
54	 ; LO G I N : VO L . 35, N O. 6

D A V E J O S E P H S E N

iVoyeur: Ganglia
on the brain

Dave Josephsen is the author of Building
a Monitoring Infrastructure with Nagios
(Prentice Hall PTR, 2007) and is senior
systems engineer at DBG, Inc., where he
maintains a gaggle of geographically
dispersed server farms. He won LISA ’04’s
Best Paper award for his co-authored
work on spam mitigation, and he do-
nates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

I T ’ S I R O N I C , I T H I N K , T H AT I ’ V E B E E N
dissatisfied with my RRDTool data
collection and display options for as long
as I have. Ironic in the sense that RRDTool
is such a category killer for what it does
(storing and graphing time series data).
It used to be novel, to see that distinctive-
looking RRDTool graph popping up
somewhere unexpected, but these days
it’s so ubiquitous that I’m surprised to see
anything but. So if RRDTool is the ultimate
solution for everything that happens
between data coming in and graphs going
out, the open source community has surely
provided category killers for polling data
and displaying those graphs, yes?

No. When it comes to polling and displaying that
data, we’re far from having a category-killer, in my
opinion. It’s not for lack of candidates, mind you.
Freshmeat can provide you with myriad options
written in all manner of languages (but mostly
PHP) that do essentially the same thing—put
an RRDTool graph on a Web page. It’s a bit of a
cop-out to say they all do “essentially” the same
thing, in fact, since they all seem to make the
same mistakes over and over again. Am I missing
something? Hold on a second, let me make a
couple of Google searches . . .

No. I don’t think I am, but please (oh please)
correct me if I’m wrong. Dear people who write
RRDTool polling and graphing engines, here’s what
I really need from you:

1. Separate your data polling from your graphing
engine. Better yet, just write one or the other.
You’ll have to account for what other people may
or may not do that way. If you’re writing one tool
that does them both, I should be able to use it for
polling while completely ignoring your graphing
component and vice versa.

2. If you’re writing a polling engine, it should
speak more than just SNMP, it should provide
sane defaults, and it should make it easy for me to
discover what they are and change them. I should
be able to tell it about my SNMP data sources as
well as my monitoring system agents and metric-
laden log files (ideally, these should be plug-ins
to a larger, more generic polling engine). I should
be able to easily set whatever custom RRDTool
attributes I want per device per metric.

; LO G I N : D ECEM B E R 201 0	 I VOY EU R : G A N G LI A O N TH E B R A I N	 55

3. If you’re writing a graphing engine, it should be able to read round
robin databases (RRDs) from any location on the hard drive, including
multiple locations at once. It should be able to combine data from any
number of RRDs in any number of locations. It should have the capability to
automatically detect metrics within the RRDs and provide predictable URLs
that allow me to quickly see a graph of any single metric in any RRD in a
directory it knows about. It should also allow me to save static templates for
complicated stuff. I should be able to change graphing parameters of any
existing or dynamically generated graph by modifying the URL.

I’ll stop there; I hadn’t planned on ranting. It’s just that there are so many
tools out there now that come so close. It’s frustrating. A few years ago
(well, more like 10 now, heh) my pockets were laden with gadgetry. I had
a camera, an MP3 player, a cell phone, and a RIM pager/email device. This
feels a lot like that did. Can’t we make one pocket-sized gadget that does all
of this stuff? Please?

Cacti [1] is beautiful, but just try to use something else for polling. Drraw
[2] is awesome (and I use it today), but I have to statically define every graph
before I’m able to see it. General-purpose monitoring systems like Nagios
can be shoe-horned into polling-engine duty by bolting on any of 1000
different Perl scripts, but a dedicated task-specific polling engine could poll
more often and with a lot less overhead. Enter Ganglia [3].

Ganglia

A few years ago I was doing some load-testing work and needed a tool that
could poll and display the Big Four server metrics (CPU, memory, disk,
network) as close to real-time as possible and without putting any load on
the systems themselves. If that last sentence didn’t give you pause, then
you’re in a different line of work than I am. I may as well have added, “and
needed a never-ending supply of $20 bills.” “Well, Dave,” I can hear you say,
“don’t we all?” Anyway, I don’t remember how, but I came across Ganglia,
which at the time was a somewhat nascent project. The PHP-based front end
didn’t work, but the polling engine looked like it did, so I looked at the PHP
and made a couple of simple fixes that, if I recall correctly, had something to
do with how it was generating links (I probably caught their CVS server on a
bad day). Once I got it working, the results were amazing.

It put zero overhead on the servers, collected every available statistic related
to the Big Four plus a bunch of platform-specific statistics, and had a polling
interval short enough that you could literally see data scrolling by in the
RRDTool graphs when you set the page reload to 1 second. Had it been a
more mature project at the time (it was in that stage where all it needed
to guarantee its demise was my unconditional devotion), I would have
immediately abandoned all of my metric collection efforts in its favor. A few
months ago, I had the same sort of requirement, and went back to check on
its progress. To my delight I found a healthy project with a goodly sized user
base, forums, mailing lists, regular releases, the works. I’m currently in the
process of abandoning all of my metric collection efforts in its favor. Well, at
least the ones on general-purpose operating systems where Ganglia can be
installed, sigh.

To be clear, it’s not the category-killer I’m looking for. In fact, the frustration
permeating my muse in the paragraphs above has a lot to do with what
Ganglia isn’t. It has, however, allowed me to consolidate a vast amount of
my metric-gathering hodge-podge into a neat, superbly scalable, and easily
configured set of RRDs, and for that I am grateful. Further, Ganglia never set
out to be a general-purpose RRDTool front end. It was written with a very

56	 ; LO G I N : VO L . 35, N O. 6

specific purpose in mind, so some of what it isn’t is by design. For that it
obviously cannot be blamed—it’s a darn good design. Other things Ganglia
isn’t are probably pretty easy fixes that I’m sure will be patched away before
long. For now, I’m going to focus on what it is, as well as the usual details
about what my particular implementation looks like.

In the next issue, I plan to do a follow-up article to talk about Ganglia’s
plug-in architecture. Newer versions of Ganglia (like so many of my favorite
tools) can be expanded with user-contributed modules, written in C or
Python. If you read this column with any regularity, you know how I love
my C-based shared-object plug-in architectures. It should come as no
surprise, then, that I’ve written a couple of plug-ins for Ganglia in C, and
can’t wait to walk you through them in the next article (I know, lucky you!).

Ganglia is, as its sourceforge page says, a distributed monitoring system for
high-performance computing systems such as clusters and grids, but that
doesn’t preclude its use for “normal” server systems. It consists primarily
of two daemons and a Web front end written in PHP. The two daemons are
called gmond and gmetad. Gmond may be thought of as the monitoring agent.
It’s installed on the systems you want to collect statistics from. Each gmond
node will multicast its metrics to its peers at user-configurable intervals. Every
node in a Ganglia cluster knows the status of the entire cluster.

Gmetad nodes collect statistics data from the machines running gmond.
Since every gmond node knows the state of all its peers, gmetad only needs
to talk to a single node in the cluster. Both daemons are written in C and
make heavy use of the Apache Portable Runtime Library for portability. In
my experience, they’re lightweight in the extreme, and their use of multicast
and node status consolidation does a great job of minimizing network
chatter. Here are a few other things Ganglia gets right:

■■ Once a cluster is configured, new nodes are automatically detected. No
configuration required.

■■ Automatic fail-over: A gmetad daemon can be pointed at every node in the
cluster, and it will only attempt to contact the first configured node in each
cluster. If that node dies, gmetad will try the next one.

■■ Automatic graphing: Ganglia’s front end includes a graph.php program that
will generate a graph of any metric for an entire cluster or an individual
box. I can change its parameters by modifying the URL, so I can easily link
to these graphs from anything that can take a URL. I can’t change every
RRDGraph parameter I’d like, but it’s a great start.

■■ You can use as many gmetads as you’d like, and you can even have gmetads
report up to other gmetads, so Ganglia Grids can scale beyond subnet
boundaries and into the thousands of hosts.

■■ The Ganglia front end dynamically reorders all of its output based on the
most utilized clusters and cluster nodes. It also does really nice things
such as recoloring the backgrounds of the graphs based on user-provided
thresholds. It’s an interface I think Tufte [4] would generally approve of.

The Ganglia “Grid” is the sum total of every host you’re monitoring with
Ganglia. The Grid is composed of a number of “clusters,” each of which is
further composed of a number of individual servers, or nodes. Servers that
make up a cluster are simply hosts that you’ve configured to use the same
multicast address. The gmond.conf file allows you to name the cluster and
provide other details such as latlog, and a description, but the configuration
parameter that actually segments cluster nodes is the multicast address you
assign them.

I make that point because it confused me initially. I was configuring
nodes with different cluster names in the gmond.conf file, but some were

; LO G I N : D ECEM B E R 201 0	 I VOY EU R : G A N G LI A O N TH E B R A I N	 57

appearing in the correct clusters and others weren’t. It turned out that the
Cisco switches in my environment weren’t properly configured for multicast,
so every node in the same subnet using the same multicast address was
being grouped into a cluster by Ganglia’s front end, and since gmetad
only talks to a single node in each cluster for the state of the entire cluster,
whichever node gmetad chooses to talk to gets to actually name the cluster.

At the moment, I’m content to run a separate Ganglia Grid per data center.
Since we already have a central monitoring host per data center anyway, this
works out well. The Ganglia Grid in my architecture encompasses several
network subnets. You don’t have to deal with multicast forwarding for this to
work as long as nodes in the same cluster don’t bypass a subnet boundary.
Even if you do have two nodes in the same cluster that are in different
network subnets, you can bypass the multicast networking headaches by
configuring those hosts to update each other via unicast instead. This is
easily done: sample syntax resides in the gmond.conf sample configuration
file, which can be generated by running gmond with a -t switch. We use
several openBSD systems in our environment, which don’t support multicast
by default. I’ve configured these hosts to use unicast Ganglia inter-cluster
updates.

Gmetad uses unicast to speak to a single node in each cluster, so if you have
a fairly straightforward network setup, the only firewall requirement is that
the host running gmetad be able to reach port 8649 on any host running
gmond. It’s a symptom of an elegant design on the part of the Ganglia
developers, I think, that there is so much automatic detection and so little
overhead or impact inherent in this system. I can’t remember the last time I
picked up a new monitoring tool that installed and configured this easily.

Creating new graphs and adding new metrics are non-trivial undertakings,
the price perhaps for getting so much functionality out of the box for so little
work. To create new graphs from existing data you’ll need to write a template
in PHP, but the process is well documented [5] and should be easy enough
for a decent sysadmin to follow. Adding new metrics can be accomplished in
one of three ways. The first, and probably the easiest, is to use the included
gmetric program, which will take input from any shell command and
multicast it to all listing gmond nodes in the cluster in the same way gmond
itself does. Any number of metrics can be added this way, via shell scripts
running from cron, or hooks from the monitoring system of your choice.

The second and third options are to write a Ganglia plug-in in either Python
or C. The process is pretty much the same for either type of plug-in, although
the Python plug-ins require that gmond be compiled against the Python libs,
and that requires you to have Python installed everywhere. For those of us
who want to add new metrics while keeping the overhead as small as possible,
there’s the C option. But that’s fodder for another article. Stay tuned.

Take it easy.

REFERENCES

[1] Cacti, “The Complete RRDTool-based Graphing Solution”: http://www
.cacti.net.

[2] Drraw: http://Web.taranis.org/drraw/.

[3] Ganglia: http://ganglia.sourceforge.net/.

[4] Edward Tufte, a dude who knows a thing or two about presenting
information: http://www.edwardtufte.com/tufte/.

[5] http://sourceforge.net/apps/trac/ganglia/wiki/Custom_graphs.

