
52    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

COLUMNS

iVoyeur
Lies, Damned Lies, and Averages

D A V E J O S E P H S E N

Dave Josephsen is
the sometime book-
authoring developer
evangelist at Librato.
com. His continuing

mission: to help engineers worldwide close the
feedback loop. dave-usenix@skeptech.org

Y ou know that movie where the guy takes hostages and duct-tapes
them together and/or makes them wear gauche vests laden with
random assortments of electronic components, and then demands all

sorts of zany things like millions of dollars and a helicopter capable of flying
him to Tahiti?

Sometimes I fantasize about being that guy. Not because I want to scare or harm anyone, and
I certainly wouldn’t wish those terrible vests on my worst enemy, but it would be fun to make
zany commands over a bullhorn to a group of confused, yet eager to please, FBI agents.

Just think of the fun we could have. We could establish a holiday for things that are pickled.
We could demand that every law-enforcement-related uniform and vehicle in the nation,
regardless of jurisdiction, be painted pink (especially the drones, tanks, and mobile com-
mand-center RVs). We could bring back Firefly, banish Michael Bay AND George Lucas,
force Starbucks to admit that granulated sugar really is sweeter than raw sugar…we could
outlaw tactical vests.

You know, while we’re on the subject, there is something that’s been bothering me. Some-
thing for which I’d like to demand a fix. There’s some talk going around lately about how
we collect and persist metrics from systems and applications in the wild (a good thing) [1].
If I could strap ugly vests to people and demand something today, it might be a fix for one
of my own metrics pet peeves that, for whatever reason, doesn’t seem to have entered the
discussion.

Metrics data is deceptively large because it’s composed of such disarmingly innocuous little
date/value tuples. It just seems unlikely that such harmless little measurements could possi-
bly strain the storage device of even a respectable smartphone much less a grandiose server.

They add up, though. Every one of those little metrics, stored as a float, measured every
five seconds, and persisted for a year, takes up around 400 MB of space. Two metrics from
a single source, stored in their raw format, therefore, requires almost a gigabyte of storage.
This modest storage conundrum is the primary hurdle to overcome in time-series data sys-
tems. We simply don’t have the space to store thousands of measurements from hundreds of
systems in their raw form, for periods of a year or more.

Enter Consolidation Functions
Most contemporary databases that are designed to store time-series data begin with a
fundamental observation, namely, the older the data is, the less we care about it. If this is
true, it means we don’t actually need to store the raw measurements forever. Instead, we can
keep the raw measurements for a short time and consolidate the older data points to form a
smaller set of samples that adequately summarizes the data set as a whole.

This is usually accomplished automatically inside the datastore with a series of increasingly
drastic data consolidations. You can think of the datastore itself as a series of time buckets.
High-resolution, short-term buckets are very large. They can keep a bunch of data points in

www.usenix.org	   O C TO B ER 20 14  VO L . 3 9, N O. 5  53

COLUMNS
iVoyeur: Lies, Damned Lies, and Averages

them, but longer-term buckets are smaller. As the data comes
in, it’s passed from bucket to bucket on a set interval; first into
the now bucket, then into the five seconds ago bucket, and so on.
Eventually, when the data points reach the 24-hours ago bucket,
they’ll find that it’s too small to fit them all. So they need to elect
a representative to continue on for them, and so a means of car-
rying out this election must be chosen (this is not at all how they
actually work internally, but it’s a useful mental model).

As a user of these databases, you’ll commonly need to configure
a storage layout like the one laid out above, which, for example,
stores raw measurements for the first 24 hours, then keeps one
consolidated data point for each hour for the next two weeks, and
then keeps one data point for every five hours, for six months,
and etc. This summarization is a critically important piece of
every time-series database. In a practical sense, it’s what makes
storing time-series data possible.

The databases that do automatic data summarization also
expect you to control the method they use to consolidate the
individual data points into summarized data points. Usually
called the “summarization function” or “consolidation function,”
this is the means by which the database will decide who keeps
going when the buckets get too small. You commonly need to
configure this when you first create the datastore, and once set,
it cannot be changed. This is dangerous, because your choice of
consolidation function has a dramatic impact on the quality of
your stored measurements over time, and although computing
the arithmetic mean (AM) of all the data points in a period is a
terribly destructive way to accomplish this, it’s also by far the
most commonly used consolidation function.

Averages Produce Below-Average Results
Using AM in this context is bad for two reasons. First, averages
are horribly lossy. In the graph in Figure 1, for example, I’ve plot-
ted the same data twice. The spiky line is the raw plot, while the
smooth line is a five-minute average of the same data.

Second, averages are not distributive, which is to say, you start to
get mathematically incorrect answers when you take the average
of already averaged data. Both of these effects are detrimental in
the context of monitoring computery things, because they have
a tendency to smooth the data, when the peaks and valleys are
often what we’re really interested in.

Every time you create an RRD [2] with an RRA set to AVER-
AGE, or fail to modify the default storage-schemas.conf in Whis-
per [3], you’re employing AM to consolidate your data points over
time. These effects corrupt your data whenever you scale a graph
outside the raw window or call a function that includes already
averaged data.

Yes, even if your raw-window is 24 hours and your graph is
displaying 24.5 hours, the entire data set you’re looking at is
averaged. If your raw-window is 24 hours, and you’re calling a
function to compare last week’s data to this week’s data, your
entire data set has been averaged.

Worst of all, if your raw-window is 24 hours, and you’re doing
something like pulling a week’s worth of data and running a
function on it to depict it as thingies per hour instead of its native
resolution (like for the marketing team or whatever), then you’re
looking at the average of already averaged data (once averaged
for the rollup consolidation, and then again in the function to
re-summarize it at a different scale). What you’re seeing in this
case is almost certainly mathematically incorrect.

Figure 1: The effect of consolidating individual data points (the spiky line) using the arithmetic mean (the smooth line)

54    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

COLUMNS
iVoyeur: Lies, Damned Lies, and Averages

To be sure, sometimes using the arithmetic mean is the best all
around option, but if we all took a moment to fully understand
the storage layer, and think about what we’re measuring on a per-
metric basis before we committed to the consolidation function,
I think we’d pretty commonly choose one of the alternatives.

When I check the weather at wunderground.com, I don’t get the
average temperature for the day because that would be meaning-
less and silly. Instead, I get the max and min temperature for the
day, and usually, because I’m a Texan, the max is the only value I
care about.

Likewise, if I’m measuring 95th percentile inter-service latency,
I want the max, which is an alternative consolidation function
to average that drops all values in the period except the largest.
This way, I preserve an accurate representation of the maximum
95th percentile latency value for that hour, or day, or week. In
fact, in this example (like many others), the older the data gets,
the more irrelevant the average becomes (and the more relevant
the max).

Many of my day-to-day metrics are incrementor counters. That
is, they’re just +1s, adding up to some value that I don’t actu-
ally care about, because I’m turning around and computing the
derivative of that number to make it into a rate metric. So I don’t
even need to know the value of these metrics (because their
value is always “1”), I really only need to know how many of them
there are. For these, a consolidation function that just counts
the number of measurements in each interval equates to lossless
data compression.

Amazon.com shows me the average customer review score on
every item I look at, but they can also give me a histogram of
that data. Unfortunately, there is no sum-of-squares consolida-
tion function in RRDtool or Whisper, but if there were, I could
compute a statistical distribution from that value at display time.

Spread Data to the Rescue
So if it were me in the movie strapping vests to frightened extras,
here would be my unreasonable demand this week: Let’s store
spread data in lieu of date/value tuples.

Imagine for a moment that you were building a system that needed
to record and display at a one-second resolution of a metric that
was being measured 400 times per second. In this example,
there isn’t a huge difference between just keeping the first
metric that arrived in every one-second interval, or averaging
all 400 together. No single measurement within the one-second
is more important than any other. If the first measurement was
extremely aberrant, I would probably choose to keep it over the

average. The point is, even though we don’t know what we’re mea-
suring, and even though we have 400 samples to average, the aver-
age of them still isn’t as interesting as any single point in the set.

But it’s a shame to throw away all of that wonderful data, even if
you only strictly need 1/400th of it. I think most of us would like
to have some idea of how it’s distributed, some way of meaning-
fully combining those 400 measurements into something that is
more significant than any single measurement alone. I think this
is why it “feels” like taking the AM is the right thing to do. What
if, instead of just storing a date/value tuple for this set, we stored
something like this instead:

◆◆ date: What’s the timestamp on this set?

◆◆ count: How many data points make up this set?

◆◆ sum: What’s the sum of all data points in the set?

◆◆ min: What was the smallest value in the set?

◆◆ max: What was the largest value in the set?

◆◆ sos: What’s the sum of squares for the set?

If we stored a struct like this instead of date/value, we wouldn’t
need to make the user choose a consolidation function when they
created the datastore, because these data points self-summarize.
When you need to consolidate them over a period of time, you
compute the sum and sos, record the max, min, and count, and
slap a new timestamp on it.

Even better, when the user wants a graph of this data, then you
can ask them what they would like displayed. Do they want you
to display the average value for the set? No problem, divide the
sum by the count (this, by the way, ensures that you never aver-
age already averaged data). Do they want a min, max, sum, or
count? No problem, display those things.

Notice that this struct doesn’t even contain a variable to hold
the original value of the measurement. That’s because value is
superseded for single measurements by sum, min, and max; all
of those summarizations yield the correct value for an individual
measurement (value/1 == value for averages, etc.), so you don’t
need to detect that case, it’ll just work with the user-provided
consolidation function at display time.

The drawback, of course, is that this struct is roughly 3x the
size of a date/value tuple (assuming six floats instead of two),
but I think fat data points are worth the stretch for a number of
reasons. First, we could use fat data points as a better default
consolidation function than arithmetic average. If the end-user
wants to hard-code a consolidation function up front and gain a
3x reduction in storage requirements, that’s a win for everyone,
otherwise they get fat data points.

www.usenix.org	   O C TO B ER 20 14  VO L . 3 9, N O. 5  55

COLUMNS
iVoyeur: Lies, Damned Lies, and Averages

Second, some of the more modern data stores, like OpenTSDB,
are eschewing consolidation entirely by making metrics col-
lection a big data problem. I think fat data points fit very well
between classic time/value stores like RRDtool and something
like OpenTSDB that’s going to require Hadoop infrastructure.

Finally, the future of metrics persistence is in purpose-specific
data-handling layers built atop general-purpose databases like
Cassandra, LMDB, and LevelDB. Graphite is moving in this
direction with the Cyanite [4] project, and InfluxDB [5] was
designed that way from the get-go. This trend is largely driven
by the requirement to horizontally scale the persistence layer,
and with that in place, the price of using fat data points is vastly
reduced.

So let’s all adopt fat data points before something happens to the
imaginary hostages in my head. I think I speak for all of them
when I say it’s an easy fix that will simplify your time-series
persistence layer while helping you preserve the integrity of your
time series data.

Take it easy.

References
[1] Metrics 2.0: http://metrics20.org/.

[2] RRDtool: http://oss.oetiker.ch/rrdtool/.

[3] Graphite, Whisper: graphite.wikidot.com/whisper.

[4] Cyanite: https://github.com/pyr/cyanite.

[5] InfluxDB: http://influxdb.com/docs/v0.8/advanced
_topics/sharding_and_storage.html.

XKCD

xkcd.com

