
	76    ;login:  VOL. 37, NO. 3

It started with the Vacation. It was only three or four days long, but vacations can
be a dangerous time for me. They give me an occasion to pursue subject matter I
might normally avoid for fear of the rabbit holes [1]. I’m sure you can relate. One
poorly chosen Wikipedia article and a little down-time and suddenly it’s 4 a.m. and
you find yourself making cheese in the back yard, or thermite in the bathtub. Or
was it cheese in the bathtub...? Well you get the point.

Anyway, a bit of heavy reading has lately left me with the palatable sense that my
grasp of English grammar is not what it ought to be. That, in fact, it sucks. It’s not a
happy realization in a person who is paid money to write things.

Realization isn’t the right word. I’ve been aware for some time that my West Coast
public school education has left me deficient in this, and many other respects. To
be sure, I have the innate grasp of grammar that we all share, but I’ve never, for
example, diagrammed a sentence. Nor have I ever been instructed by a teacher
to use the verb to find the subject of a sentence. Before yesterday I was wholly
ignorant of how many types of verbs there are (transitive, irregular, dynamic, etc.).
Seeing the skill with which these other writers put together words to make sen-
tences to form thoughts, and comparing those sentences and thoughts to my own,
has instilled in me a fascination with the rules of language syntax, rules which,
if I knew them, would enable me to more accurately and completely (and let us all
hope, tersely) articulate my thoughts. Have I been writing in the literary equivalent
of Visual Basic my whole life? This is unacceptable.

Now, you and I, being the sort of people we are, the sort of people with training and
experience in finding and consuming exactly the right knowledge—not just finding
it and consuming it, in fact, but delighting in the finding and consuming of it—we
have a penchant for cutting to the heart of things when we put in our cross-hairs
subjects like English grammar. You and I aren’t surprised to learn that the absolute
best way to understand English grammar is to learn Latin, and being the sort of
people we are, we’re comfortable with that in the same way that we’re comfortable
with the knowledge that the best way to understand Perl is to know assembler.

To those around us, however—those outside the confines of whatever conven-
tion hall we happen to be occupying (and perhaps even those to whom we are
married)—the idea of learning Latin is a strange, extreme, and probably elitist
proposition. That you and I would even consider such an undertaking makes us,
transitively, strange, extreme, and probably elitist people. I know this, even if I
don’t understand it, and so I maintain a cognitive duality to protect the anti-intel-

iVoyeur
Changing the Game, Part 4

D A V E J O S E P H S E N

Dave Josephsen is the

author of Building a

Monitoring Infrastructure

with Nagios (Prentice

Hall PTR, 2007) and is senior systems

engineer at DBG, Inc., where he maintains

a gaggle of geographically dispersed server

farms. He won LISA ’04’s Best Paper award for

his co-authored work on spam mitigation, and

he donates his spare time to the SourceMage

GNU Linux Project.

dave-usenix@skeptech.org

	 ;login:  JUNE 2012   iVoyeur    77

lectual sensibilities of my fellow man (and spouse). I tell myself I’m not learning
Latin, that, in fact, I’m only learning about learning Latin, but I hesitate to mention
even that to anyone off the conference floor, because that’s just the sort of distinc-
tion a weirdo extremist would make. No, this undertaking must be a secret. We’ll
have to keep it between us.

It’s vexing therefore, when I’ve fallen far enough into a rabbit hole that I find myself
immersed in the study of “Latin for Mountain Men” [2] in secret, as if it were some
kind of weirdo extremist samizdat/porn, to walk into the break room and hear
someone announce:

“I have discovered the secret of speed eating. The secret is to make your meal broth
heavy!”

Any sort of loudly asserted absurdity like this really shakes me up when I’ve been
on a bit of a mental binge. It makes me feel somehow dissonant and inhuman. I’ve
often suspected that these are the sorts of situations that make people like you
and me become people like the Unabomber, so some time ago I developed a mental
model to protect my psyche in these sorts of situations. I call it the “Inverse Feyn-
man Filter”. I’ll let Dick explain:

I had a scheme . . . when somebody is explaining something that I’m trying to
understand: I keep making up examples. For instance, the mathematicians
would come in with a terrific theorem, and they’re all excited. As they’re tell-
ing me the conditions of the theorem, I construct something which fits all the
conditions. You know, you have a set (one ball)—disjoint (two balls). Then the
balls turn colors, grow hairs, or whatever, in my head as they put more condi-
tions on. Finally they state the theorem, which is some dumb thing about the
ball which isn’t true for my hairy green ball thing, so I say, ‘False!’ [3]

If a Feynman filter is a mental model for the simplification of complex theorems,
my Inverse Feynman Filter is a mental model for the complication of the absurd
and idiotic. For example, this speed eating of broth thing sounds to me like a data
compression or maybe a signal processing problem. You’re taking food, and com-
pressing it to broth, so it can be processed more quickly. See how wonderfully that
works? If the subject matter is data compression, we needn’t concern ourselves
with why someone would want to speed eat, much less that someone felt the neces-
sity to contemplate its secrets. We can ignore entirely the question of whether
“heavy” is modifying “meal” or “broth” (why would the weight of the meal-broth
matter?) and his improper use of “of” (assuming he meant that he’d discovered the
secret to speed eating), so bonus, our top secret grammatical endeavors remain
undiscovered! We can even interact, observing, for example, that some types of
data are more difficult to compress, like so:

“That’s fascinating. How exactly does one ‘make’ one’s meal ‘broth heavy’? How
would I, for example, go about ‘speed eating’ sunflower seeds?”

“No, no. If you want to speed eat, you have to eat broth.”

“So your ‘discovery’ is really that you can drink soup quickly?”

“Well, yeah, I guess.”

As you can see, it’s not a perfect model. When it fails, I simply transition to my
backup technique, which is to use the story as a lengthy intro to a monitoring
column for ;login:. This way I can focus my mental energy toward the creation of

	78    ;login:  VOL. 37, NO. 3

an appropriate segue from the story into the proper subject matter of the column.
The speed eating of broth is, for example, a perfect metaphor for Mathias Kettner’s
Nagios plugin, Check_MK [4].

Centralized polling engines like Nagios are difficult to scale because the load
increase is linear. Every new service on every new host makes the monitoring
system work that much harder. Eventually, you’ll hit an upper-level limit on the
number of services a single poller can handle. Depending on the polling interval—
whether you’re processing performance data locally, and the sheer horsepower of
the hardware on which the poller is running—that limit is generally around 5000
services. At that point we need to look at splitting the workload across multiple
pollers. Various means exist to split and parallelize the polling workload, most of
which I’ve described in this column at one time or another.

But what if we could “brothify” some of those service checks, so that instead of
performing seven service checks on a host, we could perform a single check on
the host that would return the status of all seven services? This isn’t a new idea—
there have been various attempts to brothify and speed eat service checks over the
years—but the idea hasn’t caught on, because the implementations were prob-
lematic. To be fair, the problem is really the design of Nagios, which assumes that
every check returns a singular result from an individual service. The configuration
associated with the brothification of multiple service checks is therefore invariably
some kludgey mess involving passive service checks which, not unlike brothifying
sunflower seeds, is just not worth the effort.

When one considers the inevitable differences between various types of hosts, that
some will run services others won’t, and that some will use alert thresholds that
are more or less strict, it’s easy to imagine the configuration nightmare associ-
ated with our broth. The specifics of what to monitor and how to monitor it will
either need to be moved off the poller and out to the monitored hosts, abdicating
the advantages of centralized configuration, or into the check command itself such
that the check command for each host is accompanied by three pages of options,
only a few of which are actually specific to that host.

Check_MK solves all of these problems and more, providing not just a means to
brothify all the service checks on a host, but an all-inclusive monitoring agent that
dynamically detects and reports a litany of information about the host. Perhaps
“solves” is a strong word, as the server-side configuration is still a mess involving
passive service checks, but Check_MK creates and manages all of that for you. In
a way, the plugin’s dynamic configuration is the most impressive thing about it.
After installing the plugin server side, and the agent on the host, the Admin runs
an inventory program, which dynamically detects and, through the clever use of
Nagios templates, generates the complete server-side configuration for every host
inventoried, including the active check for the host as well as the passive checks
for each service detected. This was a heavy lift; the kind of programming few of us
enjoy.

The agent is tiny, being a shell script running under xinetd on Linux. Unlike NRPE
[5], no attributes or arguments are passed from the server, which limits the vulner-
ability footprint. The agent is easily extended for custom broth ingredients by way
of a plugin directory into which the admin may drop his own scripts. These custom
scripts will be called by the MK agent, and, assuming they follow some simple
formatting rules, their output will be parsed by the server plugin without any addi-

	 ;login:  JUNE 2012   iVoyeur    79

tional configuration. The plugin will in turn generate passive checks for them and
report them back to Nagios.

By default the agent dispenses a broth with the big four food groups—CPU, RAM,
disk, and network—auto-detecting in the process CPU numbers, NICs (includ-
ing virtual interfaces like tun/tap) and even disk partitions. A dizzying array of
other data is thrown in for flavor, including a process list, and a host of hardware-
specific info about devices like NVIDIA and 3-Ware cards, ACPI, and on and on.
An agent is even available for Windows which includes all sorts of Windows and
Active Directory metrics. A full list can be had by calling the plugin on the com-
mand line with a -M switch.

The agent program passes status to the plugin in a way that draws a distinction
between mere service state and performance data. The plugin is, in turn, aware
of performance data, which it can send to an RRDtool front-end for Nagios called
“PNP4Nagios” [6]. The plugin even automatically generates the appropriate
action_url syntax in the Nagios configuration so that the performance data graphs
generated by PNP4Nagios are displayed on the Nagios Web Interface, all without
the admin needing to lift a finger.

The Check_MK plugin provides hooks to customize the configuration it generates,
making it easy to specify alert thresholds for individual services on individual
hosts. The rules are implemented as a cascading series of defaults, with the most
specific match winning. It can also query SNMP devices such as routers and
switches using snmpwalk in lieu of a host-side agent.

It’s possible that by mixing our service checks together into a broth, we might learn
something about how they interact. The Check_MK plugin has a few neat features
that explore this possibility, including the ability to detect the primary node in an
HA-Cluster using service information returned by the agents, and a feature called
“Service aggregations.” This latter is an attempt to capture business logic, and
bears some explanation because it’s actually quite a powerful idea.

A service aggregation can be thought of as a virtual service that is made up of
several real services: for example, one can imagine a virtual service called “Email,”
which is made up of the qmail-send daemon on several hosts along with a few data-
base and HTTP processes on various other hosts throughout the infrastructure. If
any of these individual services goes down, Check_MK marks the top-level virtual
service down as well.

Check_MK is a well-designed system that should be considered as a replacement
for NRPE, especially if you’re experiencing growing pains. Next time I’ll be cover-
ing another Mathias Kettner creation called “MK_Livestatus,” which is actually
an idea he stole from me about a year before I had it. Until then, look out for the
rabbit holes.

Take it easy.

References

[1] “Down the rabbit hole”: a metaphor for adventure into the unknown, from its
use in Alice’s Adventures in Wonderland.

[2] Latin for Mountain Men: http://mysite.du.edu/~etuttle/classics/latin/
learnlat.htm.

	80    ;login:  VOL. 37, NO. 3

[3] Surely You’re Joking Mr Feynman, p. 85: http://books.google.com/books?id
=7papZR4oVssC&pg=PA85&lpg=PA85.

[4] Check_MK home page: http://mathias-kettner.de/check_mk.html.

[5] NRPE, Nagios Remote Plugin Executor: http://exchange.nagios.org/directory/
Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details.

[6] PNP4Nagios: http://docs.pnp4nagios.org/pnp-0.6/start.

