
sysadmin

	 ;login:  OCTOBER 2012     37

What are the causes of IT service disruption? With access to an email archive
recording both planned and unplanned events, I figured I could identify ways
to reduce downtime. This turned out to be neither as easy nor as useful as I had
hoped: the exercise raised questions but little that was actionable. Still, the path I
took may help you analyze your own data.

Environment

I work at the Fred Hutchinson Cancer Research Center, a nonprofit biomedical
research institute specializing in cancer and infectious diseases. I pay attention to
deep infrastructure: power, cooling, cabling, transport (Ethernet, IP, WiFi, Fibre
Channel), interstitial services (DNS, DHCP, authentication, directory services),
email, storage, and file services. These days, I spend my time managing our Prob-
lem Management process and leading Root Cause Analysis efforts. (Yes, the ITIL
borg is extending its filaments into our brains.)

In the mid-90s, the network team started posting service-affecting incidents, both
planned and unplanned, to an email list. Over time, more and more departments
followed suit, and more and more techs subscribed to the list. We’ve refreshed
that list server over the years, trashing its archives each time. The current archive
starts in October 2000.

In our culture, planned downtime goes over well—we negotiate service level agree-
ments (SLAs) with our divisions specifying when we can take down applications;
we notify users; they modify their work flows to dodge the windows during which
we are disrupting service; everyone is happy (for some value of happiness). But
unplanned downtime is another matter—no one enjoys that, and we invest effort to
avoid it.

Today, the Center employs 2500 staff with an annual budget of $450 million (85%
from federal grants and contracts) and has 8000 active Ethernet ports, 11,000
active IP addresses, 450 KW datacenter cooling, 1 PB+ mass storage, and national
and international collaborations. Roughly 30% of the end-stations run Windows,
another 10% Linux, 5% OS X, and the remainder fall into the miscellaneous
category (IP phones, printers, etc . . . well most of those run Linux, but I want the
Linux figure to reflect desktops/laptops/servers only).

Stuart Kendrick works as a
third-tier tech at the Fred
Hutchinson Cancer Research
Center (FHCRC) in Seattle,

where he dabbles in troubleshooting, deep
infrastructure design, and developing tools
to monitor and manage devices. He started
earning money as a geek in 1984, writing in
FORTRAN on CRAY-1 for Science Applications
International Corporation, worked in desktop
support, server support, and network support
at Cornell University, and reached FHCRC in
1993. He has a BA in English, contributes to
BRIITE (http://www.briite.org), and spends
free time on yoga and CrossFit.
skendric@fhcrc.org

What Takes Us Down?
S t u a r t Ke n d r i c k

38    ;login:  Vol. 37, No. 5

The Outages List

Techs send email to this list using a standardized format. In our lingo, all service-
affecting events are called “outages”.

Subject:	 Exchange 2003 Cluster Issues

Severity:	 Critical (Unplanned)

Start:	 Monday, May 7, 2012, 11:58

End:	 Monday, May 7, 2012, 12:38

Duration:	 40 minutes

Scope:	 Exchange 2003

Description:	 The HTTPS service on the Exchange cluster crashed, triggering

	 a cluster failover.

User Impact:	 During this period, all Exchange users were unable to access

	 email.

	 Zimbra users were unaffected.

Technician:	 [xxx]

Figure 1: Example of an unplanned outage

Subject:	 H Building Switch Upgrades

Severity:	 Major (Planned)

Start:	 Saturday, June 16, 2012, 06:00

End:	 Saturday, June 16, 2012, 16:00

Duration:	 10 hours

Scope:	 H2 Transport

Description:	 Currently, Catalyst 4006s provide 10/100 Ethernet to end-

	 stations. We will replace these with newer Catalyst 4510s.

User Impact:	 All users on H2 will be isolated from the network during this

	 work.

	 Afterward, they will have gigabit connectivity.

Technician:	 [xxx]

Figure 2: Example of a planned outage

You can’t see this in the template above, but we also categorize outages by window:

Prime	 Monday – Friday 7am – 6pm

SLA	 Sunday 8pm – Monday 4am or Wednesday midnight – 4am

Shoulder	 Any other time

Figure 3: Windows

Yes, that service level agreement (SLA) window looks pretty darn generous . . . we
can take down services every single week for eight hours straight?! Conceptually,
yes, but in practice, research institutes live and die by grant applications. Those
grant applications have submission deadlines, and those deadlines pop up almost
every week. Thus, most of those SLA windows get blocked.

The severity field has intention glued onto it via parentheses: planned (we intended
the outage) or unplanned (we were surprised). Severity itself can contain the fol-
lowing values:

	 ;login:  OCTOBER 2012   What Takes Us Down?    39

	 Drama	 Most of the Center for 60+ minutes during prime time
	 Critical	 One or more buildings or divisions
	 Major	 Multiple floors or multiple departments
	 Minor	 One floor or one department
	 None	 No end-user effect

Figure 4: Severities

You might ask why we bother to have a Severity of None—doesn’t sound like an out-
age if the end-user impact was None, right? Well, the motivation is two-fold. First,
most of us want to be kept informed of changes to the environment (because what
you change might in fact interfere with something I do), and the outages list serves
as that forum. Second, we’re trying to flush out errors in our understanding of the
environment; if I claim that an event did not cause a service disruption and you
know differently, you’ll tell me (and then I’ll send a correction to Outages).

Complicated and subjective? Yup.

The Outages Database

So I figured I’d write code to grab the list archives and crawl through them, creat-
ing a database entry for each outage. How hard could this be? After all, we use this
structured template . . . Ahh, the naiveté and eternal optimism of youth: two weeks
and 2500 lines of Perl later (the grossest code I’ve ever written), I ran it, took the
partially processed results, imported into my database, and started scrubbing
manually. Turns out we don’t follow the template exactly: I never knew there were
so many ways to write a date/timestamp, techs twink with the spelling of key
words regularly, techs tend to send multiple messages describing each outage (the
first announcing the event, the last announcing the completion of the event, and
often others in between correcting errors or adding new information) . . . I’ll quit
whining here.

Furthermore, I wanted a feel for Service and Cause, neither of which is specified in
the template. I added those during my manual passes.

Service	 Description
Application	 End-user facing apps (minus email, MIS, and printing)
Email	 Exchange, Zimbra, mail relay, spam/malware scrubbers
HPC	 High Performance Computing
Interstitial	 DHCP, DNS, NTP, authentication, directory services
MIS	 Financial Management / Human Resources systems
Power	 Electricity
Print	 Print servers
Storage	 Anything providing file or block services
Transport	 Ethernet, WiFi, Remote Access, Fibre Channel
Virtualization	 VMware, Xen
Voice	 Telephones and pagers

Figure 5: Services

This list reflects the focus of the groups who post to outages. Most of the applica-
tion support groups do not post; I lump their contributions into a single category.

40    ;login:  Vol. 37, No. 5

More interestingly, I wanted to identify the proximate cause of each outage—again,
not something defined in the template, so I added this during my manual passes,
interpreting the description field, dusting off memories, and making a judgment
call.

Cause	 Description
Cockpit Error	 Techie mistake (fat finger, config error, bump the power cord)
Design Failure	 Service didn’t behave as the designer intended
External Services	 Service provider issue (electric utility, ISP, telecom carrier)
Hardware Failure	 The magic smoke escaped
Maintenance	 Patching, database compression, shuffling data, minor fixes
Malware	 Virus or worm infection
Overload	 Too much of a good thing
Software Bug	 Memory leak, unhandled exception, Blue Screen of Death
Testing	 Validating expected behavior, typically involving
	 high-availability
Unknown	 Never figured it out
Upgrade	 Adding major functionality (new gear, major software update)

Figure 6: Causes

There’s a lot of fuzz here. When we popped a ceiling tile trying to trace cables and
knocked an unsecured electrical wire loose, it triggered an emergency power off
(EPO) event in our largest datacenter. I categorized the service as Power and the
cause as Design Failure. I could have categorized the service as Application (every
application in that datacenter went down) and the cause as Cockpit Error (the
electrician who installed the EPO circuits intended to screw that wire into place
but forgot). I didn’t because I try to push cause down the OSI stack (Power sits a
whole lot lower than Application), and I try to pick the proximate cause as opposed
to the root cause: at the moment we popped the ceiling tile, Power did not behave
according to the datacenter designer’s intent.

Or, to take another example, if the server stayed up, but became too slow to be
usable on account of too many users, I categorized that as Overload. If the server
crashed because it ran out of RAM (on account of too many users), I categorized
that as Software Bug.

Yup, pretty darn subjective.

Notes

u	 External services isn’t really a cause, but since the service provider space is
opaque to us (did the WAN circuit go down due to human error, an unannounced
upgrade, or a power event?), we lump them together.

u	 Hardware Failure lumps together both unplanned events, during which the
magic smoke escaped, and planned events, during which we replace, say, a disk
controller which is failing diagnostics but hasn’t actually fried yet.

u	 Maintenance is driven by patching, mostly Windows patching.
u	 Testing is driven by the network team, which reboots redundant switches and

routers monthly.

	 ;login:  OCTOBER 2012   What Takes Us Down?    41

Results

I ended up with ~2300 outages [1] spanning the last 11+ years. Is that an under-
count? Definitely. Departments vary in how frequently they report: some use
Outages rigorously, others not at all. And of the entries in Outages, I threw away
hundreds which my code didn’t parse or which were too terse for me to categorize
manually.

Q: How often are we surprised?
A: We’re surprised half the time.

Planned: 55% Unplanned: 45%

Q: What takes us down?
A: Software bugs take us down.

For unplanned outages, software bugs are the dominant contributor. And for
planned outages, a third arise from maintenance, which is driven by patching, i.e.,
fixing software bugs.

Planned Unplanned
Cause Proportion Cause Proportion
External Services   2% Cockpit Error 13%
Maintenance 32% External Services   7%
Other 14% Hardware Failure 12%
Testing 11% Other   7%
Upgrade 41% Software Bug 61%

Figure 7: Planned vs. unplanned by cause

Q: When do we go down?
A: In the middle of the day.

If unplanned outages were to occur at random, regardless of time of day, we would
predict that some unplanned outages would land during the Prime window (55
hours/week), most during the Shoulder window (101 hours/week), and a few during
the SLA window (12 hours/week). But, in fact, we see that far more land during
Prime time than we would expect based purely on chance—perhaps because our
users are exercising the systems and uncovering bugs in the process.

Window Predicted Measured
Prime 33% 67%
Shoulder 60% 31%
SLA   7%   2%

Figure 8: Unplanned outages by window: predicted vs. measured

Q: What causes induce the most pain?
A: The same causes which induce major and minor pain.

I tried slicing and dicing in other ways but did not uncover new information. For
example, when focusing just on the most painful events (Drama and Critical),
causes break down pretty much the same as they did when considering all severities:

42    ;login:  Vol. 37, No. 5

Planned Unplanned
Cause Proportion Cause Proportion
External Services   4% Cockpit Error 17%
Maintenance 30% External Services   9%
Other 12% Hardware Failure   8%
Testing 16% Other 11%
Upgrade 38% Software Bug 55%

Figure 9: Planned vs. unplanned by severity (Drama + Critical only)

Q: How often does it hurt a lot?
A: Severity shows a normal distribution.

We experience a few of the really painful Drama outages and a few outages with no
end-user effect: most land in the middle.

Planned Unplanned
Drama   0%   5%
Critical 16% 19%
Major 46% 35%
Minor 34% 39%
None   4%   2%

Figure 10: Planned vs. unplanned by severity

Q: What breaks most often?
A: Transport and email are weak spots.

But see caveats below.

Planned Unplanned
Application 18% 16%
Email 20% 21%
Other 16% 20%
Storage 14% 8%
Transport 32% 35%

Figure 11: Planned vs. unplanned by service

Reality Check

Fuzzy Data

Those cute tables with numbers in them look good . . . but as I apply cultural knowl-
edge, I lose confidence. For example, the network team founded the outages list; the
email team jumped onto the bandwagon shortly thereafter: these two groups have
been posting the longest and have become ruthless about reporting every event, no
matter how embarrassing. Furthermore, they have the most mature monitoring
systems, reporting even minor hiccups. Are Transport and Email our most fragile
services? Or do they top the list because of cultural factors: habit, conscientious-
ness, visibility?

	 ;login:  OCTOBER 2012   What Takes Us Down?    43

Cockpit Error

Reading thousands of descriptions of outages gave me a chance to smile—I remem-
ber many of these events from personal involvement and know each of the techs
posting to the list. Senior techs tend to acknowledge their errors directly, using
language like “I fumbled the configuration,” “I accidentally typed rm –rf * from
root,” “I broke the Internet connection,” whereas junior techs tend to slide into pas-
sive voice and circuitous language when they describe their errors: “The service
went down during trouble-shooting,” “It was discovered that the configuration
file contained an error,” “On investigation and after analysis, the power cord was
found to be detached.” Where possible, I flagged the cause as Cockpit Error, but I’m
confident that I missed plenty. For that matter, I suspect that Cockpit Error leads
to unreported outages, as techs try paddling up the Nile in their efforts to dodge
embarrassment. We have a remarkably shame/blame-free environment—as far as
I know, no tech has ever been fired for making a mistake and causing an outage. In
fact, management likes to stress that making mistakes is how we learn (yeah, OK,
sometimes they look a little nervous when they make this point, but still, the senti-
ment is there). How can we boost the Cockpit Error reporting rate?

Who Else Quantifies This Stuff?

A casual search turned up a handful of studies in this space, with variously sized
data sets (typically 100–1000 incidents spanning 1–5 years).

Figure 12: Similar surveys

I’m skeptical that I’m comparing apples to apples here—both environments and
methodologies vary widely. For example, Gray, Kuhn, and Enriquez were all
analyzing data sets taken from homogeneous systems (Tandem Computers and
the Public Switched Telephone Network), while Oppenheimer, Offord, and I are
analyzing heterogeneous environments (Windows/Linux-based systems running
on IP/Fibre Channel networks). Or, to take another example, Offord extracts his
data set from the log of Root Cause Analysis jobs his company has performed for
customers—not exactly outages but rather long-running problems. In 42% of their
cases, the problem was fixed by making a configuration change, which I recatego-
rized as Cockpit Error, in order to fit his data into my taxonomy—probably not a
precise match.

Tentatively, I see all these data sets directing our attention toward software flaws
and operator fumbles as places for improvement.

Gray [2] Kuhn [3] Enriquez [4] Oppenheimer [5] Offord [6] Kendrick
Published 1990 1997 2002 2003 2011 2012

SP1 SP2 SP3
Cockpit Error 13% 25% 38% 33% 36% 19% 42% 17%
Software 58% 14%   7% 27% 25% 24% 38% 55%
Hardware 18% 19% 30% 25%   4% 10% —   8%
Other 11% 42% 25% 10% 31% 33% 20% 20%

SP = Service Provider

44    ;login:  Vol. 37, No. 5

What to Do?

Software Bugs

For us, our unplanned downtime is driven by Software Bugs (~60%). We know that
we lag on patching. When a service fails repeatedly, we’ll investigate and often
find a patch addressing the issue which the vendor shipped months or years prior. I
would like to think that if we patched more regularly, we would convert unplanned
outages into planned outages. Still, this is a tricky area—most of our teams don’t
have test environments (we are nonprofit after all)—so we test patches by running
them in production, and as we all know, patches can fix issues we weren’t having
while introducing new issues. How many unplanned outages would we dodge by
patching more aggressively?

Testing

Until recently, the network group tested their redundant routers and switches
monthly, rebooting them in series, analyzing failure, fixing the issues they uncov-
ered (typically Cockpit Errors, e.g., misconfigurations), working with sysadmins to
fix misconfigured servers (servers which weren’t configured to take advantage of
the dual Ethernet switches in datacenters), and helping the security groups buff up
highly available firewalls. Of our really painful planned outages, Testing contrib-
uted 16%. I would like to think this approach saved us a similar number of really
painful unplanned outages and thus was a win. On the other hand, testing requires
substantial staff time. How to quantify the costs and benefits?

Insights

I have been struck by the number of axes on which one can measure an incident.
Each of the authors I cite developed their own taxonomy. To recap, here’s mine:

Function Our Term Description
Pain Level Severity Drama, Critical, Major, Minor, None
Intention Planned Planned or Unplanned
Time Frame Window Prime, Shoulder, SLA
End-User Impact Service The thing that went down
Proximate Cause Cause What caused the downtime

Figure 13: Taxonomy

I am troubled by how subjective my categorization process is—I made multiple
passes through the database, recategorizing as I became more familiar with my
data; nevertheless, I expect that I made inconsistent choices. Also, many outages
don’t fit the taxonomy cleanly: what to do with a planned outage which incurred
unplanned consequences? Or an outage which knocked out multiple services? And
cause remains tricky—an outage has so many causes, how to pick just one?

Still, at the end of the day, I’m headed back to problem management meetings to
suggest patching and testing as ways to convert unplanned events into planned
ones.

Doubt is uncomfortable; certainty is absurd. —Voltaire

	 ;login:  OCTOBER 2012   What Takes Us Down?    45

References

[1] See http://www.skendric.com/problem/incident-analysis for the summarized
data.

[2] Jim Gray, “A Census of Tandem System Availability Between 1985 and 1990,”
IEEE Transactions on Reliability, vol. 39, no. 4, pp. 409–418, Oct. 1990.On p.6, I
used the All Faults column and categorized maintenance +operations + process as
Cockpit Error.

[3] Richard Kuhn, “Sources of Failure in the Public Switched Telephone Network,”
IEEE Computer, vol. 30, no. 4, April 1997, pp. 31–36. I counted only errors from
telco staff as Cockpit Error, allocating “Human error—external” to Other.

[4] P. Enriquez, A.B. Brown, and D. Patterson, “Lessons from the PSTN for Depend-
able Computing,” Proceedings of the 2002 Workshop Self-Healing, Adaptive,
and Self-MANaged Systems (Shaman), 2002, pp. 1–7. Again, I allocated “Human
error—external” to Other.

[5] David L. Oppenheimer, A. Ganapathi, D. Patterson, “Why Do Internet Services
Fail, and What Can Be Done About It?” USENIX Symposium on Internet Tech-
nologies and Systems, 2003.

[6] Paul Offord, “RPR Statistics,” Advance7, October 2011. I map the sum of “bug
fix” and “programming” into my Software Bug. Programming is Advance7’s term
for a bug fixable by internal resources, e.g., a bug found in an in-house application,
while bug fix is Advance7’s term for a bug found in software acquired externally,
e.g., commercial or open source.

