
	 ;login:  FEBRUARY 2012       55

Near the end of his poem “The Talking Oak,” Tennyson alludes to the oldest of the 
pagan oracles: Jupiter at Dodona. It was quite different from the oracles that fol-
lowed it in that no temple, altar, or human contrivance was ever constructed there. 
It was merely an oak grove on an island in the Aegean Sea. The Selli tribal priests 
who lived there could decipher the word of Jupiter himself from the sound of the 
wind rustling the leaves of those sacred oak trees (some stories say wind-chimes 
were also employed).

I’d read Tennyson’s poem in high school but, that being pre-Google, I never under-
stood his reference to “that Thessalian growth” until I recently happened to read 
about the oracle at Dodona. The resolution of that long-forgotten enigma must 
have made an impression on my subconscious, because I subsequently dreamt that 
I visited that ancient oracular forest and heard the whisper of its long-dead deity. 
His message to me? “Your Web server is down.”

I often tell people, when the subject of my occupation arises, that I’m a plumber. 
This saves me from having to hear about their brother-in-law “the computer guy” 
with whom I must have so much in common, but really I say this because I often 
feel like plumbing is what I do for a living. My chimerical jaunt to Dodona, however, 
has me wondering whether what I do for a living, especially in the context of sys-
tems monitoring, has more in common with divination than craftsmanship.

How often, after all, do the systems just tell us what’s wrong with them? My 
troubleshooting technique is invariably a murky blend of experience, data analy-
sis, intuition, and luck. Things will strike me as “wrong,” sometimes without my 
being able to articulate why, and I’ll eventually arrive at root cause by following up 
on the “wrongness.” Maybe this works because the systems and their components 
are both more dependent on each other than we realize and related to each other 
in ways we don’t expect. We can stumble across some wrongness that eventually 
leads to an answer because everything is ultimately tied together. A deep under-
standing of the relationship between our systems is what allows us to hear the 
trouble in the wind, and we’re fascinated by the interplay between systems as a 
result.

Event correlation work like [1] and [2] are related endeavors, but what I’m really 
thinking about is work like that presented by Adam J. Oliner [3] from Stanford at 
LISA ’10 wherein they attempt to identify and quantify the extent of “influence” 
between components of complex systems. Once identified and quantified, cause 

iVoyeur
Changing the Game, Part 2

D A V E  J O S E P H S E N

Dave Josephsen is the 

author of Building a 

Monitoring Infrastructure 

with Nagios (Prentice 

Hall PTR, 2007) and is senior systems 

engineer at DBG, Inc., where he maintains 

a gaggle of geographically dispersed server 

farms. He won LISA ’04’s Best Paper award for 

his co-authored work on spam mitigation, and 

he donates his spare time to the SourceMage 

GNU Linux Project.  

dave-usenix@skeptech.org



	56      ;login:  VOL.  37,  NO.  1   

and effect can be inferred. If you’ve seen the presentation, you know what I’m talk-
ing about; that isn’t plumbing, it’s divination.

A less mathematically rigorous, more organic version of the same thing goes on 
between a sysadmin and his graphs. Influence is being explored, cause and effect 
inferred, answers divined. This, I think, is why we get so excited about new ways to 
visualize our data, especially if we’re provided some means to include data that we 
weren’t visualizing before. Properly understood, every new data point provides an 
opportunity to understand more deeply the interoperability of a complex system.

In my last article I introduced Graphite, a data storage and visualization system 
that does an amazing job of giving us the means to visualize data we wouldn’t have 
considered previously, either because it was outside the domain of Ops (e.g., sales 
data), or because it didn’t fit RRDTool’s storage paradigm (e.g., temporally asyn-
chronous or inconsistent data). In this article I’d like to explore some of the ways 
we might integrate Graphite with our existing tools.

Nagios Integration

You’ll recall that Graphite’s Carbon daemon listens on port 2003 for a string with 
the form “name value date” and automatically creates a whisker database within 
which to store the data. It’s trivial to push data from any sort of classical monitor-
ing system into Graphite using netcat as a client. Nagios, for example, will export 
“performance data” for host or service checks. Performance data is officially 
defined as anything that follows a pipe character (“|”) in the output of a check 
result, but the performance data command can easily be modified to include the 
entire text of the check result.

For example, my Nagios “process_performance_data” command looks like this: 

command_line    /usr/bin/printf “%b\n” \

	 “$LASTSERVICECHECK$::$HOSTNAME$::$HOSTNOTES$::$SERVICEDESC$::\

	 $SERVICEOUTPUT$::$SERVICEPERFDATA$” \

	 >> /var/log/nagios/service-perfdata.out

This captures the entire output of the check result (including any performance 
data) and logs it to /var/log/nagios/service-perfdata.out. I then use logsurfer [4] to 
parse data out of the log and ship it to a Graphite sender. Here’s the logsurfer defini-
tion to parse the output of the Nagios check_ping command: 

‘^([^:]+)::([^:]+)::([^:]+)::([^:]+)::PING [A-Z]+ - Packet loss = ([0-9]+)%, RTA 

= ([^ ]+) ms::.*$’ - - - 0 continue

	 exec “/usr/local/bin/gclient.sh $4.$3.$5-loss $6 $2 graphitebox 2003”

gclient.sh is a simple shell script that uses netcat to push data to Graphite like so:

#!/bin/sh

#send data to carbon

SERVER=$4

PORT=$5

[ “${SERVER}” ] || SERVER=graphitebox

[ “${PORT}” ] || PORT=2003

echo “$1 $2 $3” | /usr/bin/nc -c $SERVER $PORT



	 ;login:  FEBRUARY 2012   iVoyeur      57

Ganglia Integration

When I went to look for Graphite/Ganglia [5] integration I came up a bit bare. Cur-
rent versions of Ganglia support using Graphite instead of RRDTool as a render-
ing and storage engine for GWeb, but this isn’t really what I was looking for. In 
my mind, Ganglia fits the bill for Ops guys looking for an easy way to get metrics 
across all of their hosts, and Graphite is a more corporate-wide, general-purpose 
data visualization solution. I wanted an easy way to export my Ganglia metrics on 
the fly to Graphite while still keeping the former in its native format. The options 
were not what I’d consider viable [6].

It seemed to me that the shortest path would be to modify gmetad with an option 
to export the metrics directly to Graphite as it writes them to RRDTool locally, so 
I took a look at the gmetad source and submitted some patches to the mailing list 
a few hours later [7]. These still need work, but they’re functional, and have been 
merged into Ganglia monitor-core [8], so you can get them by checking monitor-
core out from git, or taking the patches from the mailing list in the usual way. I’ve 
added the following four configuration options to gmetad.conf, two of them being 
optional:

1. 	 carbon_server should be set to the remote hostname or IP address of the graphite 
server.

2. 	 graphite_prefix should be whatever you want to prefix your graphite path with 
(ganglia.<gridname> or something like that).

3. 	 You can optionally specify a “carbon_port.” This defaults to 2003 if you don’t 
specify it.

4. 	 You can optionally specify a “carbon_timeout” to timeout connection attempts 
if/when the Graphite server is down. This defaults to 500 ms if you don’t specify it.

Statsd

Graphite makes it feasible for developers to instrument their code to send 
metrics to Graphite relating to the inner workings of their applications. If the 
foo() function gets called every time someone makes a $5 purchase on a Web 
site, it might be interesting to maintain a counter of the number of times foo() 
gets called. If bar() might cause performance problems, it might be interesting to 
keep a gauge for how long bar() takes to execute. A problem with these scenarios 
is what happens when the application gets distributed to hundreds of servers. 
Suddenly the foo() counters need to somehow be aggregated and the bar() gauges 
need to be averaged. The people at Etsy [9] wrote a very popular NodeJS-based 
metrics aggregation daemon called StatsD [10] to deal with this problem, and Jeff 
Buchbinder ported it to C [11].

StatsD libraries now exist for most popular programming languages (Perl, PHP, 
Python, Java, Ruby, Lua, etc.). These make it easy for developers to create and 
maintain counters and gauges (called “timers” in StatsD) in their application. 
The metrics are sent to the StatsD server, where they are aggregated on normal 
intervals and sent on to Graphite. StatsD has the additional advantage of using 
UDP, so the application servers can “fire and forget.”

StatsD and developer interaction makes it possible to collect some interesting 
business metrics. Questions like “How many users did we register?” or “How many 
SKU4242s did we sell?” can now be easily visualized on the same graph with 



	58      ;login:  VOL.  37,  NO.  1   

system metrics (e.g., network utilization) or other dev metrics (e.g., release cycles) 
imported from integration systems like Hudson.

Logster

The guys at Etsy also created a dedicated log-parser for Graphite called logster [12]. 
Logster is a forked and simplified version of ganglia-logtailer which uses logcheck 
[13] along with external definitions for parsing metrics out of log files and sending 
them to Carbon. It comes with parsers for the Apache Web server and is intended 
to be run every minute from cron.

Collectd Integration

Joe Miller wrote a Graphite plugin [14] for collectd [15] that bears mentioning. I 
haven’t personally used collectd, so I can’t really provide any details, but it’s there.

Reverse Integration

I’m referring here to our ability to take graphs from Graphite and re-purpose them 
back into your monitoring tools. Once your metrics are in Graphite, the easiest way 
to get graphs back out is the excellent URL interface. Every feature and function 
available in the Graphite CLI or Web interface is exposed as a CGI attribute in the 
URL interface, making it possible to graph any combination of metrics, apply func-
tions like “average” or “derive,” and control the look and feel aspects of the graph 
such as image size, fonts, colors, etc., all with URL parameters.

These graphs can be referenced by any external dashboard or monitoring system 
that will take a URL. For example, I use the “action_url” attribute in the Nagios 
service description for this purpose. Taking our ping example from above, we can 
reverse-integrate our ping data back into the Nagios UI by adding an action_url 
attribute in the ping service description that looks like this:

http://graphitebox/render?from=-6h&target=dc2.linux.$HOSTNAME$.PING 

-rta&width=1024&height=768&hideGrid=true

The $HOSTNAME$ parameter is a Nagios macro that will be replaced at runtime 
with the hostname of the host to which it refers. The rest should be self-explana-
tory.

I doubt I’ll begin introducing myself as an oracle anytime soon. Not because it’ll 
make me sound like a crazy person (I’m sure I sound like a crazy person anyway) 
but, rather, because if I think too hard about the metaphor I find it a bit depressing. 
I realize the Selli priests had it way better than we do, because their oracles would 
sometimes deliver them a propitious message. Ours, on the other hand, rarely have 
anything but bad news.

Take it easy.

References

[1] Paul Krizak, “Log Analysis and Event Correlation Using Variable Temporal 
Event Correlator (VTEC)”: http://www.usenix.org/events/lisa10/tech/ 
full_papers/Krizak.pdf.

[2] Ariel Rabkin and Randy Katz, “Chukwa: A System for Reliable Large-Scale Log 
Collection”: http://www.usenix.org/events/lisa10/tech/full_papers/Rabkin.pdf.



	 ;login:  FEBRUARY 2012   iVoyeur      59

[3] Adam Oliner and Alex Aiken, “Using Influence to Understand Complex Sys-
tems”: http://www.usenix.org/multimedia/lisa10oliner/.

[4] Logsurfer: http://www.crypt.gen.nz/logsurfer/.

[5] Ganglia: http://ganglia.sourceforge.net/.

[6] Vladimir Vuksan, “Integrating Ganglia with Graphite” (blog post): http:// 
blog.vuksan.com/2010/09/29/integrating-graphite-with-ganglia/.

[7] Dave Josephsen, Graphite support for gmetad (mailing list thread): http:// 
www.mail-archive.com/ganglia-general@lists.sourceforge.net/msg06964.html.

[8] Github Ganglia Monitor Core: https://github.com/ganglia/monitor-core/pull/1.

[9] Etsy: http://www.etsy.com/.

[10] StatsD: https://github.com/etsy/statsd.

[11] StatsD-c: https://github.com/jbuchbinder/statsd-c.

[12] Logster: https://github.com/etsy/logster#readme.

[13] Logcheck: http://logcheck.org/.

[14] Collectd-graphite: http://joemiller.me/2011/04/14/collectd-graphite-plugin/.

[15] Collectd: http://collectd.org/.


