
2  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I’ve often rambled on about the future of operating systems, imagining

something completely different and new. Of course, there are loads of
practical issues with that path, like the inability to run any existing

software on the spanking new OS. And it turns out there are still things about
existing operating systems that can surprise me.

I speculated that a future operating system might not look at all like Linux, today’s favorite
OS for servers and for OS research projects too. Linux is large, complex, and difficult when
it comes to incorporating large changes into it because of its history and design. While the
BSD kernels are more modularly designed, they are less popular, and thus not as interesting,
or even as well-known. And both are enormous, with many millions of lines of code. While
Minix3 is much smaller and actually takes a new approach, it too suffers from the “not as
popular as Linux” issue, like the BSDs.

I’ve watched the OS space for a while, curious to see if some of the less popular directions
taken will pick up a lot of interest. And that interest generally comes from providing features
that users, whether they are running servers in some cluster or researchers looking to add the
next neat feature or improvement, just can’t live without.

Size Is Not Everything
Today’s OSes are huge. When I worked with Morrow Designs in the ’80s, I actually put
together a set of two, double-density, floppy disks that contained a bootable kernel and utili-
ties you needed to recover an unbootable system. That was a total of less than 800 kilobytes
of code for the equivalent of a rescue CD, which should sound ridiculous in this day and age.
But is it really?

The Internet of Things (IoT) already includes inexpensive devices, and that means slower
CPUs, small memories, and sometimes relatively generous amounts of flash. With small
memories, these devices won’t be booting a generic kernel but one trimmed down to the bare
essentials. In one sense, that’s easy enough: You can build a kernel without support for file
systems and devices you will never use in a diskless system on chip (SoC) device. Popular
examples of this include the Raspberry Pi and the BeagleBone Black.

But even these devices are overkill for many IoT applications. Another popular example is the
Arduino family, which does not run *nix but may still include networking. Even simpler (and
slower with less memory) are the Peripheral Interface Controllers (PICs), favored not just
by hobbyists but also by device designers. These devices have really tiny amounts of RAM
(really just RAM as registers), yet are more than adequate for many household and industrial
devices. They do not run *nix, or even what could ever be called an operating system.

Let’s head to the opposite extreme and consider IBM’s Sequoia (Blue Gene/Q) that was
installed at Lawrence Livermore National Labs in 2011. Like others in this series, the
Sequoia’s compute nodes (some 98,000 of them) run the Compute Node Kernel (CNK). The
CNK operating system is just 5000 lines of C++, just enough to communicate with I/O nodes
and launch applications that have been compiled just for the CNK environment. The con-
cept behind CNK is simple: the bare minimum of memory and processing required so that

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 3

EDITORIAL
Musings

most of the CPU and memory can be devoted to computation.
And it works, as the Sequoia was the world’s fastest computer
for a while, as well as using 37% less energy than the computer
(BG/K) it replaced.

So, the Sequoia runs a more sophisticated version of what runs
on Arduinos on its compute nodes. There is no memory manage-
ment or thread scheduler: Applications are single threaded and
run in physical rather than virtual memory.

Stripped Down
The same stripped down to bare essentials approach can be found
in rump kernels. The brainchild of Antti Kantee, rump kernels
provide just those portions of an operating system needed to run a
single application in physical memory, with no scheduler. Kantee
refactored the NetBSD kernel into a base and three modules that
allow the rump kernel to support applications that can run on
bare metal or on top of a hypervisor. Not that rump kernels are
the only game in town: OSv, MirageOS, and Erlang-on-Xen all
are designed to remove the need for a full operating system and
its environment when running on top of a hypervisor.

There’s yet another way to stop layering operating systems over
a hypervisor operating system, and it has been around for many
years. You may have heard of LXC, a project that has been used
for years as a way of providing the illusion of having your own
hosted system. With LXC, and related technology like Solaris
Zones, there is only one operating system. LXC, or other con-
tainer software, provides the illusion of being the master, root,
of your own system, when what you really are running is a group
of processes in a jail. Just as the BSD jail has evolved over time,
so has the Linux container. James Bottomley discusses Linux
containers in an article in this issue, and he and his co-author
have left me feeling like real progress has been made in making
containers both secure and efficient.

Still in the theme of “stripped down,” but not related to operating
systems, I had hoped to get Ben Treynor (Google) to write about
the concept of the error budget. Treynor introduced this idea
during his keynote at the first SREcon, and I will try to cover it
concisely here. Imagine that you are running software-as-a-ser-
vice (SaaS) on an immense scale, that you must do so efficiently
(no operators, just skilled SREs) but do not want to violate your
service level agreement of five 9s, or 99.999% uptime. At the
same time, you continually need to update your client-facing
software. Your error budget includes some tiny fraction of your
total capacity for providing SaaS for testing. And the better job
you do of testing, the further your error budget, that .001%, can
stretch. Read Dan Klein’s article and perhaps you will see how
Google’s approach to updating software fits into this concept of
the error budget.

I still hope that Ben Treynor will have the time to write for us
someday.

The Lineup
We begin this issue with two operating systems-related articles.
When I met Kirill Korotaev (Parallels) during Linux FAST
’14, I was already interested in Linux container technology. I
caught up with Kirill during a break, and asked him to write
about Linux containers. Kirill suggested James Bottomley, and
James agreed to write, working with Pavel Emelyanov. They’ve
produced both a history and an excellent description of Linux
containers for this issue.

Greg Burd (Amazon) had suggested that I publish an article
about rump kernels in 2013, but I didn’t think the technology was
ready. When Antti Kantee volunteered to write about rump ker-
nels this summer, I took another look. Kantee actually wrote his
PhD dissertation about refactoring the NetBSD kernel to support
the concept of rump kernels: a method of supplying the parts
of an OS you need for a particular application, and no more. He
and Justin Cormack continue to work at making rump kernels
easier to use, and their article in this issue explains the concept
in detail.

I met Steve Muir during ATC ’14. While Steve presented the
paper, four other people from Comcast were involved in the
research. Their goal was to create an in-memory database for a
read-only service that could be transparently updated. Their use
of Paxos as a means of managing updates between a hierarchy of
servers got me interested, plus their software is open source.

A student of John Ousterhout, Diego Ongaro, presented a Best
Paper at ATC ’14, “In Search of an Understandable Consensus
Algorithm,” which the researchers offer as a replacement for
Paxos. Although the subject is not covered in this issue, Raft is
focused on applications like the one the Comcast people wrote,
and on RAMCloud (of course). You can find the Ongaro paper
on the USENIX Web site, as well as videos explaining how Raft
works, by searching online.

Dan Klein, Dina Betser, and Mathew Monroe have written about
the process they use within Google to push software updates.
While the process is quite involved, I had heard about parts of it
before Dan volunteered to write for ;login: from various sources.
And it both makes sense and realizes a cautious yet realistic
approach to upgrading software without causing catastrophic
failures—perhaps just small-scale ones within the error budget.
Klein’s article covers not only updating but also a further optimi-
zation that will make the process more efficient, involving less
human interaction.

Andy Seely continues his series of columns about managing
system administrators. In this contribution, Andy relates a set
of three parables he uses as guides and stories he can share to
motivate co-workers.

4  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

EDITORIAL
Musings

Charles Border and Kyrre Begnum introduce a workshop and a
new journal. The Summit for Educators in System Administra-
tion had its first official meet at LISA ’13, and will occur again
at LISA14. The Journal of Education in System Administration
(JESA) provides a mechanism for publishing research about
educating system administrators year round.

Dilma Da Silva has written her second article about CRA-W, the
organization devoted to helping woman PhD candidates in the
fields of computer science and engineering. Dilma discusses the
Grad Cohort, a yearly gathering of grad students and mentors
focused on providing useful information about both completing
grad school successfully and planning beyond grad school. And
right now (late 2014) is the time to be making plans, and apply-
ing for support, to attend Grad Cohort 2015.

David Blank-Edelman claims that this time he is going to be
totally practical about his chosen topic. I would claim David
is always practical and pragmatic. David has been working on
health checks for a small cluster of LDAP servers, and he takes
us through both aspects of what a health check requires and Perl
support for querying LDAP servers.

Dave Beazley considers Python’s problems with paths. It’s not
so much that Python can’t manipulate pathnames. It’s just that
the ways of doing so have been disjointed, involving multiple
OS modules. Well, things have gotten more elegant with a new
module, pathlib, available as part of Python 3.4.

Dave Josephsen continues on his mission of evangelizing for the
proper design and use of monitoring systems. In this column,
Dave rails against the arithmetic mean, showing just how badly
the mean works when used to summarize/compress time series
data. And, of course, Dave offers alternatives.

Dan Geer has written a concise article clearing up the confusion
surrounding terms like false positive and true negative. Dan not
only does this, but also provides an example for determining the
most efficient ordering of tests for sensitivity and specificity.

Robert Ferrell, having recently retired from being a badge-
carrying Fed (bet you didn’t suspect that), has decided to poke
fun at the Internet of Things. Even as people rush to connect
their cars and thermostats up to the Internet, Robert points out
that the security of these devices is about on par with that of the
Internet—in 1994.

I’ve written a review of the new edition of the Design and
Implementation of the FreeBSD Operating System. It’s not the
first time I’ve taken a look at similar volumes, as past USENIX
president Kirk McKusick has been part of writing about BSD
operating systems for over 20 years. This edition, the first in 10
years, contains several new chapters as well as much updated
material.

Mark Lamourine, while technically a system administrator,
continues to write excellent reviews of books on programming
topics. This time, he covers books on when and how to use Bayes-
ian statistics, understanding when refactoring an imperative
program to use functional programming features can help, and
an experimental work called the Go Developer’s Notebook.

We have lots of summaries: ATC ’14, HotCloud ’14, HotStorage
’14, WiAC ’14, and ICAC ’14. Most are incomplete, as there were
too many sessions to cover and not enough volunteers—with the
exception of the WiAC summary, which was thoroughly covered
by Amy Yin. If you are planning on attending LISA14, and
want to be certain a favorite session gets covered, contact me to
volunteer.

The first time I attended the OSDI conference, I asked someone
I knew why there weren’t any papers about new OS designs. His
answer was simple: It’s hard. Designing a new OS takes many
years and is also a risky endeavor. That’s why I now look more
closely at important but incremental changes, like unified con-
tainer support for Linux, and at work like Kantee’s, where he has
converted a complete kernel into a more modular form. And, I
continue to watch seL4, which just went open source (July 2014),
Arrakis, and Minix3.

