
columns

54      ;login:  Vol.  37,  No.  5

In the last column, we had a lovely visit with the XML Path Language, or XPath, 
followed by a brief look at how to bring its power to bear using Perl. Path-like 
things have been a bit of a leitmotif here over the past few columns, so I thought we 
might want to continue in this direction. This time we’re going to look at a library/
tool that takes this abstraction and puts it to practical use in an interesting way we 
haven’t seen yet. As regular readers of this column will tell you, I loves me a good 
abstraction now and then. Sure do.

Just a quick warning: like last column, the majority of the words will describe the 
tool/API because once you have that all down pat, bringing Perl into the picture is 
both easy and a bit of an anti-climax (until you realized how cool what you just did 
with a single line of code actually is).

Augeas

The tool I have in mind to explore today is called Augeas. Augeas was developed 
under the aegis (oh, it is just raining Greek mythology references today) of the 
Red Hat’s Emerging Technologies group who have sponsored a number of spiffy 
projects. Determining exactly what Augeas is can be tricky because the project site 
[1] describes the tool as:

u	 An API provided by a C library
u	 A command line tool to manipulate configuration from the shell (and shell scripts)
u	 Language bindings to do the same from your favorite scripting language
u	 Canonical tree representations of common configuration files
u	 A domain-specific language to describe configuration file formats

Or more concisely, “Augeas is a configuration editing tool. It parses configura-
tion files in their native formats and transforms them into a tree. Configuration 
changes are made by manipulating this tree and saving it back into native config 
files.” 

But that still probably doesn’t make things crystal clear unless you’ve already had 
the itch this is designed to scratch. I think I can demonstrate the problem to you so 
you can see exactly why this particular solution is so lovely. Let’s take a little tour 
together around the /etc directory of your average UNIX root filesystem (kindly 
keep your hands inside the car at all times and don’t forget to stop at the gift shop 
on the way out).

David N. Blank-Edelman is 
the director of technology at 
the Northeastern University 
College of Computer and 

Information Science and the author of the 
O’Reilly book Automating System Administration 
with Perl (the second edition of the Otter 
book), available at purveyors of fine dead 
trees everywhere. He has spent the past 24+ 
years as a system/network administrator in 
large multi-platform environments, including 
Brandeis University, Cambridge Technology 
Group, and the MIT Media Laboratory. He was 
the program chair of the LISA ’05 conference 
and one of the LISA ’06 Invited Talks co-chairs. 
David is honored to have been the recipient 
of the 2009 SAGE Outstanding Achievement 
Award and to serve on the USENIX Board of 
Directors beginning in June of 2010.  
dnb@ccs.neu.edu

Practical Perl Tools
Mind Those Stables, I Mean Files

D a v i d  B l a n k - E d e l m a n



	 ;login:  OCTOBER 2012   Practical Perl Tools      55

First stop, an excerpt from the local hostname to IP address mapping file,  
/etc/hosts::

    127.0.0.1	localhost

    127.0.1.1	precise32

Next some lines from the file that contains the authentication information for all of 
the local users on a machine, /etc/passwd. Here’s an excerpt from the stock Ubuntu 
12.04 password file::

     root:x:0:0:root:/root:/bin/bash

     daemon:x:1:1:daemon:/usr/sbin:/bin/sh

Here are some lines from the config file for the service that runs commands at a set 
interval or time:

    # m h dom mon dow user				   command

    17 *	 * * *	 root    cd / && run-parts --report /etc/cron.hourly

    25 6	 * * *	 root		 test -x /usr/sbin/anacron || ( cd / && run-parts 

--report /etc/cron.daily )

And finally, a few lines from the config file for the service that rotates log files:

  /var/log/wtmp {

       missingok

       monthly

       create 0664 root utmp

       rotate 1

   }

   /var/log/btmp {

       missingok

       monthly

       create 0660 root utmp

       rotate 1

   }

As much as it might be fun to try and write an entire column just by quoting files, 
I think this is probably enough to make my point. You don’t have to be a seasoned 
sysadmin to see that none of these file formats look the same. And although a 
seasoned sysadmin can read, understand, and write these different formats in her 
or his head, getting a single piece of code to do that is much trickier. I’ve written 
my share of individual pieces of sed/awk/cut/Perl code to parse and rewrite all 
of these formats and more. Many times I’ve had to start from scratch because the 
formats were more different than similar.

Here’s where Augeas comes into the picture. Augeas provides a framework for cre-
ating plugins (which they call lenses, a term I don’t like all that much) that can read 
and write the formats for all of these different kinds of files and many more. When 
Augeas reads in the data from a file, it transforms the data into a tree that you can 
manipulate. When Augeas writes that tree data back out again, the data is written 
in the native format for that file.



56      ;login:  Vol.  37,  No.  5

Tree Talk

Just like we had to do some head scratching in my last column about how to go 
from a XML or HTML document to a tree, again I think in behooves us to make 
sure we get the concept. In fact, extra scrutiny is warranted in this case because 
that tree’s construction and manipulation is central to the whole process.

Augeas trees always have at least two children at the top level: /augeas and /files.  
/augeas is a place to find information about augeas operations and configuration. 
Information like which lens is being used to parse a file, any errors reported in that 
parsing, global configuration information, etc. all live in this part of the tree. We’re 
not going to talk about this branch at all in this column, but knowing about it may 
come in handy for you some day.

The branch of the tree that interests us the most is /files, where you can find (you 
guessed it) the configuration data found in your files. If we wanted to see the data 
from the files above, we would look in:

    /files/etc/hosts/

    /files/etc/passwd/

    /files/etc/crontab/

    /files/etc/logrotate.conf/

respectively. This list of paths brings up two interesting points:

1. 	 We’ll be referencing our configuration data using its position in the filesystem. 
Why is that so interesting? It is worth noting because it give you a sense of what 
Augeas is not. Augeas is not trying to be an all-encompassing abstraction frame-
work that elides all of the details of how a system is implemented. If you are 
using a system that keeps its hosts file in /var/etc/hosts for some bizarre reason, 
Augeas will not “standardize” the data by putting it in /files/etc/hosts. At best 
Augeas can be taught to use the “hosts” lens when it sees something in /var/etc 
with that name, but it isn’t going to provide a standardized tree independent of 
the underlying filesystem details.

2. 	 I left the trailing slash on those paths to pique your curiosity. All of the data  
for each file lives in a sub-tree that starts with the name of the file. From that 
point in the tree, we see a further elaboration of point #1. The data found in 
the different file branches is represented in a way best suited for each file type. 
Again, pay attention to what Augeas is not doing here; it is not trying to repre-
sent every configuration file format in some uniform tree structure.

To see best what I mean in detail #2, let’s look at the sub-trees from the first two 
files in our list. I’m going to reproduce just the part of the tree related to the lines I 
excerpted above. In /files/etc/hosts, we can see:

   /files/etc/hosts

   /files/etc/hosts/1

   /files/etc/hosts/1/ipaddr = “127.0.0.1”

   /files/etc/hosts/1/canonical = “localhost”

   /files/etc/hosts/2

   /files/etc/hosts/2/ipaddr = “127.0.1.1”

   /files/etc/hosts/2/canonical = “precise32”



	 ;login:  OCTOBER 2012   Practical Perl Tools      57

In /files/etc/passwd, we see this:

   /files/etc/passwd

   /files/etc/passwd/root

   /files/etc/passwd/root/password = “x”

   /files/etc/passwd/root/uid = “0”

   /files/etc/passwd/root/gid = “0”

   /files/etc/passwd/root/name = “root”

   /files/etc/passwd/root/home = “/root”

   /files/etc/passwd/root/shell = “/bin/bash”

   /files/etc/passwd/daemon

   /files/etc/passwd/daemon/password = “x”

   /files/etc/passwd/daemon/uid = “1”

   /files/etc/passwd/daemon/gid = “1”

   /files/etc/passwd/daemon/name = “daemon”

   /files/etc/passwd/daemon/home = “/usr/sbin”

   /files/etc/passwd/daemon/shell = “/bin/sh”

Let me draw your attention to one similarity and one difference between the two 
trees. Both file trees have leaves representing the different fields of their respective 
records. For /etc/hosts, you can see a leaf for each IP address; for /etc/passwd, you 
can see a leaf for each uid, gid, shell, etc.

But now a key difference to note: the first file has a sub-tree for every line in the 
file, and the second has a sub-tree for every login name. In the first case, the lens 
author has chosen to let you distinguish the “record” you are working with by line 
number (.../1/..., .../2/..., and so on); in the second case, you would specify the record 
of interest using the login name instead of its place in the file.

Eagle-eyed readers are no doubt thinking, “Hey, everything has been bunnies 
hopping through the meadow so far, but what happens when the records are 
duplicated or a record has multiple leaves of the same type?” Ok, let’s find out. 
Let’s edit our hosts file to have this as the first line:

   127.0.0.1       localhost huey dewey louie

and let’s change /etc/passwd to have two bin accounts (not a good idea, I know):

bin:x:2:2:bin:/bin:/bin/sh

bin:x:22:2:bin:/bin:/bin/sh

Augeas borrows the numeric predicate notation from the XPath playbook to handle 
these cases and creates sub-trees like this:

/files/etc/hosts/1

/files/etc/hosts/1/ipaddr = “127.0.0.1”

/files/etc/hosts/1/canonical = “localhost”

/files/etc/hosts/1/alias[1] = “huey”

/files/etc/hosts/1/alias[2] = “dewey”

/files/etc/hosts/1/alias[3] = “louie”



58      ;login:  Vol.  37,  No.  5

and:

/files/etc/passwd/bin[1]

/files/etc/passwd/bin[1]/password = “x”

/files/etc/passwd/bin[1]/uid = “2”

/files/etc/passwd/bin[1]/gid = “2”

/files/etc/passwd/bin[1]/name = “bin”

/files/etc/passwd/bin[1]/home = “/bin”

/files/etc/passwd/bin[1]/shell = “/bin/sh”

/files/etc/passwd/bin[2]

/files/etc/passwd/bin[2]/password = “x”

/files/etc/passwd/bin[2]/uid = “22”

/files/etc/passwd/bin[2]/gid = “2”

/files/etc/passwd/bin[2]/name = “bin”

/files/etc/passwd/bin[2]/home = “/bin”

/files/etc/passwd/bin[2]/shell = “/bin/sh”

This means we will use a number within a square bracket to distinguish which 
branch of the tree we care about. An important thing to note here is Augeas is strict 
about ordering within the tree. Lines from a file go into the tree—and come out of 
it—in the same order they are found in the file.

Augeas’ Muse, XPath

So you don’t think the XPath reference a moment ago is unintentional, Augeas lets 
you reference things such as

   /files/etc/passwd/bin[last()]

to get the last bin line from the configuration data. And indeed, we can now bring 
some of the power of XPath’s query capability we saw in the last column to Augeas. 
For example, we could request all of the logins with the bogus shell of /bin/false:

   /files/etc/passwd/*[shell = ‘/bin/false’]

One example from the Augeas documentation (slightly modified):

   /files/etc/hosts/*/ipaddr[../alias=’huey’]

This query finds the IP addresses of the host with the alias huey.

There are a bunch more selection and querying operations you can do using a 
syntax that is a kissing-cousin to XPath. Rather than enumerate them all, I’d like 
to point you to last ;login issue’s Practical Perl Tools column and the Augeas docu-
mentation. Now let’s look at what you can do with everything we’ve discussed so 
far. For instance, what if you could do something you couldn’t do with XPath, such 
as change values and whole records?

Let’s Do It

Changing things sounds pretty spiffy, no? Let’s get at it. The way I recommend 
you start working with Augeas is to install it on a machine using either a pre-built 
package or grab the latest source from github [2]. For build instructions, see the 
HACKING [3] file once you clone the repository.



	 ;login:  OCTOBER 2012   Practical Perl Tools      59

Two quick OS X-related warnings as of this writing:

1. 	 A key part of Augeas 0.10.0, as made available through both Homebrew and 
MacPorts, builds fine but fails as soon as you try to run it. If you want to run 
Augeas on OS X, you’ll have to build from source, which leads to:

2. 	 The latest version of Augeas requires a more recent version of Bison than the 
OS X default of 2.3. MacPorts can build a compatible Bison version; Homebrew 
mainline does not have that available.

For more details on where to get Augeas, including the language-specific binding 
(Perl is only one of many available), see their download page [4]. You may also 
be able to download the language binding of your choice from the same pre-
built source as your main Augeas distribution. For example, Ubuntu makes the 
libconfig-augeas-perl package available.

The main distribution comes with a nifty command-line tool called augtool, 
which is a great way to play around with Augeas in an interactive setting. One 
hint if you are going to do this: augtool can take a -- root f lag that will chroot() 
it to a directory of your choice. This lets you play with augtool on a directory 
of configuration files mocked up to look like a real root filesystem (one such 
directory comes with the distribution) without worrying about zorching your 
real configuration data. Another good way to experiment is within a throw-away 
virtual machine.

Augtool has built-in help, but mostly you can stick to a few simple commands:

u	 ls to show an Augeas path (e.g., ls /files/etc/passwd/bin)
u	 print to recursively print out the contents of a sub-tree, which is the command I 

used for the previous output
u	 match to do an XPath-like search on the tree
u	 set to set a value (more on this later)
u	 rm to remove an entire sub-tree (e.g., to remove a line from a config file)
u	 ins to insert a sub-tree (e.g., to insert a line into a file)
u	 save to write the tree data back out to a file with all changes made

Let’s play with a few of these commands. I promised change, so let’s change one of 
the alias values in the first line of the hosts file we were using:

    $ sudo augtool

    augtool> set /files/etc/hosts/1/alias[3] ‘phooey’

    augtool> save

    Saved 1 file(s)

    augtool> quit

    $ grep phooey /etc/hosts

    127.0.0.1	localhost huey dewey phooey

Here we’ve set the third alias value for the first line and confirmed that change 
actually took. Now, let’s deal with that icky duplicate bin entry in /etc/passwd:

   $ sudo augtool

   augtool> rm /files/etc/passwd/bin[2]

   rm : /files/etc/passwd/bin[2] 7

   augtool> save

   Saved 1 file(s)

   augtool> quit

   $ grep bin:x /etc/passwd

   bin:x:2:2:bin:/bin:/bin/sh



60      ;login:  Vol.  37,  No.  5

Gone, baby gone. Augtool also has told us the size of the sub-tree we just removed.

Augtool also works for searches like the ones I mentioned above:

   augtool> match /files/etc/passwd/*[shell = ‘/bin/false’]

   /files/etc/passwd/syslog = (none)

   /files/etc/passwd/messagebus = (none)

   /files/etc/passwd/ntp = (none)

   /files/etc/passwd/vboxadd = (none)

   /files/etc/passwd/statd = (none)

The = (none) part of the results is meant to indicate that the nodes selected by 
the query do not have values of their own (i.e., they are at the top of their respective 
file tree). Here’s an example where we are asking for something that does contain a 
value:

   augtool> match /files/etc/hosts/*/ipaddr[../alias=’huey’]

   /files/etc/hosts/1/ipaddr = 127.0.0.1

Using This from Perl Is Going to Be Trivial, Right?

Yeah, yeah it is. All of the things we were just doing in augtool look remarkably 
similar using the Config::Augeas Perl module:

   use Config::Augeas;

   my $aug = Config::Augeas->new();

   $aug->set(‘/files/etc/hosts/1/alias[3]’, ‘kablooey’);

   $aug->save;

Or, another example

   use Config::Augeas;

   

   my $aug = Config::Augeas->new();

   my @matches = $aug->match(q{/files/etc/passwd/*[shell = ‘/bin/false’]});

   print join (“\n”,@matches);

yields

   /files/etc/passwd/syslog

   /files/etc/passwd/messagebus

   /files/etc/passwd/ntp

   /files/etc/passwd/vboxadd

Don’t you love it when a plan comes together? Now you have super powers when it 
comes to reading and editing system config files from Perl thanks to Augeas. Take 
care and I’ll see you next time.

References

[1] Augeas: http://augeas.net/.

[2] Augeas on github: https://github.com/lutter/augeas.

[3] HACKING: https://github.com/lutter/augeas/blob/master/HACKING.

[4] Augeas download page: http://augeas.net/download.html


