
www.usenix.org	   O C TO B ER 20 14  VO L . 3 9, N O. 5  47

COLUMNS

A Path Less Traveled
D A V I D B E A Z L E Y

If you’re like me, you’ve probably written a Python script or two that
had to manipulate pathnames. For that, you’ve probably used the much
beloved os.path module—and perhaps the glob module. And let’s not for-

get some of their friends such as fnmatch, shutil, subprocess, and various bits
of functionality in os. Aw, let’s face it, who are we kidding here? Pathname
handling in Python is an inexplicable mess, has always been a mess, and will
always continue to be a mess. Or will it?

In this installment, I take a look at the new pathlib standard library module added to Python
3.4 [1]. More than 10 years in the making, it aims to change the whole way that you manipu-
late files and pathnames—hopefully, for the better.

Classic Pathname Handling
In programs that need to manipulate files and pathnames, certain tasks seem to arise over
and over again. For example, splitting pathname components apart, joining paths together,
dealing with file extensions, and more. To further complicate matters, POSIX and Windows
systems don’t agree on basic features such as the path separator (/ vs. \) or case sensitivity.
So if you try to write all of the code yourself, it quickly becomes a mess. For these tasks, the
os.path module is usually the recommended solution. It mainly provides common operations
that you might apply to strings containing file names and does so in a platform-independent
manner. For example:

 >>> filename = ‘/Users/beazley/Pictures/img123.jpg’
 >>> import os.path

 >>> # Get the base directory name

 >>> os.path.dirname(filename)
 ‘/Users/beazley/Pictures’

 >>> # Get the base filename

 >>> os.path.basename(filename)
 ‘img123.jpg’

 >>> # Split a filename into directory and filename components

 >>> os.path.split(filename)
 (‘/Users/beazley/Pictures’, ‘img123.jpg’)

 >>> # Get the filename and extension

 >>> os.path.splitext(filename)
 (‘/Users/beazley/Pictures/img123’, ‘.jpg’)

 >>>

 >>> # Get just the extension

 >>> os.path.splitext(filename)[1]
 ‘.jpg’

 >>>

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,

2009). He is also known as the creator of Swig
(http://www.swig.org) and Python Lex-Yacc
(http://www.dabeaz.com/ply.html). Beazley
is based in Chicago, where he also teaches a
variety of Python courses dave@dabeaz.com

48    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

COLUMNS
A Path Less Traveled

In practice, using these functions gets a bit a more messy. For
example, suppose you want to rewrite a file name and change its
extension. To do that, you might write code like this:

 >>> filename
 ‘/Users/beazley/Pictures/img123.jpg’

 >>> dirname, basename = os.path.split(filename)
 >>> base, ext = os.path.splitext(basename)
 >>> newfilename = os.path.join(dirname, ‘thumbnails’,
base+’.png’)
 >>> newfilename

 ‘/Users/beazley/Pictures/thumbnails/img123.png’

 >>>

Actually, all of that code is probably embedded inside some sort
of larger task. For example, processing all of the images in an
entire directory:

 import os.path

 import glob

 def make_thumbnails(dirname, pat):

 filenames = glob.glob(os.path.join(dirname, pat))

 for filename in filenames:

 dirname, basename = os.path.split(filename)

 base, ext = os.path.splitext(basename)

 newfilename = os.path.join(dirname, ‘thumbnails’,

 base+’.png’)

 print(‘Making thumbnail %s -> %s’ % (filename, newfilename))

 out = subprocess.check_output([‘convert’, ‘-resize’,

 ‘100x100’, filename, newfilename])

 # Example

 make_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

Here’s a more complicated example that recursively walks an
entire directory structure, making directories, and launching
subprocesses:

 import os

 import os.path

 import subprocess

 from fntmatch import fnmatch

 def make_thumbnails(topdir, pat):

 for path, dirs, files in os.walk(topdir):

 filenames = [filename for filename in files

 fnmatch(filename, pat)]

 if not filenames:

 continue

 newdirname = os.path.join(path, ‘thumbnails’)

 if not os.path.exists(newdirname):

 os.makedir(newdirname)

 for filename in filenames:

 base, _ = os.path.splitext(filename)

 newfilename = os.path.join(newdirname, base+’.png’)

 origfilename = os.path.join(path, filename)

 print(‘Making thumbnail %s -> %s’ % (origfilename,

 newfilename))

 out = subprocess.check_output([‘convert’, ‘-resize’,

 ‘100x100’, origfilename, newfilename])

 if __name__ == ‘__main__’:

 make_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

Again, if you’ve written any kind of Python code that manipu-
lates files, you’re probably already pretty well familiar with this
sort of code (for better or worse).

Past Efforts to Improve Path Handling
Complaints about Python’s pathname handling in os.path are
varied but tend to focus on a couple of common themes. First,
there is the fact that the interface doesn’t really match other
parts of Python, which are usually more object-oriented. Second,
a lot of the useful functionality concerning files tends to be
spread out over many different standard library modules. As
such, file-name handling code becomes more messy than it prob-
ably needs to be.

Efforts to improve Python’s path handling apparently go back
nearly 15 years. To be honest, this is not an aspect of Python that
has garnered much of my own attention, but the rejected PEP
355 cites discussions about the matter going as far back as 2001
[2]. The third-party path module, created by Jason Orendorff,
may be the best-known attempt to clean up some of the mess
[3]. With path, you create path objects and manipulate them in a
more object-oriented manner:

 >>> from path import path

 >>> filename = path(‘/Users/beazley/Pictures/img123.
jpg’)

 >>> # Get the base directory name

 >>> filename.parent

 path(u’/Users/beazley/Pictures’)

 >>> # Get the base filename

 >>> filename.name
 path(u’img123.jpg’)

 >>> # Get the base filename without extension

 >>> filename.namebase

 u’img123’

 >>> # Get the file extension

 >>> filename.ext u’.jpg’

 >>>

www.usenix.org	   O C TO B ER 20 14  VO L . 3 9, N O. 5  49

COLUMNS
A Path Less Traveled

path objects can be joined together using the / operator in a way
that mimics its use on the file system itself. For example:

 >>> filename.parent / ‘thumbnails’ / (filename.
namebase + ‘.png’)
 path(u’/Users/beazley/Pictures/thumbnails/img123.png’)

 >>>

path objects include a large variety of other methods related to
manipulating files, including globbing, reading, writing, and
more. For example:

 >>> # Read the file as bytes

 >>> data = filename.bytes()
 >>>

 >>> # Remove the file

 >>> filename.remove()
 path(u’/Users/beazley/Pictures/img123.jpg’)

 >>>

 >>> # Check for existence

 >>> filename.exists()
 False

 >>>

 >>> # Walk a directory tree and produce .JPG files

 >>> for p in path(‘/Users/beazley/Pictures’).walk(‘*.
JPG’):
 ... print(p)
 ...
 /Users/beazley/Pictures/Foo/IMG_0001.JPG

 /Users/beazley/Pictures/Foo/IMG_0002.JPG

 /Users/beazley/Pictures/Foo/IMG_0003.JPG

 ...

 /Users/beazley/Pictures/Bar/IMG_1024.JPG

 /Users/beazley/Pictures/Bar/IMG_1025.JPG

Here is a revised version of the image thumbnail code that uses
path.

 from path import path

 import subprocess

 def make_thumbnails(topdir, pat):

 topdir = path(topdir)

 for filename in topdir.walk(pattern=pat):

 newdirname = filename.parent / ‘thumbnails’

 if not newdirname.exists():

 newdirname.mkdir()

 newfilename = newdirname / (filename.namebase + ‘.png’)

 �print(‘Making thumbnail %s -> %s’ % (filename,

 newfilename))

 out = subprocess.check_output([‘convert’, ‘-resize’,

 ‘100x100’, filename, newfilename])

 if __name__ == ‘__main__’:

 make_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

For various reasons, the path module was never incorporated
into the standard library. The main reason may have been the
kitchen-sink aspect of the whole implementation. Under the
covers, the path object inherits directly from the built-in string
type and adds more than 120 additional methods. As a result,
it’s a kind of “god object” that combines all of the functional-
ity of strings, pathnames, files, and directories all in one place.
To emphasize this point, there is the potential for confusion
between string and path methods. For example:

 >>> # A string method

 >>> filename.split(‘/’)
 [u’’, u’Users’, u’beazley’, u’Pictures’, u’img123.jpg’]

 >>> # A path method

 >>> filename.splitpath()
 (path(u’/Users/beazley/Pictures’), u’img123.jpg’)

 >>>

There are even methods for features you might not expect such
as cryptographic hashing:

 >>> filename.read_md5()
 ‘\x98\x05\xdd\x97\xe0\xd3\x1f\xedH*xb\x179\xbf\x18’

 >>>

It’s a legitimate concern to wonder whether it’s appropriate for a
single object to contain every possible operation that one might
think to do with a file—probably not.

Introducing pathlib
Starting in Python 3.4, a new standard library module pathlib
was added to manipulate paths. It is the work of Antoine Pitrou
and is described in some detail in PEP 428 [4]. As with previous
efforts, it takes an object-oriented approach as before by defining
a Path class. However, this class no longer derives from built-in
strings. It’s also much more refined in that it only focuses on
functionality related to paths, and not everything that someone
might want to do with a file in general.

To illustrate, here are some earlier examples redone using pathlib:

 >>> from pathlib import Path
 >>> filename = Path(‘/Users/beazley/Pictures/img123.
jpg’)

 >>> # Get the base directory name

 >>> filename.parent
 PosixPath(‘/Users/beazley/Pictures’)

 >>> # Get the base filename

 >>> filename.name
 ‘img123.jpg’

50    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

COLUMNS
A Path Less Traveled

 >>> # Get the file extension

 >>> filename.suffix
 ‘.jpg’

 >>> # Get the file stem

 >>> filename.stem
 ‘img123’

 >>> # Get the parts of the filename

 >>> filename.parts
 (‘/’, ‘Users’, ‘beazley’, ‘Pictures’, ‘img123.jpg’)

 >>>

Path also allows the / operator to be used to easily form new
pathnames:

 >>> filename.parent / ‘thumbnails’ / (filename.stem +
‘.png’)
 PosixPath(‘/Users/beazley/Pictures/thumbnails/img123.png’)

 >>>

Common operations for replacing/changing parts of the file
name are also provided:

 >>> filename.with_suffix(‘.png’)
 PosixPath(‘/Users/beazley/Pictures/img123.png’)

 >>> filename.with_name(‘index.html’)
 PosixPath(‘/Users/beazley/Pictures/index.html’)

 >>>

You will notice that in these examples an object of type Posix-

Path is created. This is system dependent—on Windows an
object of type WindowsPath is created instead. Differences in the
path implementation are used to support features such as case-
sensitivity on the file system. For example, on Windows, you’ll
find that path comparison works as expected even if the file
names have varying case:

 >>> # Windows case-insensitive path comparison (only works on

Windows)

 >>> a = Path(‘pictures/img123.jpg’)
 >>> b = Path(‘PICTURES/IMG123.JPG’)
 >>> a == b

 True

 >>>

Last, but not least, pathlib provides a few basic functions for
querying, directory walking, and other similar operations. For
example, you can test whether a file matches a glob pattern as
follows:

 >>>> filename.match(‘*.jpg’)
 True

 >>>

Here is a recursive glob over a directory structure:

 >>> topdir = Path(‘/Users/beazley/Pictures’)
 >>> for filename in topdir.rglob(‘*.JPG’):
 ... print(filename)
 ...
 /Users/beazley/Pictures/Foo/IMG_0001.JPG

 /Users/beazley/Pictures/Foo/IMG_0002.JPG

 /Users/beazley/Pictures/Foo/IMG_0003.JPG

 ...

 /Users/beazley/Pictures/Bar/IMG_1024.JPG

 /Users/beazley/Pictures/Bar/IMG_1025.JPG

 ...

Putting this all together, here is an example of the thumbnail
script using pathlib.

 from pathlib import Path

 import os

 import subprocess

 def make_thumbnails(topdir, pat):

 topdir = Path(topdir)

 for filename in topdir.rglob(pat):

 newdirname = filename.parent / ‘thumbnails’

 if not newdirname.exists():

 print(‘Making directory %s’ % newdirname)

 newdirname.mkdir()

 newfilename = newdirname / (filename.stem + ‘.png’)

 out = subprocess.check_output([‘convert’, ‘-resize’,

 ‘100x100’, str(filename), str(newfilename)])

 if __name__ == ‘__main__’:

 make_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

On the whole, I think you’ll find the script to be bit cleaner than
the original version using os.path. If you’ve used the third-party
path module, there are a few potential gotchas stemming from
the fact that Path objects in pathlib do not derive from strings. In
particular, if you ever need to pass paths to other functions such as
the subprocesss.check_output() function in the example, you’ll
need to explicitly convert the path to a string using str() first.

Final Words
I’ll admit that I’ve always been a bit bothered by the clunky
nature of the os.path functionality. Although this annoyance
has been minor (in the grand scheme of things, there always
seemed to be bigger problems to deal with), pathlib is a welcome
addition. Now that I know it’s there, I think I’ll start to use it. If
you’re using Python 3, it’s definitely worth a look. A backport to
earlier versions of Python can be found at https://pypi.python
.org/pypi/pathlib/.

www.usenix.org	   O C TO B ER 20 14  VO L . 3 9, N O. 5  51

COLUMNS
A Path Less Traveled

References
[1] pathlib documentation: https://docs.python.org/3/library/pathlib.html.

[2] PEP 355: http://legacy.python.org/dev/peps/pep-0355/.

[3] path.py package: https://pypi.python.org/pypi/path.py.

[4] PEP 428: http://legacy.python.org/dev/peps/pep-0428/.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages to help you
 promote your organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience, we
offer key outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well as our
multiple conference sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation
in neutral forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholar-
ships for students, equal representation of women and minorities in the computing research community,
and the development of open source technology.

Learn more at:
www.usenix.org/supporter

