AdSplit

Separating Smartphone Advertising from Applications

SHASHI SHEKHAR, MICHAEL DIETZ, AND DAN S. WALLACH

Shashi Shekhar graduated with
an MS in computer science from
Rice University and is a software
engineer at Google.
shashi.iitg@gmail.com

Michael Dietz is a PhD student
at Rice University.
mdietz@gmail.com

Dan S. Wallach is a Professor
of Computer Science at Rice

~ University.

dwallach@cs.rice.edu

A wide variety of smartphone applications today rely on third-party advertis-

ing services, which provide libraries that are linked into the hosting application.
Advertising libraries often need additional permissions, requiring applications

to issue requests for additional permissions to their users at install time. This
article describes our AdSplit model, where we extended Android to allow an appli-
cation and its advertising to run as separate processes, under separate user IDs,
eliminating the need for applications to request permissions on behalf of their
advertising libraries.

Introduction

The smartphone and tablet markets are growing in leaps and bounds, helped in

no small part by the availability of specialized third-party applications (“apps”).
Whether on the iPhone or Android platforms, apps often come in two flavors: a free
version, with embedded advertising, and a pay version without. Both models have
been successful in the marketplace. To pick one example, the popular Angry Birds
game at one point brought in roughly equal revenue from paid downloads on Apple
iOS devices and from advertising-supported free downloads on Android devices
[1]. They now offer advertising-supported free downloads on both platforms.

We cannot predict whether free or paid apps will dominate in the years to come,
but advertising-supported apps will certainly remain prominent. Already, a cottage
industry of companies offer advertising services for smartphone app developers.

Today, these services are simply pre-compiled code libraries, linked and shipped
together with an app. This means that a remote advertising server has no way to
validate a request it receives from a user legitimately clicking on an advertise-
ment. A malicious app could easily forge these messages, generating revenue for
its developer while hiding the advertisements in their entirety. To create a clear
trust boundary, advertisers would benefit from running ads separately from
their host apps.

In Android, apps must request permission at install time for any sensitive privi-
leges they want to exercise. Such privileges include access to the Internet, access
to coarse or fine location information, or even access to see what other apps are
installed on the phone. Advertisers want this information in order to better profile
users and thus target ads at them; in return, advertisers may pay more money to
their hosting apps’ developers. Consequently, many apps that require no particular
permissions, by themselves, suffer permission bloat, being forced to request the

;login:  DECEMBER 2012 33



34

slogin:

VOL. 37, NO. 6

privileges required by their advertising libraries in addition to any of their own
needed privileges. Because users might be scared away by detailed permission
requests, app developers would also benefit if ads could be hosted in separate apps,
which might then make their own privilege requests or be given a suitable one-
size-fits-all policy.

Finally, separating apps from their advertisements creates better fault isolation. If
the ad system fails or runs slowly, the host apps should be able to carry on without
inconveniencing the user. Addressing these needs requires developing a suitable
software architecture, with OS assistance to make it robust.

This article primarily focuses on the current state of practice in the Android mar-
ketplace, giving a flavor of how we engineered AdSplit as a proof of concept for a
better system design.

App Analysis

The need to monetize freely distributed smartphone applications has given rise to
many different ad provider networks and libraries. The companies competing for

business in the mobile ad world range from established Web ad providers, such as

Google’s AdMob, to a variety of dedicated smartphone advertising firms.

With so many options for serving mobile ads, many app developers choose to
include multiple ad libraries. Additionally, there is a new trend of advertisement
aggregators that have the aggregator choose which ad library to use in order to
maximize profits for the developer.

Although we're not particularly interested in advertising market share, we want to
understand how these ad libraries behave. What permissions do they require? And
how many apps would be operating with fewer permissions, if only their advertise-
ment systems didn’t require them? To address these questions, we downloaded
approximately 10,000 free apps from the Android Market and the Amazon App
Store and analyzed them.

Permissions Required

Every ad library requires Internet access, presumably to download the ad content
to be displayed. Many libraries want additional privileges to assist in customizing
ads. This ranges from location information to the ability to see what else is run-
ning on your phone. Presumably, better targeted ads will bring greater revenue to
the application developer.

Permission Bloat

In Android, an application requests a set of permissions at the time it’s installed.
Those permissions must suffice for all of the app’s needs and for the needs of its
advertising library. We decided to measure how many of the permissions requested
are used exclusively by the advertising library (i.e., if the advertising library were
removed, the permission would be unnecessary).

Our results, shown in Figure 1, are quite striking: 15% of apps requesting Internet
permissions are doing so for the sole benefit of their advertising libraries; 26% of
apps requesting coarse location permissions are doing it for the sole benefit of their
advertising libraries; and 47% of apps requesting permission to get a list of the
tasks running on the phone (the ad libraries use this to check whether the applica-



[ Total requested
I Total used

7925

Number of apps.

Figure 1: Distribution of types of permissions reduced when advertisements are separated
from applications

tion hosting the advertisement is in foreground) are doing so for the sole benefit

of their advertising libraries. These results suggest that any architecture that
separates advertisements from applications will be able to reduce permission bloat
significantly. (In concurrent work to our own, Grace et al. [5] performed a static
analysis 0f 100,000 Android apps and found advertisement libraries uploading sen-
sitive information to remote ad servers. They also found that some advertisement
libraries were fetching and dynamically executing code from remote ad servers.)

Design Objectives

The first and most prominent design decision of AdSplit is to separate a host appli-
cation from its advertisements. This separation has a number of ramifications:

¢ Specification for advertisements. Currently, the ad libraries are compiled and
linked with their corresponding host application. If advertisements are separate,
then the host activities must contain the description of which advertisements to
use. We introduced a method by which the host activity can specify the particu-
lar ad libraries to be used.

¢ Permission separation. AdSplit allows advertisements and host applications to
have distinct and independent permission sets.

¢ Process separation. AdSplit advertisements run in separate processes, isolated
from the host application.

¢ Life-cycle management. Advertisements only need to run when the host ap-
plication is running, otherwise they can be safely killed; similarly, once the host
application starts running, the associated advertisement process must also start
running. Our system manages the life cycle of advertisements.

¢ Screen sharing. Advertisements are displayed inside a host app, so if advertise-
ments are separated, there should be a way to share screen real estate. AdSplit
includes a mechanism for sharing screen real estate.

¢ Authenticated user input. Advertisements generate revenue for their host ap-
plications; this revenue is typically dependent on the amount of user interaction

;login:  DECEMBER 2012  AdSplit: Separating Smartphone Advertising from Applications 35



Figure 2: Screen sharing between host and

ample App

Buy! Cool! Stufr!

advertisement apps

36

slogin:

VOL. 37, NO. 6

with the advertisement. The host application can try to forge user input and
generate fraudulent revenue, hence the advertisements should have a way to
determine whether input events received from the host application are genuine.
AdSplit includes a method by which advertising applications can validate user
input, validate that they are being displayed on-screen, and pass that verification,
in an unforgeable fashion, to their remote server.

The AdSplit Design

Because we want to factor out the advertising code into a separate process/
activity, this will require a variety of changes to ensure that the user experience
isunchanged.

An app using AdSplit will require the collaboration of three major components: the
host activity, the advertisement activity, and the advertisement service. The host
activity is the app that the user wants to run, whether a game, a utility, or whatever
else. It then “hosts” the advertisement activity, which displays the advertisement.
There is a one-to-one mapping between host activity and advertisement activ-

ity instances. The UNIX processes behind these activities have distinct user IDs
and distinct permissions granted to them. To coordinate these two activities, we
have a central advertisement service. The ad service is responsible for delivering
Ul events to the ad activity. It also verifies that the ad activity is being properly
displayed and that the UI clicks aren’t forged.

AdSplit builds on Quire [2], which prototyped a feature shown in Figure 2, allow-
ing the host and advertisement activities to share the screen together. This Quire
feature, when combined with a standard Android feature that allows the adver-
tisement activity to detect when its UT is occluded, provides the underpinnings of
AdSplit ‘s UT compositing system.

Permission Separation

With Android’s install-time permission system, an application requests every
permission it needs at the time of'its installation. As we described above, adver-
tising libraries cause significant bloat in the permission requests made by their
hosting applications. Our AdSplit architecture allows the advertisements to run as
separate Android users with their own isolated permissions. Host applications no
longer need to request permissions on behalf of their advertisement libraries.

We note that AdSplit makes no attempt to block a host application from explicitly
delegating permissions to its advertisements. For example, the host application
might obtain fine-grained location permissions (i.e., GPS coordinates with meter-
level accuracy) and pass these coordinates to an advertising library that lacks any
location permissions. Plenty of other Android extensions, including TaintDroid
[3] and Paranoid Android [8], offer information-flow mechanisms that might be
able to forbid this sort of thing if it was considered undesirable. We believe these
techniques are complementary to our own, but we note that if we cannot create

a hospitable environment for advertisers, they will have no incentive to run in an
environment like AdSplit.

Separation for Legacy Apps

A significant number of current apps with embedded advertising libraries would
immediately benefit from AdSplit, reducing the permission bloat necessary to host



embedded ads. This section describes a proof-of-concept implementation that can
automatically rewrite an Android app to use AdSplit. Something like this could be
deployed in an app store or even directly on the smartphone itself.

We first built a rewriting system that decompiled an Android app, replacing the
internal advertising library with a stub that called out to our AdSplit advertising
service. Although we got this working for one specific library, there are a number
of problems that would stand in the way of this as a general-purpose solution for
AdSplit:

Ad Installation

When advertisements exist as distinct apps in the Android ecosystem, they will
need to be installed somehow. We’re hesitant to give the host app the necessary
privileges to install third-party advertising code. Perhaps an app could declare
that it had a dependency on a third-party app, and the main installer could hide
this complexity from the user, in much the same way that common Linux pack-
age installers will follow dependencies as part of the installation process for any
given target.

Ad Permissions

Even if we can get the ad libraries installed, we have the challenge of understand-
ing what permissions to grant them. Particularly when many advertising libraries
know how to make optional use of a permission, such as measuring the smart-
phone’s location if it’s allowed, how should we decide if the advertisement app has
those permissions? Unfortunately, there is no good solution here, particularly not
without generating complex user interfaces to manage these security policies.

Ad Unloading

Like any Android app, an advertisement app must be prepared to be killed at any
time—a consequence of Android’s resource management system. This could have
some destabilizing consequences if the hosting app is trying to communicate with
its advertisement and the ad is killed. Also, what happens if a user wants to unin-
stall an advertising app? Should that be forbidden unless every host app which uses
itis also uninstalled?

For further details about the implementation of AdSplit ‘s legacy app support and
automatic rewriting, please see our full paper [9].

Alternative Design: HTML Ads

While struggling with the shortcomings outlined above, we hit upon an alterna-
tive approach that uses the same AdSplit architecture. The solution is to expand on
something that advertising libraries are already doing: embedded Web views.

Ad creators purchasing advertising on smartphones will want to specify their
advertisements the same way they do for the Web: as plain text, images, or perhaps
as a “rich” ad using JavaScript. Needless to say, a wide variety of tools are available
to produce such ads, and mobile advertising providers want to make it easy for ads
to appear on any platform (iPhone, Android, etc.) without requiring heroic effort
from the ad creators.

;login:  DECEMBER 2012  AdSplit: Separating Smartphone Advertising from Applications 37



38

Jlogin:

VOL. 37, NO. 6

Consequently, all of the advertising libraries we examined simply include a Web-
View within themselves. Most of the native Android advertising code is really
nothing more than a wrapper around a WebView. Based on this insight, we suggest
that it will be easiest to deploy AdSplit by providing a single advertising app, built
into the Android core distribution, that satisfies the typical needs of Android
advertising vendors.

Installation becomes a non-issue, since the only advertiser-provided content in the
system is HTML, JavaScript, and/or images. We still use the rest of the AdSplit
architecture, running the WebView with a separate user ID, in a separate process
and activity, ensuring that a malicious app cannot tamper with the advertisements
it hosts.

Security permissions are more straightforward. The same-origin policy, standard
across the entire Web, applies perfectly to HTML AdSplit. Since the Android Web-
View is built on the same Webkit browser as the real Web browser app, it has the
same security machinery to enforce the same-origin policy.

Keeping all this in mind, we built a new form of WebView specifically targeted

for HTML ads: the AdWebView. The AdWebView is a way to host HTML ads ina
constrained manner. We introduced two advertisement-specific permissions that
can be controlled by the user. These permissions control whether ads can make
Internet connections or use geolocation features of HTML5.

When an ad inside an AdWebView requests to load a URL or performs a call to the
HTMUL5 geolocation API, the AdWebView performs a permission check to verify
whether the associated advertisement origin has the needed advertisement per-
mission. These advertisement permissions can be managed by the user in exactly
the same way they are for any other Web pages.

About the only open policy question is whether we should allow AdSplit HTML
advertisements to maintain long-term tracking cookies or whether we should
disable any persistent state. Certainly, persistent cookies are a standard practice
for Web advertising, so they seem like a reasonable feature to support here as
well. AdWebView, by default, doesn’t support persistent cookies, but it would be
trivial to add.

Policy

Although AdSplit allows for and incentivizes applications to run separately from
their advertisements, there are a variety of policy and user experience issues that
we must still address.

Advertisement Blocking

Once advertisements run as distinct processes, some fraction of Android users will
see this as an opportunity to block advertisements for good. Certainly, with Web
browsers, AdBlock and AdBlock Plus are incredibly popular. The Chrome Web store
lists these two extensions in its top six with “over a million” installs each. (Google
doesn’t disclose exact numbers.)

The Firefox add-ons page offers more details, claiming that AdBlock Plus is far
and away the most popular Firefox extension, having been installed just over

14 million times, versus 7 million for the next most popular extension. The
Mozilla Foundation estimates that 85% of their users have installed an extension



(http://blog.mozilla.com/addons/2011/06/21/firefox-4-add-on-users/). Many will
install an ad blocker.

To pick one example, Ars Technica, a Web site popular with tech-savvy users,
estimated that about 40% of its users ran ad blockers [7]. At one point, it added code
to display blank pages to these users in an attempt to cajole them into either paying
for ad-free “premium” service, or at least configuring their ad blocker to “white
list” the Ars Technica Web site.

Strategies such as this are perilous. Some users, faced with a broken Web site, will
simply stop visiting it rather than trying to sort out why it’s broken. Of course,
many Web sites instead employ a variety of technical tricks to get around ad block-
ers, ensuring their ads will still be displayed.

Given what’s happening on the Web, it’s reasonable to expect a similar fraction of
smartphone users might want an ad blocker if it was available, with the concomi-
tant arms race in ad block versus ad display technologies.

So long as users have not “rooted” their phones, a variety of core Android services
can be relied upon by host applications to ensure that the ads they’re trying to
host are being properly displayed with the appropriate advertisement content.
Similarly, advertising applications (or HTML ads) can make SSL connections to
their remote servers, and even embed the remote server’s public key certificate,
to ensure they are downloading data from the proper source, rather than empty
images from a transparent proxy.

Once a user has rooted their phone, of course, all bets are off. While it’s hard to
measure the total number of rooted Android phones, the CyanogenMod Android
distribution, which requires a rooted phone for installation, is installed on roughly
722,000 phones—a tiny fraction of the hundreds of millions of Android phones
reported to be in circulation. Given the relatively small market share where such
hacks might be possible, advertisers might be willing to cede this fraction of the
market rather than do battle against it.

Consequently, for the bulk of the smartphone marketplace, advertising apps on
Android phones offer greater potential for blocking-detection and blocking-resis-
tance than advertising on the Web, regardless of whether they are served by in-
process libraries or by AdSplit. Given all the other benefits of AdSplit, we believe
advertisers and application vendors would prefer AdSplit over the status quo.

Permissions and Privacy

Leaving aside whether it’s legal for advertisers to collect sensitive information
such as a user’s precise location, we could always invent technical means to block
this as a matter of policy. Unfortunately, a host app could always make its own
requests, under its own authority, that violate the user’s privacy and pass these
into the AdSplit advertising app. Can we disincentivize such behavior? We hope
that, if we can successfully reduce apps’ default requests for privileges that they
don’t really need, then users will be less accustomed to seeing such permission
requests. When they do occur, users will push back, refusing to install the app.
(Reading through the user-authored comments in the Android Market, many apps
with seemingly excessive permission requirements will have scathing comments,
along with technical justifications posted by the app authors to explain why each
permission is necessary.)

slogin: DECEMBER 2012  AdSplit: Separating Smartphone Advertising from Applications 39



40

slogin:

VOL. 37, NO. 6

Furthermore, if advertisers ultimately prefer the AdSplit architecture, perhaps
due to its improved resistance to click fraud and so forth, then they will be forced
to make the tradeoff between whether they prefer improved integrity of their
advertising platform, or whether they instead want less integrity but more privacy-
violating user details.

Conclusion

AdSplit touches on a trend that will become increasingly prevalent over the next
several years: the merger of the HTML security model and the smartphone appli-
cation security model. Today, HTML is rapidly evolving from its one-size-fits-all
security origins to allow additional permissions, such as access to location infor-
mation, for specific pages that are granted those permissions by the user. HTML
extensions are similarly granted varying permissions rather than having all-or-
nothing access [6].

On the flip side, iOS apps originally ran with full, unrestricted access to the
platform, subject only to vague policies enforced by human auditors. Only access
to location information was restricted. In contrast, the Android security model
restricts the permissions of apps, with many popular apps running without any
optional permissions at all. Despite this, Android malware is a growing problem,
particularly from third-party app stores (see, e.g., [4, 10]). Clearly, there’s a need
for more restrictive Android security, more like the one-size-fits-all Web secu-
rity model.

While the details of how exactly Web apps and smartphone apps will eventually
combine, our findings show where this merger is already underway: when Web
content is embedded in a smartphone app. Well beyond advertising, a variety of
smartphone apps take the strategy of using native code to set up one or more Web
views and then do the restin HTML and JavaScript. This has several advantages:
it makes it easier to support an app across many different smartphone platforms.
It also allows authors to quickly update their apps, without needing to go through a
third-party review process.

These trends, plus the increasing functionality in HTML5, suggest that “native”
apps may well be entirely supplanted by some sort of “mobile HTML” variant, not
unlike HP/Palm’s WebOS, where every app is built this way.

Maybe this will result in an industry battle royale, but it will also offer the abil-
ity to ask a variety of interesting security questions. For example, consider the
proposed “Web intents” standard (http://webintents.org/). How can an “external”
Web intent interact safely with the “internal” Android intent system? Both serve
essentially the same purpose and use similar mechanisms. We, and others, will
pursue these new technologies toward their (hopefully) interesting conclusions.

References

[1] T. Cheshire, “In Depth: How Rovio Made Angry Birds a Winner (and What’s
Next),” Wired, Mar. 2011: http://www.wired.co.uk/magazine/archive/2011/04/
features/how-rovio-made-angry-birds-a-winner.

[2] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D.S. Wallach, “Quire: Lightweight
Provenance for Smart Phone Operating Systems,” 20th USENIX Security Sympo-
sium, San Francisco, CA, Aug. 2011.



[3] W. Enck, P. Gilbert, C. Byung-gon, L.P. Cox, J. Jung, P. McDaniel, and A.N.
Sheth, “TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones,” Proceedings of the 9th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI ‘10), Oct. 2010, pp. 393-408.

[4] A.P.Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A Survey of Mobile
Malware in the Wild,” 1st ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices (SPSM ‘11), Chicago, IL, Oct. 2011.

[5] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe Exposure Analysis of
Mobile In-App Advertisements,” 5th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec ‘12), Tucson, AZ, Apr. 2012.

[6] L. Liu, X. Zhang, G. Yan, and S. Chen, “Chrome Extensions: Threat Analysis and
Countermeasures,” 19th Network and Distributed System Security Symposium
(NDSS “12), San Diego, CA, Feb. 2012.

[71 L. McGann, “How Ars Technica’s ‘Experiment’ With Ad-Blocking Readers Built
on Its Community’s Affection for the Site,” Nieman Journalism Lab, Mar. 2010:
http://www.niemanlab.org/2010/03/how-ars-technica-made-the-ask-of-ad
-blocking-readers/.

[8] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid Android:
Zero-Day Protection for Smartphones Using the Cloud,” Annual Computer Secu-
rity Applications Conference (ACSAC ‘10), Austin, TX, Dec. 2010.

[9] S. Shekhar, M. Dietz, and D. Wallach, “Adsplit: Separating Smartphone
Advertising from Applications,” 21st USENIX Security Symposium, Bellevue, WA,
Aug. 2012.

[10]Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets,” 19th
Network and Distributed System Security Symposium (NDSS ‘12), San Diego, CA,
Feb.2012.

USER FRIENDLY by Illiad

| CALLED THIS MEETING
BECAUSE WE'RE GOING

E
2
FOR A FRESH START. IT'S H MILLENIUM DOESN'T | YOU'RE RIGHT AND
THE START OF A NEW g START UNTIL THE MILLIONS OF OTHER
Gt | Ereieo |RanSul
WHAT BETTER TIME? H START ON YEAR ONE. \ OF COURSE THEgt
2 SAME MILLIONS WHO
£

ACTUALLY. THE NEW OH. AND | SUPPOSE

NOT YEAR ZERO.

WATCHED ‘TITANIC*
&TO SEE HOW IT

e () WOULD TURN OUT...
AN

°
8
o
S
=1
&
=
=
=
2
=
o
Q
o

Jlogin:  DECEMBER 2012  AdSplit: Separating Smartphone Advertising from Applications 41



