
	36    ;login:  VOL. 37, NO. 1

“The system is slow.” How often do we hear those words? Here is one technique I
use to start narrowing the fault domain, to better focus my attention on where the
cause of the slowness resides. This approach relies on comparing packet traces
taken near the client and near the server.

From a high level, I see three players contributing to the performance character-
istics of an application: the client, the network, and the server. With this model in
mind, I calculate how much time the client spends formulating requests, how much
time the server spends formulating responses, and how much time the network
spends flinging the packets back and forth. From there, I can represent the rela-
tive contribution of each component as a slice in a pie, which naturally focuses my
attention on the largest slice (slowest component).

I will sketch three techniques (manual, semi-automated, mostly automated) for
constructing the pie and illustrate how this approach can be useful for analyzing
application performance issues.

Capture the Pie

The Campus Network (Figure 1) in this article consists of a classic access/distri-
bution/core layer design, where the access layer functions at Layer 2 (k2-esx and
s4-esx) and the distribution and core layers function at Layer 3. In this diagram I
hide the distribution and core layers inside the cloud. In the pies below, the clients
Europa and Deimos copy files across the Campus Network to the server Mars,
while the probes Hale, Bopp, and Tempel capture the relevant traffic.

Figure 1: Campus Network

SYSADMINTasting Client/Network/Server Pie
S T U A R T K E N D R I C K

Stuart Kendrick works

as a third-tier tech at the

Fred Hutchinson Cancer

Research Center in Seattle,

where he dabbles in trouble-shooting, deep

infrastructure design, and developing tools

to monitor and manage devices. He started

earning money as a geek in 1984, writing in

FORTRAN on Cray-1s for Science Applications

International Corporation, worked in desktop

support, server support, and network support

at Cornell University, and reached FHCRC in

1993. He has a BA in English, contributes to

BRIITE (http://www.briite.org), and spends

free time on yoga and CrossFit.

skendric@fhcrc.org

Deimos

Campus Network
1GigE / 10GigE

k4-esx

K4 Data Center

s2-esx

S2 Data Center

Vela

Mars

Europa

T1

Hale Bopp

Tempel

	 ;login:  FEBRUARY 2012   Tasting Client/Network/ Server Pie    37

To make pies, I capture [1] two simultaneous packet traces of the experience from
separate locations: one near the server (via the probe Hale), the other near the cli-
ent (via the probe Tempel in the case of Europa, or via the probe Bopp in the case of
Deimos). I filter the two traces, such that they include only traffic between client
and server and only traffic relevant to the application I’m analyzing:

hale# dumpcap –i eth0 –w server.pcap –f “ip host europa and ip host mars”

Make the Pie from Scratch

This technique relies heavily on the DeltaT column in a trace. Here are the first
handful of frames from a 10 MB SMB file copy from the client Europa to the server
Mars across a T1 incurring 250 ms of latency.

Client-side trace:

No.	DeltaT	 RelT	 Bytes	 Src	 Dst	 Info

1	 0.000000	 0.000000	 70	 Client	 Server	 TCP SYN

2	 0.253718	 0.253718	 70	 Server	 Client	 TCP SYN/ACK

3	 0.000386	 0.254104	 64	 Client	 Server	 TCP ACK

4	 0.000007	 0.254111	 217	 Client	 Server	 Negotiate Protocol Request

5	 0.252704	 0.506815	 64	 Server	 Client	 TCP ACK

6	 0.256627	 0.763442	 226	 Server	 Client	 Negotiate Protocol Response

Server-side trace:

No.	DeltaT	 RelT	 Bytes	 Src	 Dst	 Info

1	 0.000000	 0.000000	 70	 Client	 Server	 TCP SYN

2	 0.000059	 0.000059	 70	 Server	 Client	 TCP SYN/ACK

3	 0.254032	 0.254091	 64	 Client	 Server	 TCP ACK

4	 0.000272	 0.254363	 217	 Client	 Server	 Negotiate Protocol Request

5	 0.000410	 0.254773	 64	 Server	 Client	 TCP ACK

6	 0.257468	 0.512241	 226	 Server	 Client	 Negotiate Protocol Response

The DeltaT (Delta Time) column records the time that has elapsed since the previ-
ous frame. The RelT (relative time, sometimes called cumulative time) column
records time elapsed from the beginning of the trace through that frame.

Consider the trace taken close to the client. When the source address is the client,
then DeltaT fairly closely represents the amount of time the client spent processing
the previous message from the server. When the source address is the server, then
DeltaT represents the time the server spent processing the client’s request plus the
time the network spent transmitting the server’s response.

The converse holds for the trace taken close to the server. By using a little arithme-
tic, we can estimate the time the network contributed to the experience.

1. Filter the client-side trace so that we see only frames sourced from the client:

No.	DeltaT	 RelT	 Bytes	 Src	 Dst	 Info

1	 0.000000	 0.000000	 70	 Client	 Server	 TCP SYN

3	 0.000386	 0.254104	 64	 Client	 Server	 TCP ACK

4	 0.000007	 0.254111	 217	 Client	 Server	 Negotiate Protocol request

	38    ;login:  VOL. 37, NO. 1

2. Sum the DeltaT column to produce the client time estimate:

0.000000 + 0.000386 + 0.000007 = 0.000393s

3. Filter the server-side trace so that we see only frames sourced from the server:

No.	DeltaT	 RelT	 Bytes	 Src	 Dst	 Info

2	 0.000059	 0.000059	 70	 Server	 Client	 TCP SYN/ACK

5	 0.000410	 0.254773	 64	 Server	 Client	 TCP ACK

6	 0.257468	 0.512241	 226	 Server	 Client	 Negotiate Protocol Response

	

4. Sum the DeltaT column to produce the server time estimate:

0.000059 + 0.000410 + 0.257468 = 0.257937s

5. Estimate the network’s contribution by grabbing the relative time from either
trace and subtracting the client and server contributions:

Relative – (Client + Server) = Network

0.763442 – (0.000393 + 0.257937) = 0.505112s

6. Calculate the size of each slice in the CNS Pie:

Client Time	 0.000393s

Server Time	 0.257937s

Network Time	 0.505112s

Total Time	 0.763442s

Client%	 = Client Time	 / Relative Time = 0.000393 / 0.763442 = 0%

Server%	 = Server Time	 / Relative Time = 0.257937 / 0.763442 = 34%

Network%	 = Network Time	 / Relative Time = 0.505112 / 0.763442 = 66%

The skeptical reader may question why I plucked relative time from the client-side
trace rather than from the server-side trace—in this trivial example, I agree that
the choice makes a difference (using server-side RelT results in 50% server time
and 50% network time, as opposed to the 66% and 34% produced above). However,
I claim that the two will be identical, or nearly so, across large traces, and thus we
can arbitrarily choose either one.

Naturally, my fingers become tired of punching buttons on a calculator, so I script
[2] the process, invoking tshark (part of the Wireshark suite) to produce appropri-
ately filtered text files containing just the summary lines, per above, then crawling
through those text files while summing DeltaT. Attentive readers who examine
the code will notice that I use a more laborious method for estimating the network
contribution than the one sketched here.

As it turns out, once we chew [3] through all 10,776 frames in each of these traces,
the results turn out as follows:

Client %	 2.8s 	 / 63.5s = 	 4%

Server %	 5.7s 	 / 63.5s = 	 9%

Network %	 55s 	 / 63.5s = 	 87%

	 ;login:  FEBRUARY 2012   Tasting Client/Network/ Server Pie    39

Use a Food Processor

Alternatively, tshark will perform the calculation for us [4], delivering numbers
that are within a few percent of the ones I produce above using my home-grown
code.

guru> tshark -nlr europa-to-mars-T1-250ms-at-europa.pcap –o

tcp.calculate_timestamps:TRUE -R “(tcp.dstport==445)”

-qz io,stat,600,”SUM(tcp.time_delta)tcp.time_delta”

==

IO Statistics

Interval: 600.000 secs

Column #0: SUM(tcp.time_delta)tcp.time_delta

	 |	 Column #0

Time	 |	 SUM

000.000-600.000		 2.6

==

guru>

guru> tshark -nlr europa-to-mars-T1-250ms-at-mars.pcap –o

tcp.calculate_timestamps:TRUE -R “(tcp.srcport==445)”

-qz io,stat,600,”SUM(tcp.time_delta)tcp.time_delta”

==

IO Statistics

Interval: 600.000 secs

Column #0: SUM(tcp.time_delta)tcp.time_delta

	 |	 Column #0

Time	 |	 SUM

000.000-600.000		 6.0

==

guru>

Capinfos, another Wireshark utility, tells us how long the trace lasted:

guru> capinfos europa-to-mars-T1-250ms-at-europa.pcap

File name: europa-to-mars-T1-250ms-at-europa.pcap

[…]

Capture duration: 63 seconds

[…]

Knowing that client time is 2.6 seconds, server time is 6.0 seconds, and total time
is 63 seconds, we can calculate network time:

Network Time	 = 63s – 2.6s – 6s = 53.4s

Calculate percentages:

Client %	 2.6s 	 / 63s 	= 	4%

Server %	 6.0s 	 / 63s 	= 	10%

Network %	53.4s	 / 63s 	= 	85%

Finally, in Figure 2 (next page), we use our favorite charting program to produce
the first pie.

	40    ;login:  VOL. 37, NO. 1

Figure 2: Our first pie

Buy the Pie from a Bakery

For those of us with money to spend, consider purchasing commercial software
to provide a more sophisticated estimate of these three components. With these
tools, we import the two traces into the analysis software, which then performs
the tedious work described above. In Figure 3, I use Fluke Networks’ ClearSight
Analyzer to produce a stacked chart, functionally equivalent to a pie.

Figure 3: Bottleneck analysis chart from ClearSight Analyzer

More subtly, there are a range of issues which the home-baked or food-processed
approaches miss, including TCP window size, TCP congestion window, application
block size, packet loss, and parallel threads. As these factors arise in your situa-
tion, the manual approaches become increasingly inaccurate, and this is where the
introspection baked into the commercial applications shines. Commercial pack-
ages also support importing more than two traces, captured at various points along
the path between client and server, and are smart enough to track transactions
through middleware (e.g., browser to Web server to back-end database).

Try a Slice

In these pies, Deimos copies files to Mars using NFSv3. Figure 4 illustrates situa-
tions in which I want to focus attention on the client, as it contributes 80–90% of
the total transaction time.

Figure 4: Copy big files across Campus Network

Client

Network

Server

Copy 10 MB File using SMBv1 over a T1
exhibiting 250ms of latency

63 seconds

TCP/IP Performance

Summary
Source: C:/Users/Operator/Documents/skendric/Pie-Paper/europa-to-mars-T1-250ms.adc
Description: SMB: 10.1.1.11 <--> 140.107.43.150. Last command: Write AndX Response
Flow 1: Cabrini
Flow 2: K4
ClearSight Version: 8.0.0.63
Report Generated On: Nov 13, 2011 6:57 AM

Bottleneck Analysis
Timing(%) Value

Transaction Time(sec) 63.587945
Network Time(sec) 52.619447
Client Time(sec) 5.662746
Server Time(sec) 5.305752
Network time counts for 82.75% of the total transaction time.

Performance Matrix
Flow 1 Flow 2

Throughput(Kbps) 1378.461 1371.722
Network Time(sec) 0.127052 0.127045
Client Time(sec) 5.662746000 58.155364000
Server Time(sec) 57.796762000 5.305752000
TCP Connection(sec) 0.254104 0.254091
First Byte Downloading(sec) 0.506815 0.254773
Min Client Window Size(KB) 8192 8192
Max Client Window Size(KB) 16425 16425
Min Server Window Size(KB) 43800 43800
Max Server Window Size(KB) 49640 49640
Retry 0 0
Out of Sequence Count 0 37
Packet Loss 0 0
TCP Turns 2104 7082

Slow application throughput is caused by several factors, TCP connection time usually indicates the network delay between the Client and Server is
impacting the application performance.
Small Window size of the server increase the TCP turns, consequently increase the network time.

21/ 11/13/2011 06:57Version 8.0.0.63

Client

Network
Server

1GB File Copy / NFS

Client

Network

Server

15 seconds

Client

Network Server

10MB File Copy / NFS

Client

Network

Server

.2 seconds

	 ;login:  FEBRUARY 2012   Tasting Client/Network/ Server Pie    41

In Figure 5, I want to focus attention on the server, as it contributes 60–70% of the
total time.

Figure 5: Copy small files across Campus Network

The Many 8K Files test involves copying a thousand 8K files, while the Ineffi-
cient App copies a single 1K file one byte at a time, closing and re-opening the file
between each byte:

#!/usr/bin/perl

Inefficient application

[…]

$destination = ‘/mnt/server’;

$source = ‘/var/tmp/test_file’;

open $read_fh, ‘<’, $source;	 # Open source file

while (read $read_fh, my $tmp, 1) {	# Read next byte from the source file

	 open $write_fh, ‘>>’, $destination;	# Open destination file

	 print {$write_fh} $tmp; 	# Write this byte to destination file

	 close $write_fh;	 # Close destination file

}

For the one repository I analyzed during this job, Inefficient App turned out to be a
dead-ringer for Subversion, making it useful for modeling Subversion behavior (see
Figure 6) when testing new client / network / server combinations.

Figure 6: Subversion across Campus Network

Direct Our Attention

The pies suggest that for large file copies—a streaming application—we direct our
attention toward Deimos. On investigation, we might find that beefing up its CPU
or giving it a faster drive reduces the total transaction time.

For transactional applications, such as copying many small files or Subversion, the
pies suggest that we direct our attention toward Mars. On investigation, we find
that Mars is backed by the mass storage device Vela, which contains ~500 spindles
of 1 TB and 2 TB 10 K SATA drives working in parallel. Vela divides each disk into
~700 MB chunklets, picks at least one chunklet from each disk, and glues them
together to produce the LUN which Mars exposes to Deimos.

Client

Network

Server

Many 8K Files / NFS

Client

Network

Server

5 seconds

Client

NetworkServer

Inefficient App / NFS

Client

Network

Server

2.3 seconds

Client

Network

Server

Subversion / NFS

Client

Network

Server

27 seconds

	42    ;login:  VOL. 37, NO. 1

As a result, Mars performs well for streaming applications and poorly for trans-
actional applications. Why? When we copy a big file to Mars, 500 spindles work
together to swallow the datastream: the single spindle inside Deimos cannot keep
up, making Deimos the primary contributor to the pie. When we copy many small
files one at a time, the two systems are more evenly matched: only a single spindle
inside Vela handles each write request, and that request must complete before
Deimos can forward the next request.

For Mars, we might experiment with adding a LUN serviced by small, fast
spindles—say, a dozen 15 K 250 MB drives—and moving Subversion to a volume
hosted on that LUN. These platters are small and they rotate rapidly, reducing seek
latency. For transactional applications, we might predict that such a LUN would
deliver faster performance.

The CNS Pie provides a visually intuitive tool for narrowing the fault domain and
for communicating the contours of the issue to our colleagues [5].

Too Much Sugar

Yes, I’ve been oversimplifying. Sure, sometimes the CNS Pie accurately directs our
attention to the bottleneck. But the real world can be complex, and there are plenty
of times when the CNS Pie misdirects our attention.

In Figure 7, both pies suggest that we focus on the network in order to improve
performance, but notice how the transaction time drops from 64 seconds to 14
seconds when we upgrade from SMBv1 to v2.

Figure 7: SMBv1 vs. SMBv2 over T1 with 250 ms latency

A simplistic reading of the left-hand CNS Pie would have focused our attention on
the network, which might have pushed us to purchase a network pipe with more
throughput. This would not have helped: SMBv1’s application block size is 61 K,
and so once latency reaches ~40 ms, no amount of fatter pipe will improve perfor-
mance [6]. We could have purchased a 10 GigE network service (assuming latency
remained the same) without improving total time. On the other hand, by upgrading
the client and server to run SMBv2 (available in Windows Vista+ and Samba 3.5+),
we improved performance by a factor of ~5. This new version of SMB auto-tunes
its application block size and streamlines metadata operations, thus improving
performance.

While I find the CNS Pie useful in shedding light on application performance
issues, it remains only one tool in the toolkit: there are no silver bullets.

Appreciation

I feel particular gratitude to Mike Pennacchi of Network Protocol Specialists for
teaching me to make my first CNS Pie. (As far as I can tell, Mike invented the

Client

Network

Server

Copy 10MB File / SMBv1 over T1

Client

Network

Server

64 seconds

Client

Network

Server

Copy 10MB File / SMBv2 over T1

Client

Network

Server

14 seconds

	 ;login:  FEBRUARY 2012   Tasting Client/Network/ Server Pie    43

CNS Pie back in the 1990s. If you know of prior art, please drop me a note.) I also
appreciate the professionals who have given their time to coach me on the topics
covered in this article: Glenn Boyle of BT Global Services for opening my eyes to
how I could bake at home, for refining my recipes, for teaching me how to use a
food processor, and for helping me understand numerous subtleties; Gary Kaiser
of Compuware for help understanding yet more subtleties plus the sophistication
which commercial products bring to this space; and my colleagues Robert McDer-
mott, for teaching me about the complex world of storage systems, and Wolfe
Maykut, for the Inefficient App.

Thank you also to the community active on the LinkedIn Protocol Analysis and
Troubleshooting group—I appreciate your contributions to the rich discussions
there.

References

[1] I use dumpcap, tcpdump, and tshark interchangeably, depending on mood—their
syntax is almost identical. For those interested in high-performance capture,
check out Corey Satten’s gulp: http://staff.washington.edu/corey/gulp.

[2] Data mangling code is available at http://www.skendric.com/app/code/
extract-summary-lines-from-pcap and http://www.skendric.com/app/code/
calculate-cns-pie.

[3] For a detailed description of this process, see http://www.skendric.com/app/
make-cns-pie/Make-Client-Network-Server-Pie.pdf.

[4] Requires Wireshark 1.7.1 or later.

[5] For more examples of how the CNS Pie can direct our attention, see the “Make
Client/Network/Server Pie” article at http://www.skendric.com/app.

[6] Bandwidth Delay Product calculation: 1,544,000 b/s * .04s = 61,760 bits =~ 61K.

