
6    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

OPERATING SYSTEMSContainers
J A M E S B O T T O M L E Y A N D P A V E L E M E L Y A N O V

James Bottomley is CTO
of server virtualization at
Parallels where he works on
container technology and is
Linux kernel maintainer of the

SCSI subsystem. He is currently a director
on the Board of the Linux Foundation and
chair of its Technical Advisory Board. He
went to university at Cambridge for both his
undergraduate and doctoral degrees after
which he joined AT&T Bell Labs to work on
distributed lock manager technology for
clustering. In 2000 he helped found SteelEye
Technology becoming vice president and CTO.
He joined Novell in 2008 as a Distinguished
Engineer at Novell’s SUSE Labs and Parallels in
2011. jbottomley@parallels.com

Pavel Emelyanov is a principal
engineer at Parallels working
on the company’s cloud server
projects. He holds a PhD in
applied mathematics from the

Moscow Institute of Physics and Technology.
His speaking experience includes talks about
container virtualization at LinuxCon 2009,
at the joint memory management, storage
and file-system summit in 2011, and about
checkpoint-restore on LinuxCon Europe 2012
and Linux Conf AU 2013. xemul@parallels.com

Today, thanks to a variety of converging trends, there is huge interest
in container technology, but there is also widespread confusion about
just what containers are and how they work. In this article, we cover

the history of containers, compare their features to hypervisor-based virtu-
alization, and explain how containers, by virtue of their granular and specific
application of virtualization, can provide a superior solution in a variety of
situations where traditional virtualization is deployed today.

Since everyone knows what hypervisor-based virtualization is, it would seem that compari-
sons with hypervisors are the place to begin.

Hypervisors and Containers
A hypervisor, in essence, is an environment virtualized at the hardware level.

In this familiar scenario, the hypervisor kernel, which is effectively a full operating system,
called the host operating system, emulates a set of virtual hardware for each guest by trap-
ping the usual operating system hardware access primitives. Since hardware descriptions
are well known and well defined, emulating them is quite easy. Plus, in the modern world,
CPUs now contain special virtualization instruction extensions for helping virtualize hard-
to-emulate things like paging hardware and speeding up common operations. On top of this
emulated hardware, another operating system, complete with unmodified kernel (we’re
ignoring paravirtual operating systems here for the sake of didactic simplicity), is brought
up. Over the past decade, remarkable strides have been made in expanding virtualization
instructions within CPUs so that most of the operations that hardware-based virtualization
requires can be done quite efficiently in spite of the huge overhead of running through two
operating systems to get to real hardware.

Containers, on the other hand, began life under the assumption that the operating system
itself could be virtualized in such a way that, instead of starting with virtual hardware, one
could start instead with virtualizing the operating system kernel API (see Figure 2).

In this view of the world, the separation of the virtual operating systems begins at the init
system. Historically, the idea was to match the capabilities of hypervisor-based virtualiza-
tion (full isolation, running complete operating systems) just using shared operating system
virtualization techniques instead.

In simplistic terms, OS virtualization means separating static resources (like memory or
network interfaces) into pools, and dynamic resources (like I/O bandwidth or CPU time) into
shares that are allotted to the virtual system.

A Comparison of Approaches
The big disadvantage of the container approach is that because you have to share the kernel,
you can never bring up two operating systems on the same physical box that are different at
the kernel level (like Windows and Linux). However, the great advantage is that, because a
single kernel sees everything that goes on inside the multiple containers, resource sharing

www.usenix.org	   O C TO B ER 20 14  VO L . 3 9, N O. 5  7

OPERATING SYSTEMS

and efficiency is greatly enhanced. Indeed, although the con-
tainer stack is much thinner than the hypervisor stack by virtue
of not having to run two kernels, most of the container improve-
ments in density in fact come from the greater resource effi-
ciency (in particular, sharing the page cache of the single kernel).
The big benefit, of course, is that the image of what’s running in
the container (even when it’s a full operating system) is much
smaller. This means that containers are much more elastic
(faster to start, stop, migrate, and add and remove resources,
like memory and CPU) than their hypervisor cousins. In many
ways, this makes container technology highly suited to the cloud,
where homogeneity is the norm (no running different operating
systems on the same physical platform) and where elasticity is
supposed to be king.

Another great improvement containers have over hypervisors is
that the control systems can operate at the kernel (hence API)
level instead of at the hardware level as you have to do with
hypervisors. This means, for instance, that the host operating
system can simply reach inside any container guest to perform
any operation it desires. Conversely, achieving this within a
hypervisor usually requires some type of hardware console
emulating plus a special driver running inside the guest operat-
ing system. To take memory away from a container, you simply
tune its memory limit down and the shared kernel will instantly
act on the instruction. For a hypervisor, you have to get the
cooperation of a guest driver to inflate a memory balloon inside
the guest, and then you can remove the memory from within
this balloon. Again, this leads to greatly increased elasticity for
containers because vertical scaling (the ability of a virtual envi-
ronment to take over or be scaled back from the system physical
resources) is far faster in the container situation than in the
hypervisor one.

The History of Containers
In many ways, the initial idea of containers goes back to Multics
(the original precursor to UNIX) and the idea of a multi-user
time-sharing operating system. In all time-sharing systems, the
underlying operating system is supposed to pretend to every user
that they’re the sole owner of the resources of the machine, and
even impose limits and resource sharing such that two users of a
time-sharing system should not be able materially to impact one
another.

The first real advance was around 1982 with the BSD chroot()
system call leading to the Jail concept, which was founded in
the idea of logically disconnecting the Jail from the rest of the
system by isolating its file-system tree such that you could not
get back out from the containerized file system into the host
(although the host could poke about in the Jailed directory to its
heart’s content).

In 1999, SWsoft began the first attempts at shared operating
system virtualization, culminating with the production release
of Virtuozzo containers in 2001. Also in 2001, Solaris released
Zones. Both Virtuozzo and Zones were fully isolating container
technology based on capabilities and resource controls.

In 2005, an open source version of Virtuozzo (called OpenVZ)
was released, and in 2006 an entirely new system called process
containers (now CGroups) was developed for the Linux kernel.
In 2007, Google saw the value of containers, hired the CGroups
developers, and set about entirely containerizing the Googleplex
(and making unreleased additions to their container system
in the meantime), and in 2008, the first release of LXC (LinuX
Containers) based wholly on upstream was made. Although
OpenVZ was fully open source, it was never integrated into the
Linux mainstream (meaning you always had to apply additional

Figure 1: Hypervisor diagram Figure 2: Container diagram

8    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

OPERATING SYSTEMS
Containers

patches to the Linux kernel to get these container systems),
which by 2011 led to the situation in which there were three
separate Linux container technologies (OpenVZ, CGroups/
namespaces, and the Google enhancements). However, at the
fringes of the 2011 Kernel Summit, all the container parties
came together for a large meeting, which decided that every
technology would integrate upstream, and every out-of-Linux
source tree container provider would use it. This meant select-
ing the best from all the out-of-tree technologies and integrating
them upstream. As of writing this article, that entire program
is complete except for one missing CGroups addition: the kernel
memory accounting system, which is expected to be in Linux by
kernel version 3.17.

The VPS Market and the Enterprise
In Web hosting parlance, VPS stands for Virtual Private Server
and means a virtual instance, sold cheaply to a customer, inside
of which they can run anything. If you’ve ever bought hosting
services, the chances are what you bought was a VPS. Most
people buying a VPS tend to think they have bought a hypervi-
sor-based virtual machine, but in more than 50% of the cases the
truth is that they’ve actually bought a container pretending to
look like a hypervisor-based virtual machine. The reason is very
simple: density. The VPS business is a race to the bottom and
very price sensitive (the cheapest VPSes currently go for around
$10 US a month) and thus has a very low margin. The ability to
pack three times as many virtual container environments on
a single physical system is often the difference between profit
and loss for hosters, which explains the widespread uptake of
containers in this market.

Enterprises, by contrast, took to virtualization as a neat way of
repurposing the excess capacity they had within datacenters as
a result of mismatches between application requirements and
hardware, while freeing then from the usual hardware manage-
ment tasks. Indeed, this view of virtualization meant that the
enterprise was never interested in density (because they could
always afford more machines) and, because it built orchestration
systems on varied virtual images, the container disadvantage
of being unable to run operating systems that didn’t share the
same kernel on the same physical system looked like a killer
disadvantage.

Because of this bifurcation, container technology has been
quietly developing for the past decade but completely hidden
from the enterprise view (which leads to a lot of misinformation
in the enterprise space about what containers can and cannot
do). However, in the decade where hypervisors have become the
standard way of freeing the enterprise datacenter from hard-
ware dependence, several significant problems like image sprawl
(exactly how many different versions of operating systems do
you have hidden away in all your running and saved hypervisor

images) and the patching problem (how do you identify and add
all the security fixes to all the hypervisor images in your entire
organization) have lead to significant headaches and expensive
tooling to solve hypervisor-image lifecycle management.

Container Security and the Root Problem
One of the fairly ingrained enterprise perceptions is that con-
tainers are insecure. This is fed by the LXC technology, which,
up until very recently, was not really secure, because the Linux
container security mechanisms (agreed upon in 2011) were just
being implemented. However, if you think about the require-
ments for the VPS market, you can see that because hosting
providers have to give root access to most VPS systems they sell,
coping with hostile root running within a container was a bread-
and-butter requirement even back in 2001.

One of the essential tenets of container security is that root
(UID 0 in UNIX terms) may not exist within the container,
because if it broke out, it would cause enormous damage within
the host. This is analogous to the principle of privilege separa-
tion in daemon services and functions in a similar fashion. In
upstream Linux, the mechanism for achieving this (called the
user namespace) was not really functional until 2012 and is
today only just being turned on by the Linux distributions, which
means that anyone running a distribution based on a kernel older
than 3.10 likely doesn’t have it enabled and thus cannot benefit
from root separation within the container.

Containers in Linux: Namespaces and CGroups
In this section, we delve into the Linux specifics of what we use
to implement containers. In essence, though, they are exten-
sions of existing APIs: CGroups are essentially an extension of
Resource Limits (POSIX RLIMITs) applied to groups of pro-
cesses instead of to single processes. Namespaces are likewise
sophisticated extensions of the chroot() separation system
applied to a set of different subsystems. The object of this section
is to explain the principles of operation rather than give practical
examples (which would be a whole article in its own right).

Please also bear in mind as you read this section that it was writ-
ten when the 3.15 kernel was released. The information in this
section, being very Linux specific, may have changed since then.

CGroups
CGroups can be thought of as resource controllers (or limiters)
on particular types of resources. The thing about most CGroups
is that the control applies to a group of processes (hence the inte-
rior of the container becomes the group) that it’s inherited across
forks, and the CGroups can actually be set up hierarchically. The
current CGroups are:

◆◆ blkio—controls block devices
◆◆ cpu and cpuacct—controls CPU resources

www.usenix.org	   O C TO B ER 20 14  VO L . 3 9, N O. 5  9

OPERATING SYSTEMS
Containers

◆◆ cpuset—controls CPU affinity for a group of processes
◆◆ devices—controls device visibility, effectively by gating the

mknod() and open() calls within the container
◆◆ freezer—allows arbitrary suspend and resume of groups of

processes
◆◆ hugetlb—controls access to huge pages, something very Linux

specific
◆◆ memory—currently controls user memory allocation but soon

will control both user and kernel memory allocations
◆◆ net_cls and net_prio—controls packet classification and priori-

tization
◆◆ perf_event—controls access to performance events

As you can see from the brief descriptions, they’re much more
extensive than the old RLIMIT controls. With all of these con-
trollers, you can effectively isolate one container from another in
such a way that whatever the group of processes within the con-
tainer do, they cannot have any external influence on a different
container (provided they’ve been configured not to, of course).

Namespaces
Although, simplistically, we’ve described namespaces as being
huge extensions of chroot(), in practice, they’re much more
subtle and sophisticated. In Linux there are six namespaces:

◆◆ Network—tags a network interface
◆◆ PID—does a subtree from the fork, remapping the visible PID to

1 so that init can work
◆◆ UTS—allows specifying new host and NIS names in the kernel
◆◆ IPC—separates the system V IPC namespace on a per-contain-

er basis
◆◆ Mount—allows each container to have a separate file-system

root
◆◆ User—does a prescribed remapping between UIDs in the host

and container

The namespace separation is applied as part of the clone() flags
and is inherited across forks. The big difference from chroot()
is that namespaces tag resources and any tagged resources may
disappear from the parent namespace altogether (although
some namespaces, like PID and user are simply remappings of
resources in the parent namespace).

Container security guarantees are provided by the user
namespace, which maps UID 0 within the container (the root
user and up, including well known UIDs like bin) to unused UIDs
in the host, meaning that if the apparent root user in the con-
tainer ever breaks out of the container, it is completely unprivi-
leged in the host.

Containers as the New Virtualization Paradigm
One of the ironies of container technology is that, although it
has spent the last decade trying to look like a denser hypervisor

(mostly for the VPS market), it is actually the qualities that set
it apart from hypervisors that are starting to make container
technology look interesting.

Green Comes to the Enterprise
Although the enterprise still isn’t entirely interested in density
for its own sake, other considerations besides hardware cost
are starting to be felt. In particular, green computing (power
reduction) and simply the limits imposed by a datacenter sited
in a modern city—the finite capacity of a metropolitan location
to supply power and cooling—dictate that some of the original
container differentiators now look appealing. After all, although
the hosting providers primarily demand density for cost reasons,
the same three times density rationale can also be used to justify
running three times as many applications for the same power
and cooling requirements as a traditional hypervisor and, thus,
might just provide the edge to space-constrained datacenters in
downtown Manhattan, for example.

Just Enough Virtualization
The cost of the past decade of hypervisor-based virtualization
has been that although virtual machine images mostly perform
a specific task or run a particular application, most of the man-
agement software for hypervisor-based virtualization is con-
cerned with managing the guest operating system stack, which
is entirely superfluous to the running application. One of the
interesting aspects of containers is that instead of being all or
nothing, virtualization can be applied on a per-subsystem basis.
In particular, because of the granularity of the virtualization, the
amount of sharing between the guest and the host is adjustable
on a continuous scale. The promise, therefore, is that container-
based virtualization can be applied only to the application, as
shown in Figure 3 where a traditional operating system con-
tainer is shown on the left-hand side and a new pure-application

Figure 3: Containerizing just the application

10    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

OPERATING SYSTEMS
Containers

container is shown on the right. If done correctly, this type of
application virtualization can make management of the sup-
port operating system a property of the host platform instead of
being, as it is today with hypervisors, a property of every virtual
machine image.

This new “just enough virtualization” world promises to greatly
reduce the image sprawl problem by making sure that the vir-
tualized image contains only enough elements to support the
application or task itself instead of being a full-fledged operating
system image in its own right.

Solving Current Problems with Containers
As an illustration of the way containerization can solve exist-
ing problems in a new way, consider the problem of tenancy
in the cloud: Standard enterprise applications are designed to
serve a single tenant. What this means in practice is that one
overall administrator for the enterprise application administers
the application for all users. If this application is transferred
to the cloud, in its enterprise incarnation, then each consumer
(or tenant) wants to designate an administrator who can only
administer users belonging to the tenant. The tenancy prob-
lem can be solved by running the application inside a virtual
machine with one VM per tenant, but it can be solved much
more elegantly by adding a small amount of containerization to
the application. A simple recipe to take a single tenant applica-
tion and make it multi-tenant is to fork the application once for
each tenant; to each fork, add a new network namespace so that
it can have its own IP address, and a new mount namespace so
that it can have a private datastore. Because we added no other
containerization, each fork of the application shares resources
with the host (although we could add additional containerization
if this becomes a concern), so the multi-tenant application we
have created is now very similar to a fleet of simple single tenant
applications. In addition, because containers are migratable,
we can even scale this newly created multi-tenant application
horizontally using container migration techniques.

Enabling a Containerized Future
The multi-tenant example above shows that there might be
a need for even applications to manipulate container proper-
ties themselves. Thus, to expand the availability and utility of
container technologies a consortium of companies has come
together to create a library for manipulating basic container
properties. The current C version of this library exists on GitHub
(https://github.com/xemul/libct), but it will shortly be combined
with a GO-based libcontainer to provide bindings for C, C++,
Python, and Go. Although designed around the Linux container
API, the library nevertheless has flexibility to be used as a
backend to any container system (including Solaris Zones or
Parallels Containers for Windows). This would mean, provided
the portability works, that the direct benefits of containerizing
applications would be exported to platforms beyond Linux.

Conclusions
Hopefully, you now have at least a flavor of what containers are,
where they came from, and, most importantly, how their differ-
ences from hypervisors are being exploited today to advance vir-
tualization to the next level of usability and manageability. The
bottom line is that containers have a new and interesting con-
tribution to make; they’ve gone from being an expense-reducing
curiosity for Web applications to the enterprise mainstream,
and they hold the possibility of enabling us to tailor container
virtualization to the needs of the application, and thus give
applications interesting properties that they haven’t been able
to possess before.

Resources
The subject of varied uses of containers is very new, so there are few articles to refer to. However, here are some useful Web refer-
ences on the individual technologies that have been used to create containers on Linux.

Michael Kerrisk of Linux Weekly News did a good online seven-part write-up of what namespaces are and how they work:
http://lwn.net/Articles/531114/.

Neil Brown as a guest author for Linux Weekly News has done a good summary of CGroups: http://lwn.net/Articles/604609/.

This blog post on network namespaces is a useful introduction to using the separated capabilities of namespaces to do interesting
things in tiny semi-virtualized environments: http://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/.

