfortunately, this meant that
roughly half of our cluster machines were stuck on new NFS application requests,
owing to two factors:

1.	 Linux does not support failover to an alternate server for read-only NFS shares.
Our NFS clients are all Linux.

2.	 Independent servers without shared storage cannot be set up as an NFS cluster
in Solaris 10.

We started diagnostics by grabbing the serial console and checking for anything
egregious. Unfortunately, it was non-responsive. So we issued a remote power cycle
command through the lights out management (LOM) interface. It displayed the
BIOS flash screen, passed the memory self-test, and as soon as it reached the part
where it interacts with the RAID card BIOS, the server got stuck. We tried another
reset and it got stuck in the same place. Clearly, something was wrong there.

Deductively, we suspected that the RAID card had gone bad, so we started to swap
it with a RAID card from another machine of the same type. Both machines are
engineered well enough that this is an operation that can be done without remov-
ing the servers from the rack. This took about 20 minutes, because we had to make
sure that the other machine was in a suitable state of disuse.

Unfortunately, after the cards were swapped, and we powered the stuck server on,
it got stuck in the same place! Unusual...What else could it be? We theorized that
perhaps one of the SSD disks that we use for boot and ZFS intent log (ZIL) had gone
bad in a particular way; perhaps it was hanging the SATA bus or controller with
resets? So we removed the first of the two mirrored SSDs and did another reset. It
got stuck in the same spot. We tried again, after pushing the first SSD back in and
removing the second. Eureka! Somehow one of the two disks had failed in such a
way that it had hung the bus, and removing it allowed the machine to boot nor-
mally.

Unfortunately, this had resulted in about 2–3 hours of downtime for quite a num-
ber of machines during primary work hours.

Ponderables:

u	 Make sure you have spares readily on hand, even for RAID cards.
u	 Having machines that allow for swapping RAID cards, CPUs, RAM, etc., without

total removal from the rack is useful for important application servers. Had we
not had this, it would have easily added another 30 minutes to the procedures.

u	 SSDs are still relatively new technology and can have unusual failure modes. Try
swapping them before the RAID card.

Issue 4

This was the big one. We nearly lost 640 TB of primary storage! Unfortunately, this
article has already gotten somewhat long, so we’ll leave this as a tantalizing cliff-
hanger for the next issue!

	 ;login:  JUNE 2012   When Disasters Collide    59

References

[1] SmokePing: http://oss.oetiker.ch/smokeping/.

[2] Iperf: http://iperf.sourceforge.net.

[3] ARC: http://en.wikipedia.org/wiki/Adaptive_replacement_cache.

