
reports

82    ;login:  Vol. 37, No. 5

2012 USENIX Annual Technical Conference
(ATC ’12)
Boston, MA
June 13-15, 2012

Opening Remarks

Summarized by Rik Farrow (rik@usenix.org)
Gernot Heiser (University of New South Wales) opened ATC
by telling us that there had been 230 paper submissions, up
by 30% from last year. Forty-one papers were accepted, after
three reviewing rounds. Gernot reminded the audience that
both OSDI and HotOS were coming up soon. Then Wilson
Hsieh (Google) announced the best papers: “Erasure Coding
in Windows Azure Storage,” by Cheng Huang et al., and
“netmap: A Novel Framework for Fast Packet I/O,” by
Luigo Rizzo.

Cloud

Summarized by Brian Cho (bcho2@illinois.edu)

Demand-Based Hierarchical QoS Using Storage
Resource Pools
Ajay Gulati and Ganesha Shanmuganathan, VMware Inc.; Xuechen Zhang,

Wayne State University; Peter Varman, Rice University

Imagine you are an IT administrator and your CIO asks that
“all storage requirements be met, and when there is con-
tention, don’t allow the critical VMs to be affected.” To get
predictable storage performance, you could (1) overprovision,
(2) use storage vendor products that provide QoS, or (3) pro-
vide QoS in VMs. This work looks at option 3, the goal being
to provide better isolation and QoS for storage in VMs, using
storage resource pools.

Ajay Gulati said that existing solutions specify QoS for each
individual VM, but this level of abstraction has some draw-
backs. Basically, virtual applications can involve multiple
VMs running on multiple hosts—thus the need for a new
abstraction, storage resource pools. Ajay reviewed an alloca-
tion model based on controls of reservation, limit, and shares.

In this issue:

2012 USENIX Annual Technical Conference   82
Summarized by Rik Farrow, Brian Cho, Wonho Kim,
Tunji Ruwase, Anshul Gandhi, and Asia Slowinska

For the complete 2012 USENIX Annual Technical
Conference report and summaries from HotCloud ’12,
HotPar ’12, HotStorage ’12, and the panel at our first
Women in Advanced Computing Summit, visit:
www.usenix.org/publications/login.

Conference Reports

	 ;login:  OCTOBER 2012     83

Storage resource pools are placed in a hierarchical tree, with
resource pools as intermediate nodes, and VMs at the leaves.
The controls are defined on the pools as well as individual
VMs. For example, the sales department and marketing
department can be different resource pools with separately
defined controls. These controls can be defined per-node,
depending on parent, and the system can normalize these
controls across the entire tree. In reality, a single tree is not
used; rather, the tree is split up per datastore, but this was not
detailed in the talk.

The system needs to periodically distribute spare resources,
or restrict contending resources, among children in the tree,
depending on the current system usage. This is done with
two-level scheduling—first, split up the LUN queue limit
between hosts; second, apply the queue limits by setting
mClock at each VM. This is accomplished by two main steps:
first, computing the controls per VM, based on demands, and
second adjusting the per-host LUN queue depth. This is done
every four seconds in the prototype. A detailed example of
this on a small tree was presented.

A prototype was built on the ESX hypervisor, involving both
a user-space module and kernel changes. Experiments were
done with settings of six and eight VMs running different
workloads. The results show timelines of throughput (in
IOPS) per each VM, before and after changes to the controls.
In summary, the system is able to provide isolation between
pools, and sharing within pools.

There were no questions following the presentation.

Erasure Coding in Windows Azure Storage
Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,

Parikshit Gopalan, Jin Li, and Sergey Yekhanin, Microsoft Corporation

! Awarded Best Paper!

Huseyin Simitci and Cheng Huang presented this paper
together, with Huseyin starting. In Windows Azure Storage,
the large scale means failures are the norm rather than the
exception. In the context of storage, one question is whether
to use replication or erasure coding (EC). With replication,
you just make another copy, while with EC, you add parity.
On failure, with replication you just read known data, while
with EC you recreate the data. Both tolerate failure, but EC
saves space, or can allow improved durability, with the same
amount of space.

The Windows Azure Storage stream layer is an append-only
distributed file system. Streams are very large files, split up
into units of replication called extents. Extents are replicated
before they reach their target size; once they reach the target,
they are sealed (become immutable) and then EC is applied
in place of replication. Previously, they used Reed-Solomon
6+3 as the conventional erasure coding: a sealed extent is
split into six pieces, and these are coded into three redundant
parity pieces. Huseyin concluded his part of the talk with a
brief overview of practical considerations for EC.

Cheng focused on how Azure further reduces the 1.5x space
requirement without sacrificing durability or performance.
The standard approach to reduce the space requirement is to
use Reed-Solomon 12+4 to decrease it to 1.33x. However, this
makes reading expensive, and many times reconstruction
happens during the critical path of client reads. It is better to
achieve 1.33x overhead while only using six fragments. The
key observation used to do this is the probability of failures.
Conventional EC assumes all failures are equal, and the same
reconstruction cost is paid on failure. However, for cloud
storage, the probability of a single failure is much higher than
that for multiple failures. So the approach taken is to make
single failures more efficient. A 12+2+2 local reconstruction
code (LRC) was developed. There are two local parities for
each section of six fragments, and two global parities across
all 12 fragments. In terms of durability, LRC 12+2+2 can
recover from all three failures, and 86% of four failures. So
the durability is between EC 12+4 and 6+3, which is “durable
enough” for Azure’s purposes.

LRC is tunable. You can tune storage overhead and recon-
struction cost, given a hard requirement of three-replication
reliability. Both Reed-Solomon and LRC are plotted as
curves with the axes of reconstruction read cost vs. stor-
age overhead. LRC gives a better curve, and the particular
variant can be chosen looking at this curve. In the end, Azure
chose 14+2+2, which, compared to Reed-Solomon 6+3, gives
a slightly higher reconstruction cost (7 vs. 6) but has a 14%
space savings, from 1.5x to 1.29x. Given the scale of the cloud,
14% is a significant amount.

Yael Melman, EMC, asked what happens when all three
failures are in a single group. Cheng clarified that this does
indeed work for all three failure cases, and that there are
proofs of this in the paper. Richard Elling, DEY Storage
Systems, asked how to manage unrecoverable reads. Cheng
clarified that the failures discussed are storage node failures,
not disk failures. Hari Subramanian, VMware, asked how to
deal with entire disk failures. Huseyin answered that data is
picked up by all remaining servers. Hari asked whether fail-
ing an entire node for a failed disk is less efficient. Huseyin
clarified that entire nodes are not failed in this case, but
rather that the granularity of failures considered is indeed
disks. Someone asked about the construction cost when
creating parity blocks—particularly the bandwidth cost
involved. Cheng answered that the entire encoding phase is
done in the background, not on the critical path. So you have
the luxury of scheduling them as you like.

Composable Reliability for Asynchronous Systems
Sunghwan Yoo, Purdue University and HP Labs; Charles Killian, Purdue

University; Terence Kelly, HP Labs; Hyoun Kyu Cho, HP Labs and

University of Michigan; Steven Plite, Purdue University

Sunghwan Yoo began with an example using a KV store as
motivation. He showed that many failures can happen in the
chain of forwarding a request. The techniques used to miti-
gate these failures are retransmission, sequence numbers,

84    ;login:  Vol. 37, No. 5

how this applies to waiting forever. Sunghwan said that Ken
provides fault tolerance for crash-restart failures. Time-
outs could be implemented at a higher layer. Someone asked
whether Ken can roll back or cancel a transaction. Sunghwan
answered that Ken can recover to the latest checkpoint.

Multicore

Summarized by Wonho Kim (wonhokim@cs.princeton.edu)

Managing Large Graphs on Multi-Cores with Graph
Awareness
Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank McSherry, Lidong

Zhou, and Maya Haridasan, Microsoft Research

Vijayan Prabhakaran from MSR presented Grace, an in-
memory transactional graph management systems, which
can efficiently process large-scale graph-structured data by
utilizing multicores in machines.

To exploit multicore parallelism, Grace partitions a given
graph into smaller subgraphs that can be processed by each
core separately, combines the results at a synchronization
barrier, and continues the iteration. Vijayan mentioned that
many graph algorithms, such as Google’s page-rank, will
work in this manner. In addition to the graph-specific opti-
mizations, another interesting feature of Grace is supporting
transactions by creating read-only snapshots.

In the evaluation, he compared the performances of different
graph partitions. As expected, careful vertex partition leads
to better performance than random algorithm. However, it
was interesting that the vertex partitions do not make a dif-
ference when the number of partitions is low because (1) the
partitions fit within a single chip and (2) the communication
cost between partitions is very low in this case. Rearrang-
ing vertexes also improves performance by exploiting vertex
locality in each partition. However, dynamic load-balancing
among partitions does not improve overall performance.

Alexandra Fedorova, Simon Fraser University, asked about
creating well-balanced partitions (static) and load balanc-
ing (dynamic). Grace adjusts the vertexes among the graph
partitions at runtime to improve overall completion time.
Vijayan answered that dynamic load-balancing is still
needed because processing time in each partition is affected
by multiple factors depending on the algorithms used.

persistent storage, etc. A single development team working
on the whole system could make an effort to handle failures,
but what if each component was handled by different teams
and systems? Guaranteeing global reliability between inde-
pendently developed systems is hard.

This motivates the development of Ken, a crash-restart-tol-
erant protocol for global reliability when composing indepen-
dent components. It makes a crash-restarted node look like a
slow node. Reliability is provided by using an uncoordinated
rollback recovery protocol. Composability allows compo-
nents to be written locally and work globally. An event-driven
framework allows easy programmability—specifically, it is
transparently applicable to the Mace system. These ideas
(especially rollback recovery) are not in themselves new; Ken
is a practical realization of decades of research.

When Ken receives a message from outside, an event loop
begins—within this handler, the process can send messages
and make changes to the memory heap. When the handler
is finished, a commit is done, storing all changes made to a
checkpoint file. An externalizer continually resends mes-
sages, to mask failures, making them look like slow nodes.

Another example was given, consisting of a seller, buyer,
auction server, and banking server. If any of these systems
show crash-restart failures, there are problems. Then Ken
was illustrated in more detail. A ken_handler() function gets
executed in a similar way to a main() function. Transaction
semantics are given within the function. Calling ken_mal-
loc()/ken_set_app_data()/ken_get_app_data() allows use of
the persistent heap, while ken_send() provides “fire and for-
get” messages. Ken can be used in Mace without any changes.
Ken provides global masking of failures, and composable
reliability, while Mace provides distributed protocols, avail-
ability, replication, and handling of permanent failures.

The evaluation consists of micro-benchmarks and an imple-
mentation of Bamboo-DHT on 12 machines. The micro-
benchmarks show that latency and throughput of Ken depend
on the underlying storage type (disk, no sync, and ramfs). The
Bamboo-DHT results show MaceKen has 100% data resil-
iency under correlated failures and rolling restarts, which
can happen in managed networks.

Ken and MaceKen are available online: http://ai.eecs.umich
.edu/~tpkelly/Ken and http://www.macesystems.org/
maceken.

Todd Tannenbaum, University of Wisconsin-Madison, asked
if Ken messages have leases. He said that when resends
are hidden, applications may not want to wait forever. For
example, a seller may not want to wait forever for payment.
Sunghwan answered that each event works as a transaction,
so events would not lead to incorrect states. Todd again asked

	 ;login:  OCTOBER 2012   Conference Reports    85

Locking (RCL) executes highly contended critical sections in
a dedicated server core, which removes atomic instructions
and reduces cache misses for accessing shared resources.
RCL requires dedicated cores, so it profiles applications to
find candidate locks for RCL.

In micro-benchmarks, RCL shows much lower execu-
tion time compared to spin-lock, POSIX, and MCS. It was
interesting to see that RCL improves the performance even
in low-contention settings because execution in a dedicated
core improves locality. RCL also significantly improves the
performance of existing systems including memcached.

John Griffin from Telecommunication Systems asked what
was the CPU utilization in the server cores during bench-
marks. Jean-Pierre answered that the server cores are never
idle; they always check pending critical sections to execute.
Xiang Song from Shanghai University asked how RCL
handles nested locks. RCL puts them in the same server core.

Packet Processing

Summarized by Wonho Kim (wonhokim@cs.princeton.edu)

The Click2NetFPGA Toolchain
Teemu Rinta-aho and Mika Karlstedt, NomadicLab, Ericsson Research;

Madhav P. Desai, Indian Institute of Technology (Bombay)

Teemu Rinta-aho presented Click2NetFPGA, a compiler
toolchain that automatically transforms software (in C++) to
functional target hardware design (in NetFPGA).

Although many HLS tools are available, they are not made
for people who do not understand hardware. Click2NetFPGA
does not require knowledge in target hardware systems,
and converts a given Click module to NetFPGA design. The
talk mainly focused on the prototype implementation. In
Click2NetFPGA, Click modules and configurations are first
compiled into LLVM IR, and transformed to VHDL (VHSIC
hardware description language) modules using AHIR com-
pile developed from IIT Bombay.

The measurement results showed that Click2NetFPGA can
reach only 1/3 of the line speed (1 Gbps) because of the inef-
ficient translation between NetFPGA and Click data models.
The presenter introduced their ongoing work on improving
the performance of resulting hardware.

In the Q&A session, there was a question about how fast the
compiled NetFPGA module is compared to the original Click
software. Teemu answered that it could easily get 1 Gbps on
a standard PC. Eddie Kohler from Harvard University asked
what mistakes would be made if people work on similar proj-
ects. Teemu said “ carefully study the source systems,” which

MemProf: A Memory Profiler for NUMA Multicore
Systems
Renaud Lachaize, UJF; Baptiste Lepers, CNRS; Vivien Quéma,

GrenobleINP

Baptiste Lepers from CNRS presented MemProf, a memory
profiler for NUMA systems that enables application-specific
memory optimizations by pointing out the causes of remote
memory accesses.

In NUMA systems, remote memory accesses have lower
bandwidth and higher latency than accesses within the same
node. The talk started with showing that many existing
systems suffer from inefficient remote memory accesses in
their default settings, and that NUMA optimizations can
significantly improve their performance. However, existing
profiles do not point out the causes of remote accesses, which
is needed for making optimization decisions.

MemProf provides information about thread-object interac-
tions in a given program from the viewpoints of both objects
and threads. This output is useful for identifying what
kinds of memory optimizations are needed. An interesting
example presented in the talk is that the authors significantly
improved the performance of FaceRec (face-recognition pro-
gram) by more than 40% simply by replicating a matrix that
is remotely accessed. MemProf tracks the object/thread life
cycle using kernel hooks, but the overhead is quite low (5%).

Haibo Chen asked if replicating memory objects could
increase cache misses. Baptiste answered that such an effect
was not visible in the experiments and that the replication
helps reduce remote accesses in a program. Baptiste also
mentioned that, from MemProf output, users can detect
different latencies among multiple nodes in NUMA systems.
A follow-up question was about how MemProf can replicate
memory objects automatically. Baptiste said that MemProf
users should know the memory usage in the program because
replication is possible only when memory is not fully utilized.
He also mentioned that it would be difficult to optimize a
program if the program exhibited different memory access
patterns across executions. He also explained memory access
patterns in Apache.

Remote Core Locking: Migrating Critical-Section
Execution to Improve the Performance of Multithreaded
Applications
Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and Gilles

Muller, LIP6/INRIA

Jean-Pierre Lozi started by showing that memcached
performance collapses in manycore systems because lock
acquisition time in critical sections increases as more cores
are used. To address the lock contention cost, Remote Core

86    ;login:  Vol. 37, No. 5

packet processing time in different levels, Luigi showed that
the three main costs come from dynamic memory allocation,
system calls, and memory copies. netmap uses preallocated
and shared buffers to reduce the cost.

netmap can transmit at line rate on 10 Gbps interfaces while
receive throughput is sensitive to packet size because of
hardware limitations in the system (e.g., cache line). netmap
also improved the forwarding performance of Openvswitch
and Click by modifying them to use netmap. It was interest-
ing to see that netmap-Click in userspace can outperform the
original Click running in the kernel.

Monia Ghobadi from the University of Toronto asked about
inter-arrival times of back-to-back packets. Luigi said
that packets were generated with no specified rate in the
experiments.

Toward Efficient Querying of Compressed Network
Payloads
Teryl Taylor, UNC Chapel Hill; Scott E. Coull, RedJack; Fabian Monrose,

UNC Chapel Hill; John McHugh, RedJack

Teryl Taylor from UNC Chapel Hill presented an interactive
query system, which can be used for forensic analysis. It is
challenging to build an interactive query system for network
traffic because network traffic typically has extremely large
volumes, multiple attributes, and heterogeneous payloads.
Teryl presented a solution which was to build a low I/O
bandwidth storage and query framework by reducing, index-
ing, partitioning data and allowing application-specific data
schemas.

In the evaluation, the authors used two data sets: cam-
pus DNS data and campus DNS/HTTP. The query system
significantly reduced query processing time to sub-minute
compared to PostgreSQL and SiLK for different query types
(heavy hitters, partition intensive, and needle in a haystack).

There was a question about configuring on the fly what to
store about the payload. Teryl answered that it is possible to
create/install different versions of payloads. Keith Winstein
from MIT asked how difficult it is to write a program that
finds interesting patterns about a given suspect trace. Teryl
said that using the interactive query system makes a huge
difference in finding traffic patterns.

was an interesting answer because Eddie Kohler was the per-
son who wrote the source system, the Click Modular Router.

Building a Power-Proportional Software Router
Luca Niccolini, University of Pisa; Gianluca Iannaccone, RedBow

Labs; Sylvia Ratnasamy, University of California, Berkeley; Jaideep

Chandrashekar, Technicolor Labs; Luigi Rizzo, University of Pisa and

University of California, Berkeley

Luca Niccolini presented a software router that achieves
energy efficiency by consuming power in proportion to
incoming rates with a modest increase in latency.

While network devices are typically underutilized, the
devices are provisioned for peak load. However, the devices
are power-inefficient and consume 80–90% of maximum
power, even with no traffic. Luca showed that CPU is the
biggest power consumer in software routers. The authors
developed an x86-based software router that adjusts the
number of active cores and operating frequency based on
incoming rate to improve energy efficiency. The design of the
power control algorithm is guided by measurement of power
consumption in different settings. It was interesting to see
that running a smaller number of cores at higher frequency
is more energy-efficient than running more cores at lower
frequency.

In the evaluation, Luca showed that the new router consumes
power in proportion to the input workload when running
IPv4 routing, IPSec, and WAN optimization, saving 50%
power. The tradeoff is latency, but it is a modest increase (10
μs). Another promising result was that the router did not
incur packet loss or reordering in the experiments.

Someone asked if manipulating packet forwarding tables can
overload some other cores. Luca answered that it is possible
but the controller could detect such an event and change
configuration. Luca also pointed out that reordering did not
occur, because queue wakeup latency prevented packets in an
empty queue from forwarding earlier than the other packets.
Herbert Bos from Vrije University asked about an alternative
approach, running different applications to different cores at
different frequencies. This was not considered in the work,
however.

netmap: A Novel Framework for Fast Packet I/O
Luigi Rizzo, Università di Pisa, Italy

! Awarded Best Paper!

Luigi Rizzo explored several options for direct packet I/O
such as socket, memory-mapped buffers, running within the
kernel, and custom libraries. But these all have issues with
performance, safety, and flexibility. From measurement of

	 ;login:  OCTOBER 2012   Conference Reports    87

solder to attach surface mounts. Steve Byar (NetApp) asked
about power supplies, and Mark suggested contacting him
later. Rik Farrow asked whether he had considered using an
optical mouse as a sensor to gain movement information,
and Mark said he hadn’t, but didn’t think it would work. Clem
Cole asked about using stepper motors, and Mark described
them as “evil,” requiring a separate input for each step. Marc
Chiarini (Harvard SEAS) asked about making robots like
Mark’s smaller. Mark pointed out that his robot had an extra
large, Plexiglas top that he used for scaffolding, to hold things
like speakers and video cameras which could be removed.
Marc then asked about the size of the wheels. Mark replied
that he is using plastic gearing, so the wheels need to have a
large diameter. Ches asked what tools did Mark wish he’d had
when he started. Mark said an oscilloscope.

Security

Summarized by Tunji Ruwase (oor@cs.cmu.edu)

Body Armor for Binaries: Preventing Buffer Overflows
Without Recompilation
Asia Slowinska, Vrije Universiteit Amsterdam; Traian Stancescu, Google,

Inc.; Herbert Bos, Vrije Universiteit Amsterdam

Asia Slowinska presented a tool called BinArmor, that
hardens C binaries, even without symbol information,
against buffer overflow attacks against both control-data
and non control-data. The work was prompted by statistics
that show that despite its buffer overflow vulnerabilities,
C still remains the most popular programming language.
Moreover, current techniques are ineffective for protecting
binaries (e.g., legacy code) against buffer overflow attacks. By
detecting non-control data attacks, BinArmor provides bet-
ter protection than taint analysis, which only detects control
data attacks. However, BinArmor is prone to false negatives
due to its reliance on profiling (as discussed later); i.e., it can
miss real attacks.

To harden a program binary against attacks, BinArmor (1)
finds the arrays in the program, (2) finds the array accesses,
and (3) rewrites the binary, with a novel color tracking code,
for buffer overflow detection. The Howard reverse engineer-
ing tool (presented at NDSS 2011) is used to detect arrays in
binaries without symbol information. Next, profiling runs
of the program are used to detect accesses to the detected
arrays. Coverage issues of profiling lead to the false nega-
tives in BinArmor. The binary rewrite step assigns match-
ing colors to each pointer and the buffer it references, tracks
color propagation, and checks that the color of de-referenced
pointers matches the referenced buffer. Protecting fields
(and subfields) of C structs requires a more complex coloring

Plenary

Summarized by Rik Farrow (rik@usenix.org)

Build a Linux-Based Mobile Robotics Platform (for Less
than $500)
Mark Woodward, Actifio

Mark Woodward told us that he has worked for robotics com-
panies for many years, starting with Denning Mobile Robot-
ics in 1985. But by then, he had already built his own robot,
based on a Milton Bradley Bigtrak chassis, a programmable
tank from 1979. The Bigtrak had a simple Texas Instruments
microcontroller, and Mark used this to lead into a discussion
of CPUs that appeared in later robots, such as Motorola 68K
and Z80 CPUs, as well as sensors.

Mark wasn’t very excited about the state of commercial
robotics. He called the Roomba a “Bigtrak with a broom,” the
Segway as a great example of process control, and self-park-
ing cars as something that sometimes works. He described a
project he had worked on while at Denning: a robotic security
guard. When they tried to sell their 1985 $400,000 robot,
they discovered that watchguard companies preferred to hire
guards for a lot less. The robot itself was so expensive, thieves
might elect to steal it and ignore what the robot was guarding.

Mark had brought his own robot with him, and he explained
the technology he used to build it. For example, it uses a
smaller form factor motherboard (ITX) for general pro-
cessing, for connection to video cameras, and for running
text-to-speech processing, so the robot can talk via speakers
connected to the motherboard. While the motherboard runs
Linux, Mark prefers to use an Arduino for sensors and for
motor control. He explained that the motor control was actu-
ally very difficult, as simply measuring how much each wheel
turns doesn’t actually reflect the movement of the robot, as
wheels can (and do) slip on many surfaces. The motor control
uses a Proportional-Integral-Derivative (PID) algorithm, a
commonly used feedback controller.

Mark then provided a list of tools useful for building robots
and other hardware products: temperature controlled solder-
ing iron, oscilloscope (Rigil), benchtop power supplies, as
well as more mundane items like lawnmower wheels, duct
tape, tap and dies, wire ties, and PVC pipe. He also recom-
mended the book The Art of Electronics (Paul Horowitz,
Winfield Hill), but Clem Cole (Intel) countered that Practical
Electronics for Inventors (Paul Scherz) is a better and more
recent book.

Bill Cheswick (Independent) asked how Mark dealt with
surface mounts, and Mark answered that he didn’t use them.
Clem mentioned that there are workarounds for flowing

88    ;login:  Vol. 37, No. 5

In summary, Aeolus tracks information flow within a protec-
tion boundary to ensure that only declassified information
flows outside the boundary. Aeolus achieves this using three
concepts: principals (entities with security concerns, e.g.,
individuals), tags (the security requirements of data), and
labels (set of tags). Labels associated with data objects are
immutable, while threads are associated with principals
and mutable labels (reflecting accessed data). Aeolus also
maintains an authority graph, to ensure that declassification
(tag removal) is done by authorized principals. Dan fur-
ther discussed Aeolus programming abstractions and Java
implementation.

Evaluations using micro-benchmarks showed that most
Aeolus operations are within an order of magnitude of Java
method calls. Moreover, Aeolus imposed a mere 0.15% over-
head on a financial management service application. The low
overhead is because the Aeolus operations are infrequent and
relatively inexpensive. Aeolus is available at http://pmg.csail.
mit.edu/aeolus.

Someone expressed concern about malicious information
flowing into the system. Dan confirmed that Aeolus in fact
tracks the integrity of incoming information, and referred the
audience to the paper for details. Rik Farrow also expressed
a concern that conventional uses of authority graphs, e.g., in
banks, often suffered from untimely updates. Dan observed
that untimely updates were due to centralized control, thus
decentralization in Aeolus helped to avoid the problem.

TreeHouse: JavaScript Sandboxes to Help Web
Developers Help Themselves
Lon Ingram, The University of Texas at Austin and Waterfall Mobile;

Michael Walfish, The University of Texas at Austin

Third-party code is extensively used by JavaScript applica-
tions and, allowed to execute with similar privileges, is there-
fore trusted to be safe/correct. Lon Ingram demonstrated
this was misplaced trust. For example, using a third-party
widget that had a hyperlink vulnerability for processing
online payments, he showed how this vulnerability could be
exploited by an attacker to steal credit card information. He
then presented TreeHouse, a system that uses sandboxing
to enable safe use of third-party code in JavaScript applica-
tions.

TreeHouse is implemented in JavaScript, and is therefore
immediately deployable, as no browser changes are required.
Moreover, it modifies the Web Worker feature of modern
browsers to act as containers for running third-party code.
By transparently interposing on privileged operations, Tree-
House enables flexible control of third-party code. Lon then
showed how an application can use TreeHouse to implement

scheme, where fields have multiple colors, to permit the field
to also be accessed through pointers to the enclosing structs.

Asia then presented the evaluation of BinArmor, which
focused on bug detection effectiveness and performance.
BinArmor detected buffer overflows in real world applica-
tions, including a previously unknown overflow in the htget
program. Also, it introduced, at most, a 2x slowdown in real
world I/O-intensive programs. The nbench benchmark suite,
which is more compute intensive, had a worst case slowdown
of 5x, with a 2.7x average slowdown.

A lively question/answer session ensued, with a session-
leading number (six) of questioners. Bill Cheswick set the
ball rolling by asking if BinArmor detected new bugs; Asia
referred to the htget overflow. Andreas Haeberlen from
University of Pennsylvania asked how an attacker could
adapt to BinArmor. Asia pointed out that the coverage issues
of the profiling step could be exploited. Larry Stewart asked
how pointers used by memcpy (and other libc functions)
were handled by BinArmor, since these pointers travel
through many software layers. Asia responded that more
pointer tracking would be required for that. Julia Lawall
asked if BinArmor currently performed any optimizations,
and suggested bounds-checking optimizations in Java. Asia
responded that optimizations were future work. Konstantin
Serebryany from Google asked if Body Amour reported errors
for libc functions that read a few bytes beyond the buffer.
Asia clarified that this was not a problem in practice, because
the granularity of colors in BinArmor is 4 bytes. Steffen
Plotner of Amherst College asked if BinArmor could be used
to protect the Linux kernel. Asia responded that they had
not tried.

Abstractions for Usable Information Flow Control in
Aeolus
Winnie Cheng, IBM Research; Dan R.K. Ports and David Schultz, MIT

CSAIL; Victoria Popic, Stanford; Aaron Blankstein, Princeton; James

Cowling and Dorothy Curtis, MIT CSAIL; Liuba Shrira, Brandeis; Barbara

Liskov, MIT CSAIL

Confidential data, such as credit card information, and
medical records, are increasingly stored online. Unfortu-
nately, distributed applications that manage such data, are
often vulnerable to security attacks, resulting in high profile
data theft. Dan Ports introduced the Aeolus security model,
which uses decentralized information flow control (DIFC),
to secure distributed applications against data leaks. Dan
observed that access control was not flexible enough for this
purpose, because the objective is to restrict the use, not the
access, of information. Aeolus describes a graph-based secu-
rity model and programming abstractions for building secure
distributed applications.

	 ;login:  OCTOBER 2012   Conference Reports    89

Cloud Terminal was evaluated with CRE running on a 2
GHz, 16-core system, with 64 GB RAM, while STT ran on
a Lenovo W510 laptop. The evaluated applications were
AbiWord, Evince, Wells Fargo online banking on Firefox, and
Gmail on Firefox. The applications were found to be quite
usable, with reasonable display and latency. However, page
scrolling was sluggish, but Stephen said that this could be
optimized. In terms of cost, Cloud Terminal could provide
secure computing services at 5 cents per user per month.

Andreas Haeberlen, University of Pennsylvania, asked if
client-side resources could be used to improve performance.
Stephen replied that, while this was possible, it would
not match the target applications. Someone asked if more
client-side devices could be supported in STT. Stephen said
supporting the drivers would increase complexity and thus
undermine trustworthiness.

Short Papers: Tools and Networking

Summarized by Rik Farrow (rik@usenix.org)

Mosh: An Interactive Remote Shell for Mobile Clients
Keith Winstein and Hari Balakrishnan, MIT Computer Science and

Artificial Intelligence Laboratory

Keith Winstein gave a lively talk about a mobile shell, Mosh.
Keith began by saying that everyone uses SSH, but SSH
uses the wrong abstraction: an octet stream. What you want
when you use SSH is the most recent state of your screen.
He joked that today’s network is not like the ARPANET,
which was much faster. The authors developed SSP, the state
synchronization protocol, which communicates the differ-
ences between the server’s concept of a screen and the screen
at the client side. Mosh also displays keystrokes, as well as
backspace and line kill, immediately, on the user’s terminal,
underlining characters until the server confirms any local
updates.

Mosh still uses SSH to authenticate and start up a mosh_
server. When mosh_server starts up, it communicates an
AES key over SSH before shutting down that connection.
Mosh_client uses that key in aes-ocb mode, which supplies
both encryption and an authenticated stream. Neither the
mosh_server or client run with privileges. Mosh uses UDP
packets, which means that there is no TCP connection to
maintain. Using UDP with AES-OCB (AES Offset Codebook
mode) is what allows the Mosh user to roam. Mosh also man-
ages its own flow control that adapts to network conditions.

Keith finished with a demo comparing SSH and Mosh. When
the IP address changes, SSH doesn’t even tell us that the con-
nection is dead, Keith said, and that is “most offensive.”

the required security policies for thwarting the attack in the
motivating example.

Experimental results showed that Document Object Model
(DOM) use significantly affected TreeHouse overheads. In
particular, DOM access can be up to 120k times slower with
TreeHouse. Also, TreeHouse increases initial page load latency
by 132–350 ms, on average. Consequently, TreeHouse is not
suitable for DOM-bound applications or applications with
a tight load time. Further information about TreeHouse is
available at github.com/lawnsea/Treehouse and lawnsea@
gmail.com.

James Mickens from MSR asked whether the prototype
chain needed to be protected. Lon said that he would have
to think about it. Konstantin Serebryany from Google asked
what JavaScript feature would Lon like to change. Lon
responded that he would like parent code to run child code
with restricted global symbol access. Steve McCaant from
UC Berkeley highlighted a regular expression typo in the
slide, which Lon acknowledged.

Cloud Terminal: Secure Access to Sensitive Applications
from Untrusted Systems
Lorenzo Martignoni, University of California, Berkeley; Pongsin

Poosankam, University of California, Berkeley, and Carnegie Mellon

University; Matei Zaharia, University of California, Berkeley; Jun Han,

Carnegie Mellon University; Stephen McCamant, Dawn Song, and Vern

Paxson, University of California, Berkeley; Adrian Perrig, Carnegie

Mellon University; Scott Shenker and Ion Stoica, University of California,

Berkeley

Stephen McCamant presented Cloud Terminal, a system for
protecting sensitive information on PCs. Cloud Terminal
assumes that the vulnerabilities in client software stack,
including the OS, can compromise the confidentiality and
integrity guarantees offered by prior techniques. Therefore,
Cloud Terminal proposes a new software architecture for
secure applications running on untrusted PCs, with a Secure
Thin Terminal (STT) running on client systems, and remote
applications in a Cloud Rendering Engine (CRE) VM. As an
example, Stephen demonstrated how Cloud Terminal allows
a PC user to perform secure online banking without any
dependence on the untrusted OS.

On the client system, STT’s role is to render graphical data
from the remote application, and forward keyboard and
mouse events to it. A simple hypervisor, called Microvisor,
leverages Flicker and Intel TXT to isolate STT from the cli-
ent OS. STT was implemented in 21.9 KLOC. CRE runs the
remote application in a VM, and connects to STT via a light-
weight remote frame buffer VNC protocol with SSL security.
CRE incorporates a number of techniques to provide scal-
ability (support for 100s of application VMs) and security.

90    ;login:  Vol. 37, No. 5

video, followed by 64 KB blocks using a token bucket to estab-
lish a schedule. Netflix sends out 2-MB bursts, also causing
periodic spikes. Trickle uses the congestion window to rate
limit TCP on the server side. Trickle requires changes to the
server application. Linux already allows setting a per-route
option called cwnd_clamp, and they wrote a small kernel
patch to make this option available for each socket.

Monia compared the current YouTube server, ustreamer,
with Trickle, using data collected over a 15-day period in
four experiments in Europe and India. Trickle reduced
retransmissions by 43%. Sending data more slowly also
affects queueing delay, with roundtrip times (RTTs) lower
than ustreamer by 28%. She then demonstrated a side-by-
side comparison of ustreamer and Trickle (http://www
.cs.toronto.edu/~monia/tcptrickle.html) by downloading
movie trailers. In the demo, Trickle actually worked faster,
slowly moving ahead of the display in the ustreamer window
because of ustreamer packet losses.

Someone from Stanford asked if the connection goes back to
slow start when the connection is idle. Monia answered that
since they are using the same connection, the congestion
window clamp still exists. John Griffinwood (Telecom Com-
munications) wondered whether they saw jitter and whether
Google had adopted Trickle. Monia answered that Trickle
dynamically sets the upped bound and readjusts the clamp
if congestion is encountered. While she was working as an
intern for Google, they had planned to implement Trickle.
Someone from AT&T asked whether mobile users also ben-
efit from this. Monia answered yes.

Tolerating Overload Attacks Against Packet Capturing
Systems
Antonis Papadogiannakis, FORTH-ICS; Michalis Polychronakis,

Columbia University; Evangelos P. Markatos, FORTH-ICS

Antonis Papadogiannakis told us that when a packet capture
system gets overloaded, it randomly drops packets. When a
system is being used for intrusion detection, random drops
are not good, as the dropped packets may be important. An
attacker could even cause the overload by sending packets
that result in orders of magnitude slower processing, or using
a simpler but more direct DoS attack. Antonis pointed out
that existing solutions include over-provisioning, thresholds,
algorithmic solutions, selective discarding, and ones that
attempt to reduce the difference between average and worst
case performance.

Their solution is to store packets until they can be processed.
Excess packets are buffered to secondary storage if they don’t
fit in memory, so all packets will be analyzed. When the ring
buffer gets full, packets are written to disk. When the ring

Lois Bennett asked about configuring a firewall to allow
Mosh, and Keith replied that you need to keep a range of UDP
ports open, depending on how many simultaneous Mosh ses-
sions you expect. He also said they are working to make Mosh
more firewall friendly. Someone else wondered how Mosh
could behave predictively with Gmail, and Keith responded
that Gmail is actually easier to handle than terminal applica-
tions like Emacs.

The August 2012 issue of ;login: includes an article about Mosh.

TROPIC: Transactional Resource Orchestration
Platform in the Cloud
Changbin Liu, University of Pennsylvania; Yun Mao, Xu Chen, and Mary

F. Fernández, AT&T Labs—Research; Boon Thau Loo, University of

Pennsylvania; Jacobus E. Van der Merwe, AT&T Labs—Research

Changbin Liu described a problem with how IaaS cloud pro-
viders provision services: if one link in a chain of events fails,
the entire transaction fails. For example, starting a server
requires acquiring an IP address, cloning the OS image
within storage, creating the configuration, and starting the
VM. The key idea behind TROPIC is that it orchestrates
transactions with ACID for robustness, durability, and safety.
TROPIC has a logical layer with a replicated datastore that
communicates with the physical data model. TROPIC runs
multiple controllers with a leader and followers. If a step fails,
TROPIC rolls back to the previous stage, and continues with
the failure hidden from the user. TROPIC also performs logi-
cal layer simulations to check for constraint violations—for
example, allocating more memory than the VM host has, or
using the next hop router as a backup router, the very problem
that caused the failure of EC2 in April 2011.

They have an 11k LOC Python implementation which they
have tested on a mini-Amazon setup deployed on 18 hosts in
three datacenters. The code is open source, and will be inte-
grated into Open Stack.

Haibo Chen (Shanghai Jiao Tong University) asked how
they can tell the difference between a true error and excess
latency. Changin Liu replied that error detection is via error
message. If the connection hangs for a minute, TROPIC kills
the connection or terminates it. There is more about error
handling in the paper.

Trickle: Rate Limiting YouTube Video Streaming
Monia Ghobadi, University of Toronto; Yuchung Cheng, Ankur Jain, and

Matt Mathis, Google

Monia Ghobadi explained that the way videos are streamed
by YouTube and Netflix results in bursts of TCP traffic. The
bursty nature of this traffic causes packet losses and affects
router queues. YouTube writes the first 30–40 seconds of a

	 ;login:  OCTOBER 2012   Conference Reports    91

Distributed Systems

Summarized by Brian Cho (bcho2@illinois.edu)

A Scalable Server for 3D Metaverses
Ewen Cheslack-Postava, Tahir Azim, Behram F.T. Mistree, and Daniel

Reiter Horn, Stanford University; Jeff Terrace, Princeton University;

Philip Levis, Stanford University; Michael J. Freedman, Princeton

University

Ewen Cheslack-Postava explained that a Metaverse is a 3D
space, where everything in the space is editable by users.
There are a wide variety of applications, including games,
augmented reality, etc. Unfortunately, what you get today is
not as pretty as artist renderings. Examples of artist ren-
derings were shown, followed by a very spare screen from
Second Life. The reason Second Life looked so spare was
because the system won’t display things more than a few
meters away. A second screen, shown after the user moved a
few steps shows a much richer world. The problem is that the
system doesn’t know how to scale, while not sacrificing user
experience.

These are systems problems. The only way currently to scale
is to carve the world geographically into separate servers,
and limit each server to communication with a few neighbor-
ing servers. This work uses the insight that the real world
scales, and scales by applying real-world constraints to the
system. Because there is a limited display resolution, they
use a technique called solid-angle queries. The solid angle
dictates how large an object appears, and anything with a
large solid angle should show up. So, for example, mountains
should show up, even if they are far away. The second thing
done is to combine objects. The combination of both solid-
angle queries and aggregates is close to ideal.

These techniques are used through a core data structure
called Largest Bounding Volume Hierarchy (LBVH) tree
structure, which modifies the Bounding Volume Hierar-
chy (BVH) tree. An example of four objects, in a three-level
hierarchy was shown. BVH uses spheres that can contain
objects, and hierarchically combines neighboring spheres
into ever-larger spheres. The problem with this structure, is
that to find large objects to display, a long recursive search
has to be done, and because the spheres overestimate size, it’s
hard to prune parts of the search. LBVH instead stores the
largest object in a subtree at interior nodes. Doing this results
in 75–90% fewer nodes tested. Other techniques are also pre-
sented, showing how to deal effectively with moving objects,
and redundant queries. Aggregation is applied by storing
an aggregated object of lower quality on each internal node
(BVH only stores objects at the nodes). Queries on LBVH
across different servers are done efficiently by running large
queries across machines, and then filtering those for each
individual query.

buffer has space again, packets are read back and processed.
If the system running packet capture is also relaying packets,
this will result in additional latency. But this may not be an
unreasonable price to pay if you are relying on this system to
block attacks.

The limitation to their approach are the delays when relay-
ing and the practical limitation of buffering packets to disk.
They tested their implementation using a modified version of
libpcap evaluated with Snort, using an algorithmic complex-
ity attack which resulted in an unmodified system losing as
much as 80% of packets at one million packets per second.
Their system did not lose any packets at this rate. There were
no questions.

Enforcing Murphy’s Law for Advance Identification of
Run-Time Failures
Zach Miller, Todd Tannenbaum, and Ben Liblit, University of Wisconsin—

Madison

Zach Miller explained that Murphy causes “bad things” to
happen to the software under test. Using ptrace, Murphy
captures all system calls and modifies the returned results.
Murphy follows POSIX behavior when generating responses,
so the results should not be that far afield from things that an
application might be expected to handle properly, such as a
failed write() system call because of a disk full error. Murphy
works with any language, is done in user space, and tests
entire software stacks, since it interposes on system calls
going to the kernel.

Murphy found a bug in /bin/true, because the command
expects read() to succeed. Murphy includes rich constraints,
such as regex matching, state, mapping file descriptors to
filenames, and other tricks. Murphy can simulate full disks,
time going backwards, and other results that are allowed by
system calls. Murphy keeps a log of all changes it made, and
this log can be replayed to test fixed code. Murphy can also
skip through the replay log and suspend the application right
before the return result that caused a crash.

They found bugs in C, Perl, Python, and OpenSSL in their
testing. At this point, Murphy only works under 64-bit Linux.

Eddie Kohler (Harvard) wondered, if they find a bug under
Linux, is it a true bug in other environments? Zach said
that because Linux is a POSIX-compliant system, bugs
found there will be true for any POSIX-compliant software.
Alexander Potapenko (Google) asked about the performance
overhead. Zach responded that it varied based on the amount
of system calls made by the application under test. It might
be as little as six times slower, and as much as 60 times.

92    ;login:  Vol. 37, No. 5

two modes for a repository—it will primarily be in timestamp
mode, and occasionally switch to locking mode, when coordi-
nated transactions are required. Each transaction is assigned
a timestamp, and transactions are executed in timestamp
order. Thus, timestamps define a global order. The challenge
is how to assign timestamps in a scalable, fault-tolerant way.

For a single repository transaction, the steps of operation are:
(1) the repository assigns a timestamp, chosen to be higher
than any previous timestamps; (2) the transaction with the
timestamp is logged; and (3) the transaction is executed. For
distributed, independent transactions, repositories addition-
ally vote to determine the highest timestamp. The steps are
(1) propose, (2) log, (3) vote, (4) pick, and (5) run. The transac-
tion will not execute until it has the lowest timestamp of all
concurrent transactions. This guarantees a global serial-
ized execution order. Granola provides interoperability with
coordinated transactions, by requiring repositories to switch
to lock mode. Locking is required to ensure a vote is not
invalidated. The protocol is changed to include a preparation
phase, and the transaction is aborted if there is a conflict.
The repository can commit transactions out of timestamp
order. The result will still match the serialized order, even
if execution happens out of timestamp order (because of the
nature of transactions). Repositories throughout the system
can be in different modes.

Experiments were presented using the TPC-C benchmark.
Granola scales well. With a higher load of distributed trans-
actions, Granola throughput only goes down to half. This is
because there is no locking or undo logging.

Marcos Aguilera, Microsoft Research, commented about the
ambiguity of the terminology for consistency, that it could
mean either serializability or atomicity. James agreed that
database and system communities use different terminology.
Marcos then asked if a change doesn’t touch the entire repos-
itory, if there is a need to switch the entire repository to lock
mode. James answered that if there were a separate object
model, this would be possible, but in the system the applica-
tion is just considered a blob, so it is not possible currently.

Timothy Zhu, CMU, asked for suggestions on when to use
this system. Is it applicable all the time? James said there
are obvious limitations; when there are failures, you have to
switch into locking mode, so when you really only want avail-
ability, this isn’t a great system. Timothy asked if the time-
stamps are similar to Lamport clocks. James answered that
they are basically Lamport clocks, except that voting does not
take place in Lamport clocks. Also, Granola in fact makes use
of local system clocks at clients for performance.

Zhiwu Xie, Virginia Tech, asked James to compare Granola
with the Calvin system. James answered that Calvin has an
agreement layer that needs all-to-all communication, so they

An example application, Wiki World, was shown. You can
automatically find info about objects on Wikipedia. This
would not be possible in other systems. Many more systems
challenges at the intersection of systems, graphics, PL,
databases, etc. are present in this area. An example is audio:
for instance, playing a distant siren or the combined roar of a
crowd. More info can be found at http://sirikata.com.

Jon Howell, Microsoft Research, asked what workload was
used to measure the improvements. Ewen said it is hard
to collect or generate workloads. What they used were a
synthetic random workload, and a workload collected from
Second Life. For their experiments, they tried both work-
loads. Chip Killan, Purdue, asked how direct communication
is done with aggregate objects. Ewen said that you can’t do
this with aggregate objects currently, which is a limitation in
the current system.

Granola: Low-Overhead Distributed Transaction
Coordination
James Cowling and Barbara Liskov, MIT CSAIL

James Cowling told us that Granola is an infrastructure for
building distributed storage applications. It provides strong
consistency without locking for multiple repositories and
clients. The unit for an atomic operation chosen is transac-
tions. Why? Because using transactions allows concur-
rency on a single repository to be ignored. Transactions are
allowed to span multiple repositories, avoiding inconsistency
between repositories. However, distributed transactions are
hard. Opting for consistency, e.g., using two-phase commit,
results in a high transaction cost. Opting for performance,
e.g., providing a weak consistency model, places the burden of
consistency on application developers, which evidence sug-
gests makes their job difficult.

To allow strong consistency and high performance, for
at least a large class of transactions, this work provides a
new transaction model. There are three classes of opera-
tions—first, those that work on a single repository, and then,
for distributed operations, coordinated and independent
transactions. Granola specifically optimizes for single and
distributed independent operations; it provides one-round
transactions. An example of a distributed independent
operation was shown: consider transferring $50 between two
accounts. Each participant must make the same commit/
abort decision. Evidence shows this class of operations is
common in OLTP workloads. For example, TPC-C can be
expressed entirely using single or independent transactions.

Granola provides both a client library and a repository
library, and sits between the clients and repositories. Each
repository is in fact a replicated state machine. There are

	 ;login:  OCTOBER 2012   Conference Reports    93

by a factor of two. Media access protocols isolate users from
each other, so this won’t hurt innocent users.

Evaluation was done through a deployment on two buses on
the MS campus, with trace-driven workloads, and emulation.
The main result is that performance is improved by 4x. The
workload was scaled, up to a factor of 8x, to show that losing
spare capacity is not a major concern. In emulation, it was
shown that OEC outperforms other loss recovery methods.
This is because retransmission requires delay, and fixed
redundancy ECs are not opportunistic.

Philip Levis, Stanford, asked whether fountain codes could
be used instead. Ratul replied that a challenge in PluriBus
is that r is dynamic, in addition to being estimated. With
fountain codes, k of n packets must arrive, which could not be
guaranteed.

Bradley Andrews, Google, asked whether any actual user
feedback was collected. Ratul answered there were two main
reasons that they did not. First, outsourcers who ran the
actual commute buses didn’t allow changes, so this couldn’t
be applied to those buses. Second, during the study, a large
shift to smartphones meant that the demand for Internet
access on these buses essentially disappeared. Bradley then
asked whether there was collaboration with wireless carri-
ers. Ratul explained that permission was not asked of wire-
less carriers before the study, but once the study was over, the
results were shared with carriers.

Masoud Jafavi, USC, asked what the effect of a crowded
area would be. Ratul replied that experiments were not done
to quantify this, but the feeling is that any kind of damage
will not be too large. Rather, the important questions to
consider are: Do you or do you not have a dedicated channel
to the cell provider? And how many users can get a channel,
and how quickly? Ratul commented that PluriBus may hold
on to the channel for about 200 ms longer, but compared to
the release timeout of five seconds, this is a small fraction
of the overall time.

Server-Assisted Latency Management for Wide-Area
Distributed Systems
Wonho Kim, Princeton University; KyoungSoo Park, KAIST; Vivek S. Pai,

Princeton University

Wonho Kim presented this work on one-to-many file
transfer. This may sound like an old problem: e.g., CDN, P2P,
Gossip approaches have been around for a while. But these
typically focus on bandwidth efficiency or delivery odds. The
focus in this work is on the metric of completion time. This
requires different strategies. Some motivating use cases are:
(1) configuration to remote nodes—e.g., in a CDN; (2) distrib-
uted monitoring—e.g., coordinating before measurement; and

have higher latency. He believes there is a potential scalabil-
ity limit because of this, but they showed 100 nodes, which is
impressive. Calvin’s advantage is that it has more freedom to
shift transactions around. Granola is constrained, so it relies
on single-threaded execution.

High-Performance Vehicular Connectivity with
Opportunistic Erasure Coding
Ratul Mahajan, Jitendra Padhye, Sharad Agarwal, and Brian Zill,

Microsoft Research

Ratul Mahajan started by asking how many of the audience
have used Internet access on-board a vehicle. There was
quite a show of hands. Riders love Internet access—it boosts
ridership. But performance can be poor, and service provid-
ers don’t have a good grasp on how to improve it. A service
provider’s support suggested, for example, that the user can-
cel a slow download and retry in approximately five minutes.

Vehicular connectivity uses WWAN links. It’s not the WiFi
that is bad, but rather that the WWAN connectivity is lossy.
This is not due to congestion but is just how wireless behaves.
Two methods to mask losses are retransmission and erasure
coding (EC). Retransmissions are not suitable for high delay
paths. So high-delay should use erasure coding. Existing EC
methods are capacity-oblivious, meaning there is a fixed
amount of redundancy. The problem is that this fixed amount
may be too little or too much, relative to the available capac-
ity. Thus, the main proposal is opportunistic erasure coding
(OEC)—this uses spare capacity. The challenge is how to
adapt given highly bursty traffic. Real data from MS com-
muter buses shows that you would have to adapt at very small
time-scales.

The transmission strategy for OEC is to send EC packets
if and only if the bottleneck queue is empty. This matches
“instantaneous” spare capacity and produces no delay for
data packets. As for the encoding strategy, conventional
codes are not appropriate. These codes don’t provide grace-
ful degradation when the amount of redundancy provided
is different from that needed. Thus, OEC is designed with
greedy encoding. The strategy is that, if the receiver has a
lot of packets, then EC has a lot of packets. A good property
that is achieved is that each packet transmission greedily
maximizes goodput.

PluriBus is OEC applied to moving vehicles. OEC happens
between the VanProxy (on the moving bus) and LanProxy
(part of the immobile infrastructure). Details of how relevant
parameters are estimated were given. Ratul claimed that the
aggressive use of spare capacity is not such a bad idea. The
observation is that the network is not busy all the time using
timeouts, and this means that network traffic only increases

94    ;login:  Vol. 37, No. 5

do care, you can specify a new set of nodes, and then run with
completion ratio set to 1.0.

Deduplication

Summarized by Anshul Gandhi (anshulg@cs.cmu.edu)

Generating Realistic Datasets for Deduplication
Analysis
Vasily Tarasov and Amar Mudrankit, Stony Brook University; Will Buik,

Harvey Mudd College; Philip Shilane, EMC Corporation; Geoff Kuenning,

Harvey Mudd College; Erez Zadok, Stony Brook University

Deduplication is the process of eliminating duplicate data
in a system and has been the focus of a lot of prior work.
Unfortunately, most of the prior work has looked at differ-
ent data sets, and so it is almost impossible to compare the
performance of these different deduplication approaches. A
survey of the data sets used by 33 deduplication papers was
conducted by the authors and they found that most of the
data sets were either private (53%), hard to find (14%), or con-
tained less than 1 GB of data (17%). Thus, there is a need for
an easily accessible data set with configurable parameters.

In order to create realistic data sets, Vasily Tarasov pre-
sented work to accurately track how file systems mutate over
time. They do so by observing consecutive snapshots of real
data sets, combined with a Markov model and multi-dimen-
sional analysis. Comparison with the evolution of real file
system images shows that the authors’ emulation approach
very accurately tracks the number of chunks and files over
time, as well as the number of chunks with a given degree of
duplication. Importantly, the file system profile sizes gener-
ated by the authors are 200,000 times smaller than the real
profile sizes. The emulation time is proportional to the size of
the data set, with a 4 TB data set emulation requiring about
50 minutes.

Haibo Chen from Shanghai Jiao Tong University asked about
the differences in numbers between emulation and live file
systems. Vasily answered that the emulation is a statistical
process and so there would naturally be differences from
time to time between emulation and the live system. How-
ever, Vasily felt that the emulation was close enough to the
live system evolution. Haibo then asked whether the emu-
lation runtime could be reduced by parallelization. Vasily
agreed that it could; in their current work, scanning the data
sets is done in parallel, but everything else is serialized, and
thus, there is potential for parallelization.

(3) developers—e.g., a long develop-deploy cycle in PlanetLab
can hurt productivity.

The system developed is LSync. It provides a simple folder
sync interface. The lessons and contributions are: (1) existing
systems are suboptimal mainly because they are not favor-
able when there are slow nodes; (2) completion time depends
on the set of target nodes, so LSync selects the best set of
nodes; (3) end-to-end transfer can be faster than an over-
lay, because of startup latency, so overlay is used only when
appropriate; (4) overlay performance changes at short time
scales, so transfers are adapted while they are taking place.
Existing systems assume an open client population, so their
main goals are maximum average performance, maximum
aggregate throughput, etc. LSync focuses only on internal
dissemination within a fixed client population. Thus it aims
to minimize completion time. This time is dominated by
slow nodes.

LSync uses server’s spare bandwidth to assist slow nodes.
The question is how to do this efficiently. First, look at node
scheduling—either do fast first, or slow first. Intuitively, fast
first is optimal for mean response time, while slow first gives
preference to nodes that are expected to be slow. The results
show that in fast first, slow nodes become a bottleneck at the
end. Slow first starts slower but ends quicker. But not every
scenario requires waiting for 100% sync. LSync allows the
specification of a fraction of nodes, called the target sync
ratio. LSync integrates node selection with the aforemen-
tioned scheduling.

Leveraging an overlay mesh is scalable, but needs to be care-
ful about startup latency. For small files, only using end-to-
end transfer (E2E) is faster than using an overlay. For large
files, overlay is faster than E2E. So, LSync should adapt to
the target ratio, file size, bandwidth, etc. The approach used
is that LSync monitors the overlay’s startup latency. It splits
nodes into an overlay group and E2E group, depending on the
overlay connection speed, and tries to match the completion
time of both. To deal with overlay performance fluctuation,
adaptive switching is used.

Evaluation was done on PlanetLab, using multiple CDNs,
and compared against multiple systems. A dedicated origin
server was used with 100 Mbps bandwidth. LSync improves
over other systems, by choosing E2E vs. overlay rates. Less
variation is shown with adaptive switching.

Jon Howell, Microsoft Research, asked for clarification of
the target completion ratio—whether or not they care about
which specific nodes are completed. Wonho answered that
you can do both. You can simply tune the completion ratio if
you aren’t concerned which set of nodes are completed. If you

	 ;login:  OCTOBER 2012   Conference Reports    95

Primary Data Deduplication—Large Scale Study and
System Design
Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Oltean, Jin Li, and

Sudipta Sengupta, Microsoft Corporation

Sudipta Sengupta and Adi Oltean jointly presented this work,
which will be part of Windows Server 2012. Sudipta started
this presentation, which looks at deduplication in primary
data, as opposed to the more common case of backup data.
Primary data deduplication is important because of the
continuing growth in the size of primary data and because
this is the number one technology feature that customers
are looking for when choosing a storage solution. The main
challenge in primary data deduplication is that it needs to be
non-intrusive to the workload.

The key design decision made by the authors is to post-process
deduplication, which helps to schedule deduplication in the
background when data is not hot. Also, the authors decided to
use a larger chunk size (80 KB), which helps to reduce meta-
data, and thus reduces deduplication overhead. To compensate
for the loss in deduplication opportunity due to larger chunk
sizes, the authors use chunk compression. The authors also
modify the basic fingerprint-based chunking algorithm to
reduce the forced chunk boundaries at the maximum chunk
size and to obtain a more uniform chunk size distribution.
Lastly, in order to reduce the RAM footprint and the number
of disk seeks, Adi presented the idea of partitioning the data,
then performing deduplication on each partition, and, finally,
reconciling the partitions by deduplicating across them.
Performance evaluation of this approach reveals that dedupli-
cation throughput is about 25–30 MBps, which is about three
orders of magnitude higher than previous work. Deduplication
takes up 30–40% of one core, leaving enough room (assuming
a manycore server) for serving primary workload.

Haibo Chen from Shanghai Jiao Tong University asked about
the effects of data corruption on deduplication. Adi replied
that they have looked at corruption and recovery, but this was
not part of the paper. Essentially, they ensure that in case of
a crash, data can be recovered so that the customer has peace
of mind. Further, if corruption is in the I/O subsystem or the
bus, it will be isolated.

Languages and Tools

Summarized by Asia Slowinska (asia@few.vu.nl)

Design and Implementation of an Embedded Python
Run-Time System
Thomas W. Barr, Rebecca Smith, and Scott Rixner, Rice University

Even though there are dozens of microcontrollers around
us—e.g., in cars, appliances, and computer electronics—the

An Empirical Study of Memory Sharing in Virtual
Machines
Sean Barker, University of Massachusetts Amherst; Timothy Wood, The

George Washington University; Prashant Shenoy and Ramesh Sitaraman,

University of Massachusetts Amherst

Sean Barker presented this work which analyses the poten-
tial of page sharing in virtualized environments. Page
sharing is a popular memory deduplication technique for
virtual machines in which duplicate pages are eliminated.
There has been a lot of prior work in exploiting page sharing
for deduplication, with recent publications eliminating more
than 90% of duplicate memory pages. However, the levels of
sharing typically seen in real-world systems and the factors
that affect this sharing remain open questions. The goal of
the authors’ work is to answer such questions.

The authors looked at a wide variety of memory traces,
including uncontrolled real-world traces as well as con-
trolled, configurable synthetic traces. Results indicate that
sharing within a single VM (self-sharing) is about 14%,
whereas sharing between VMs is only about 2%. Thus, 85%
of the potential for deduplication is within a VM, indicating
(very interestingly) that page deduplication is quite useful
even for non-virtualized systems. Further investigation
revealed that most of the self-sharing (94%) is because of
shared libraries and heaps. However, the amount of self-shar-
ing is largely impacted by the choice of base OS. Likewise,
sharing across VMs is also impacted by the base OSes, with
sharing being significant when the VMs have the same base
OS as opposed to different base OSes.

The case study drew a lot of questions from the audience.
Thomas Barr from Rice University asked whether the
authors had looked at sharing larger multiples of page sizes.
Sean answered that they didn’t look much at coarse-grained
sharing since the amount of sharing in this case was much
smaller. Ardalan Kangarlou from NetApp asked whether the
numbers for sharing in prior work were higher because they
looked at synthetic workloads. Sean replied that the amount
of sharing depends on the data set, and for the uncontrolled
data set that he was looking at, the sharing was much lower.
He urged the audience to look at actual data sets. Someone
noted that memory contents change from time to time, and
wondered whether vendors really benefit from sharing. Sean
acknowledged that short-lived data is hard to capture, but
that was a separate issue. Jiannan Ouyang from University
of Pittsburgh asked about the size of memory footprint in the
workload. Sean answered that the VMs they used had 2 GB
of memory (each) on them, and since they had lots of appli-
cations running, he guessed that a good portion of the 2 GB
memory was being used.

96    ;login:  Vol. 37, No. 5

for C/C++ programs, which prevents out-of-bounds memory
accesses and use-after-free bugs. The authors invite others
to try it out. It is publicly available at http://code.google.
com/p/address-sanitizer/.

AddressSanitizer is a compiler-level solution—it instru-
ments the protected program to ensure that memory access
instructions never read or write, so called, “poisoned” red
zones. Red zones are small regions of memory (currently 128
bytes) inserted in-between any two stack, heap, or global
objects. Since they should never be addressed by the program,
an access to them indicates an illegal behavior. This policy
prevents sequential buffer over- and underflows and some of
the more sophisticated pointer corruption bugs. To deal with
heap-use-after-free errors, AddressSanitizer marks a freed
memory region as “poisoned.” Until this region is allocated
again, any access to it causes an alert. AddressSanitizer uses
its own tailored instrumentation of malloc and free, which
keeps a released memory region in “quarantine” for as long as
possible. By prolonging the period in which the memory buf-
fer is not allocated again, it increases the chances of detect-
ing heap-use-after-free bugs.

AddressSanitizer scales to real-world programs, and the
developers at Google have been using it for over a year now.
It has detected over 300 previously unknown bugs in the
Chromium browser and in third-party libraries, 210 of which
are heap-use-after-free bugs. The tool has a fair amount
of overhead—it incurs 73% runtime overhead for the SPEC
CPU2006 benchmark, and almost none for the I/O intensive
Chromium browser.

During his presentation, Serebryany challenged the audi-
ence and hardware companies to attempt an implementation
of AddressSanitizer in hardware. Rik Farrow asked what
instruction would have to be added. Serebryany explained
that a hardware version of the check which is performed on
memory accesses—to ensure that the accessed memory is not
poisoned—would be welcome. It would both improve perfor-
mance and reduce the binary size. Since the current imple-
mentation of AddressSanitizer builds on the LLVM compiler
infrastructure, the next questioner asked if Google plans
to port it to gcc. Serebryany replied that they have already a
version which can successfully compile the SPEC CPU2006
benchmark, but it is not fully fledged yet.

For the complete 2012 USENIX Annual Technical
Conference report and summaries from HotCloud ’12,
HotPar ’12, HotStorage ’12, and the panel at our first
Women in Advanced Computing Summit, visit:
www.usenix.org/publications/login.

programming environments and runtime systems for them
are extremely primitive. As a result, programming these
devices is difficult. To address these issues, Thomas Barr
presented Owl, a project which aims to let developers “build
a toaster in Python.” Owl is a Python development toolchain
and runtime system for microcontrollers. It also includes an
interactive development environment, so that a user can con-
nect to a device, and type Python statements to be executed
immediately. As a result, experimenting with and program-
ming microcontrollers becomes a much simpler task.

Microcontrollers come with limited resources: e.g., 64–128 KB
of SRAM, and up to 512 KB of on-chip flash. These constraints
require that Python code be executed with low memory and
speed overheads. During his presentation, Barr discussed
two of the features of Owl that make this possible. First, he
explained how a compiled Python memory image is executed
directly from flash, without copying anything to SRAM. One
of the challenges here is to represent compound objects in such
a way that they do not contain references to other objects—
only then can they be used directly without an extra dynamic
loading step. The next feature concerned native C functions
that are called from Python to, for example, access peripherals.
Owl provides a mechanism that wraps the C functions auto-
matically, so that a programmer does not need to bother with
converting Python objects into C variables, and vice versa. A
full description of the Owl architecture is in the paper, and the
authors can be reached at embeddedowl@gmail.com.

To demonstrate that the Owl system is practical, Barr showed
a video of an autonomous RC car that uses a controller written
entirely in Python. The car successfully detected and avoided
obstacles as it zoomed around a room. A full description of the
architecture of Owl can be found in the paper, and the authors
can be reached at embeddedowl@gmail.com.

A questioner wondered how Owl provides access to some sort
of global notion of time. Barr said that the virtual machine pro-
vides a function call that returns the number of milliseconds
since the virtual machine booted. Rik Farrow asked how Owl
makes interacting with peripherals simpler for a programmer.
Barr explained that the embedded Python interpreter allows
the programmer to interactively probe the device. Thus it
becomes easy to tell whether a piece of code works as expected.

AddressSanitizer: A Fast Address Sanity Checker
Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and

Dmitriy Vyukov, Google

Even though memory corruption bugs have been known
about and fought for years, no comprehensive tool to detect
them is available. To address this problem, Konstantin Sere-
bryany presented AddressSanitizer, a memory error detector

