
42    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

COLUMNSPractical Perl Tools
Get Your Health Checked

D A V I D N . B L A N K - E D E L M A N

Every once in a while I like to inject a little reality into this column,
more specifically my reality. This month, instead of writing about
some abstract technology or documenting a done deal, I thought it

might be fun to work together on a small project that is actually in flight as
I write this. This will give you a chance to listen in on my current thoughts
(such as they are), and together we can examine some rough code that imple-
ments these ideas.

The project I have in mind revolves around a new LDAP cluster that we are currently install-
ing. LDAP stands for Lightweight Directory Access Protocol and is basically the de facto
standard for talking to a directory server. Directory servers are used to provide the backbone
for most authentication/authorization setups. For example, if you log into a machine that
uses some sort of central authentication scheme, chances are the client is doing an LDAP
operation at some point as part of the process. This is truly cross-platform (e.g., if you log into
a Windows network, you’ll be talking LDAP at some point to your ActiveDirectory server(s)).

If you’ve never dealt with LDAP before, never fear, we won’t be assuming much knowledge
of it nor will we go very deep. There’s a lot that can be written about it (and, indeed, I have a
whole chapter and an appendix on it in my book). For the purpose of this column, I’ll try to
provide enough context so the code makes sense. And, actually, if you take a step back and
squint at this column from a little distance away, you’ll find that LDAP is just a small detail
in the larger picture of health checks, the true subject for today.

So what’s a health check and why do I (and maybe you) care? In my case, the LDAP cluster we
have set up consists of four LDAP servers that are “behind” a load balancer (actually a pair of
them, but that’s another story for another column). The load balancer’s job is to transparently
take in LDAP requests and parcel them out to the actual servers in a balanced way so the
load is spread evenly amongst the operational machines. The key word for this column has
just been spoken: “operational.” One other key purpose for using a load balancer is to make
sure that if a machine in a cluster becomes dysfunctional, the clients of that cluster don’t
notice because the load balancer has cleverly removed that machine from the list of servers
it is sending traffic to. If and when that machine returns to service, the load balancer may
decide to bring it back into the fold.

Here comes the rub: A load balancer has to know which machines it stands in front of are
working and which are not. The way this is typically done is to have the load balancer con-
tinuously perform a “health check” on each of the cluster members. Health checks can be
simpleminded and naive or fiendishly clever. Right now our current health checks are barely
the former, and that’s the problem. At the moment, the load balancing software (keepalived,
if you are curious) is just checking to see if it can connect to the LDAP port on each of the
servers. That’s not good enough—we can do much better. Let’s rough out a few ways we can
improve the situation.

David N. Blank-Edelman is the
director of technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter book), available
at purveyors of fine dead trees everywhere.
He has spent the past 24+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA ’05 conference and one of the LISA
’06 Invited Talks co-chairs. David is honored
to have been the recipient of the 2009 SAGE
Outstanding Achievement Award and to serve
on the USENIX Board of Directors beginning in
June of 2010. dnb@ccs.neu.edu

www.usenix.org	   O C TO B ER 20 14  VO L . 3 9, N O. 5  43

COLUMNS
Practical Perl Tools: Get Your Health Checked

Do What I Do
Being able to connect to the server is great and all that, but LDAP
clients connect for a reason. They expect to be able to talk to
the server and perform LDAP operations. When writing health
checks for almost any service, you’ll be off to a great start if your
checks mimic even a minimal set of operations a client would
be expected to perform. In the case of LDAP this set includes an
LDAP bind operation (think of it as “logging into the server”), an
LDAP search operation, and an LDAP unbind (which the RFC
describes as “the ‘quit’ operation…the client, upon transmission
of the UnbindRequest, and the server, upon receipt of the Unbin-
dRequest, are to gracefully terminate the LDAP session.”). Let’s
look at a little Perl code that does all three things:

use strict;

use Net::LDAP;

my ($server, $binddn, $bindpw, $lookup) = @ARGV;

my $ldap = Net::LDAP->new($server) or die “Can’t connect: $!”;

print “connected.\n”;

my $res = $ldap->bind($binddn, password => $bindpw);

$res->code && die “Can’t bind: “ . $res->error;

print “bound to server.\n”;

$res = $ldap->search(

 base => ‘ou=people,dc=example,dc=edu’,

 scope => ‘one’,

 filter => $lookup,

);

$res->code && die “Search failed: “ . “$res->error”;

print “entries found “ . $res->count . “\n”;

$res = $ldap->unbind;

$res->code && die “Unbind failed: “ . “$res->error”;

print “unbound to server.\n”;

To quickly walk you through the code, we create an Net::LDAP
object that connects us to the server. We then bind() (login) to it.
At this point, we execute a search that starts at a particular place
in the tree (base), looks at only the part of the tree one level down
under that place (one), and filters the result. Lastly, we unbind()
to the server. Here’s what happens when we run the code:

$ ldap.pl localhost ‘managerdn’ ‘managerpw’ ‘(sn=smith)’

connected.

bound to server.

entries found 11

unbound to server.

Here you can see we’re testing just a few LDAP operations. There
are definitely others (compare and modify come to mind) that we
should add to this test. More on that last one later. I should also
note that this is very simple code that doesn’t take into account

slow or hung servers (ideally, we should build timeouts into the
script to cause it to abort if operations take too long).

If we wanted to be a little cooler, we could go to the logs of a run-
ning version of the service and pull a representative slice of the
live workload and use it to form the basis of an even better test.
Note I said “basis,” because we probably don’t want to replay it
verbatim to our servers, especially if it contains write opera-
tions. It would be more than a little embarrassing to have our
health checks repeatedly overwrite live data in our directory,
though it wouldn’t surprise me if this has happened before.

Ah, But How Fast Did I Do It?
Once we know how to pretend to be a client of the server and
perform the same operations it might perform, a logical step for-
ward is to model another thing we can expect from our clients:
impatience.

In the last section we concerned ourselves with whether our
service would answer the phone, reply to our request, and then
hang up properly. LDAP clients care about all of these things, but
they also care about how long those things take. In many cases
a server that replies too slowly might as well be down (“you are
dead to me”). Our health check needs to catch this case as well.
The first step towards this is timing how long each operation
takes. We can do that with code that looks a bit like this:

use Net::LDAP;

use Time::HiRes qw(time);

my $start = time();

my $ldap = Net::LDAP->new($server) or die “Can’t connect: $!”;

my $end = time();

print “connected: “ . ($end - $start) . “\n”;

$start = time();

my $res = $ldap->bind($binddn, password => $bindpw);

$end = time();

$res->code && die “Can’t bind: “ . $res->error;

print “bound to server: “ . ($end - $start) . “\n”;

In the above sample we are using the module Time::HiRes
because the Perl’s native time resolution is seconds (i.e., time()
returns the number of seconds since the epoch). In this break-
neck world we live in, we expect response times in less than a
second. Time::HiRes gives us the extra resolution we need. Take
a look at the difference between what time() returns without and
with Time::HiRes loaded:

$ perl -e ‘print time(),”\n”’

1406570529

$ perl -e ‘use Time::HiRes qw(time);print time(),”\n”’

1406570567.63434

44    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

COLUMNS
Practical Perl Tools: Get Your Health Checked

Once we know how fast an operation is, we can then enforce a
standard in our health check. Something easy like:

($bind_time < 1.0) ? ‘up’ : ‘down’;

Now, on my unloaded server, that standard is far too generous.
Here’s what the new code that prints how long each operation
takes shows when I run it against an unloaded server:

connected: 0.00156688690185547

bound to server: 0.00202512741088867

entries found 11: 0.0248799324035645

unbound to server: 0.000317096710205078

Oversimplification Alert! Taking a server out of service based on
just a single slow operation sounds both draconian and ineffi-
cient. It’s more likely you would be better served if you did some
math to determine whether the server is consistently reporting
back times within a reasonable range. This requires some sort
of persistent state be kept around between health checks, a topic
we’re not going to touch on in this column.

Yup, Still Me in the Mirror
The previous mention of the LDAP modify operation (and
write operations in general) brings up another useful aspect
to consider when writing health checks. One important way to
test a service that includes write operations is through “round
trip” tests. Sure, we could write code that performs an LDAP
modify of the data and then believe the server if it reports back a
successful modification, but it would be far better if we actually
did another read to confirm it worked. As the Russian proverb
says, “trust, but verify.” The idea of round-trip verification comes
in handy in many places. For example, when health-checking a
mail system, it would be great to have the health check send mail
to the system and then attempt to retrieve it a few moments later.

In our case, we can do something like this:

my $testdn = ‘uid=canaryuser,ou=people,dc=example,dc=edu’;

...connect and bind as usual, then

$start = time();

my $res = $ldap->modify($testdn,

 replace => { ‘displayName’ => $start });

$res->code && die “Can’t modify: “ . $res->error;

$res = $ldap->search(

 base => $testdn,

 scope => ‘base’,

 filter => “(displayName=$start)”,

);

$end = time();

$res->code && die “Search failed: “ . $res->error;

print “entries found “ . $res->count . “: “ .

 ($end - $start) . “\n”;

In this code we modify the value of the displayName attribute in
a test user’s LDAP entry—we set it to be a timestamp. The next
code section attempts to search for that user with a filter that
should only return back an entry if the displayName is set to that
timestamp correctly. If we return an entry, success. If not, sad
trombone.

By the way, a more efficient way to check whether the
displayName value has been set to the desired timestamp
would be to use a compare operation instead of a search:

use Net::LDAP::Constant qw(LDAP_COMPARE_TRUE

 LDAP_COMPARE_FALSE);

$res = $ldap->compare($testdn,

 attr => ‘displayName’,

 value => $start);

print “compare succeeded”

 if ($res->code == LDAP_COMPARE_TRUE);

In this section we’ve seen one very simple round-trip test. I’ll
mention a slightly more sophisticated one related to this test at
the end of this column.

Tell Me How You Feel
A piece of well-instrumented server software has a way of
reporting its internal sense of health. In the case of the LDAP
server we are using (OpenLDAP), it provides a special LDAP
suffix we can query to return all kinds of internal counters and
statistics. Here’s some code that dumps one interesting set:

use Net::LDAP;

my ($server, $binddn, $bindpw) = @ARGV;

my $monitordn = ‘cn=Operations,cn=Monitor’;

my $ldap = Net::LDAP->new($server) or die “Can’t connect: $!”;

my $res = $ldap->bind($binddn, password => $bindpw);

$res->code && die “Can’t bind: “ . $res->error;

$res = $ldap->search(

 base => $monitordn,

 scope => ‘one’,

 filter => ‘(objectClass=*)’,

 attrs => [‘monitorOpInitiated’, ‘monitorOpCompleted’],

);

$res->code && die “Search failed: “ . $res->error;

my @operations = $res->entries;

foreach my $operation (@operations) {

 my $dn = $operation->dn;

 my ($opname) = $dn =~ /cn=(\w+),/;

 print “$opname: “

 . $operation->get_value(‘monitorOpInitiated’)

 . “ initiated, “

www.usenix.org	   O C TO B ER 20 14  VO L . 3 9, N O. 5  45

COLUMNS
Practical Perl Tools: Get Your Health Checked

 . $operation->get_value(‘monitorOpCompleted’)

 . “ completed\n”;

}

$res = $ldap->unbind;

$res->code && die “Unbind failed: “ . $res->error;

When run on a pretty fresh server, we get results that look like
this:

Bind: 34 initiated, 34 completed

Unbind: 25 initiated, 25 completed

Search: 29 initiated, 28 completed

Compare: 3 initiated, 3 completed

Modify: 3 initiated, 3 completed

Modrdn: 0 initiated, 0 completed

Add: 0 initiated, 0 completed

Delete: 0 initiated, 0 completed

Abandon: 0 initiated, 0 completed

Extended: 0 initiated, 0 completed

Once you can figure out just which statistics are important to
you, it is easy to write a health check that uses them as an indica-
tor of health (with or without the kind of math we discussed in
the timing section above). Perhaps you consider a server healthy
if it has a small ratio of Modify to Search operations; too many
writes could indicate a problem. A query like the one above can
determine whether this condition is being met. One last note
before we move on: If your server isn’t well-instrumented, get a
better server (if you can).

Happy Family
For the last section, let’s pull the camera back a little further. In a
multiple server setup where the servers keep themselves in sync
with each other like we have, replication status (i.e., is the data in
all of the servers in sync) can be pretty important. So important,
we should have a health check for that. OpenLDAP provides a
fairly simple mechanism for this. Each time a replication takes
place, the server sets an operational attribute called contextCSN
with data about the most recent entry that this server contains
(it can also keep track of the latest entries it has seen from its
replication partners). We can compare contextCSN in two serv-
ers to determine whether they are in sync. The structure of this
attribute (as per the docs) is:

GT ‘#’ COUNT ‘#’ SID ‘#’ MOD

GT: Generalized Time with microseconds resolution,

without timezone/daylight saving:

YYYYmmddHHMMSS.uuuuuuZ

YYYY: 4-digit year (0001-9999)

mm: 2-digit month (01-12)

dd: 2-digit day (01-31)

HH: 2-digit hours (00-23)

MM: 2-digit minutes (00-59)

SS: 2-digit seconds (00-59; 00-60 for leap?)

.: literal dot (‘.’)

uuuuuu: 6-digit microseconds (000000-999999)

Z: literal capital zee (‘Z’)

COUNT: 6-hex change counter (000000-ffffff); used to

distinguish multiple changes occurring within the same time

quantum.

SID: 3-hex Server ID (000-fff)

MOD: 6-hex (000000-ffffff); used for ordering the modifications

within an LDAP Modify operation (right now, in OpenLDAP it’s

always 000000)

Here’s a sample set of them from one of my servers:

$ ldapsearch -x -LLL -H ldap://localhost

 -s base -b ‘dc=example,dc=edu’ ‘contextCSN’

dn: dc=example,dc=edu

contextCSN: 20140729211439.000593Z#000000#001#000000

contextCSN: 20140514223302.072724Z#000000#002#000000

contextCSN: 20140514224132.047675Z#000000#003#000000

contextCSN: 20140514231128.299773Z#000000#005#000000

We could parse this in Perl either with a regular expression
like the following (which I found in the Nagios plugin at
ltb-project.org):

m/(\d{14})\.?(\d{6})?Z#(\w{6})#(\w{2,3})#(\w{6})/g;

or by using unpack(), as in:

unpack(“A14 A1 A6 A1 A1 A6 A1 A3 A1 A6”);

Parsing these values gives us the time of the latest entry on this
server and the latest entry this server has seen from the other
servers. If we then go query the other servers, we can start to
compare the contextCSN values and get a sense of how in sync
they are. On a busy cluster with lots of write activity, you would
expect the numbers to drift apart some.

For health check purposes, the question then becomes: How
big a difference between servers is acceptable to you before
you declare a server “not in sync”? Calculating the difference
between times is just a matter of subtraction (perhaps wrapped
in an abs() to get the absolute number). As we did before with the
timing question, we can then compare it against an acceptable
range (or at least an acceptable upper bound).

The key thing here is we are now determining health of a server
by its relationship to other servers, a pretty big leap in our
thinking. That leap might lead you to revisit the round trip idea
from an earlier section. It’s not hard to envision a round-trip

46    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

COLUMNS
Practical Perl Tools: Get Your Health Checked

test where you attempt to see how quickly a write made to one
server appears on another (or several, or perhaps all?) replicated
server(s). Hopefully, this idea shows you there are a ton of direc-
tions we could continue to explore around the simple idea of a
health check.

Take care and I’ll see you next time.

Endnote: Lest you think this isn’t a true reflection of my reality,
while working on the section about inter-server synchroniza-
tion, I realized much to my chagrin that the servers in the LDAP
cluster I was building were not properly keeping themselves in
sync (they were constantly doing a full synchronization, which is
not the way they are supposed to work). Two days of blood, sweat,
and tears later, I now have a much better understanding of the
role contextCSN plays in replication and how it is supposed to
work. (Oh, and the cluster is fixed, too.) Thanks ;login: column!

NSDI ’15 will focus on the design principles, implementation, and practical evaluation
of networked and distributed systems. Our goal is to bring together researchers from
across the networking and systems community to foster a broad approach to address-
ing overlapping research challenges.

NSDI provides a high-quality, single-track forum for presenting results and discussing
ideas that further the knowledge and understanding of the networked systems com-
munity as a whole, continue a significant research dialog, or push the architectural
boundaries of network services.

www.usenix.org/nsdi15

12th USENIX Symposium on
Networked Systems
Design and Implementation

SAVE THE DATE!

May 4–6, 2015 • Oakland, CA

