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More than the act of testing, the act of designing tests is one of the best bug 
preventers known. The thinking that must be done to create a useful test can 
discover and eliminate bugs before they are coded; indeed, test-design thinking 
can discover and eliminate bugs at every stage in the creation of software, from 
conception to specification, to design, coding and the rest.—Boris Beizer

Testing for the presence of a characteristic is commonplace in all sorts 
of arenas including cybersecurity. In its simplest form, a test either 
returns True or False for a state of nature that is likewise either True 

or False. This leads to the classic 2x2 table:

Truth

Test + -

+ a b

- c d

Using medical terms for the moment,
true positives 
 a = patients who do have disease and test positive
true negatives 
 d = patients who are without disease and test negative
false positives 
 b = patients who are without disease but test positive
false negatives 
 c = patients who do have disease but test negative

Expanding the table with row and column totals,

Truth

Test + -

+ a b a+b

- c d c+d

a+c b+d t

we now have:
prevalence 
 (a+c)/t = fraction of population that has disease
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sensitivity 
 a/(a+c) = fraction of those with disease who test positive
specificity 
 �d/(b+d) = fraction of those without disease who test 

negative
predictive value positive 
 �a/(a+b) = fraction of positive testers who actually have 

disease
 predictive value negative 
 �a/(a+b) = fraction of negative testers who are without 

disease

That collection of terms describe the nature of the test and 
what it is good for. Those working in information retrieval will 
know sensitivity as “recall” and predictive value positive as 
“precision.”

If you have a highly sensitive test, then a negative test result is 
likely to be a true negative, and you can “rule out” disease in the 
patient. If you have a highly specific test, then a positive test 
result is likely to be a true positive, and you can “rule in” disease 
in the patient. Predictive value depends on the prevalence of 
the condition, while sensitivity and specificity do not. In other 
words, we can describe how good the test is without knowing 
prevalence, but we cannot say what an individual test result 
predicts without prevalence estimates. Specificity and sensitiv-
ity of a test are characteristics of the test independent of the 
population on which that test is used, while the predictive values 
positive and negative are dependent on those populations. Put 
differently, a test of constant specificity and constant sensitiv-
ity will have a different predictive value when the true rates of 
disease change (see below).

If a false negative is serious, such as when the treatment is pain-
less and cheap but the disease is serious, you might favor a test 
with high sensitivity; re-imaging a virtual machine when there 
is any doubt about its integrity, say. If a false positive is serious, 
such as when the treatment is painful or costly while the disease 
is mild, you might favor a test with high specificity; skipping 
emergency patch rollout just to correct a spelling error, say.

A single test that is, at the same time, highly sensitive and highly 
specific is harder to engineer than you might think. As a rule 
of thumb, you cannot increase sensitivity and specificity at 
the same time. A multi-stage test is one where different tests 
are done sequentially. As such, the results of any one stage are 
conditional on the results of the previous stage. This can have 
significant economic impact.

For a reasonably rare disease, non-cases will strongly outnum-
ber cases; hence, a negative test result is more likely. Working 
with that, you have a first stage (S1) that confirms negative 
status—i.e., it is highly sensitive resulting in false positives but, 
in turn, low false negatives. In other words, the first test releases 

as many as possible (and no more) from further work-up. The 
second stage (S2) wants no false negatives, so it is highly specific 
and, if indeed most subjects were rejected in the first stage, that 
second stage test can be quite expensive (and definitive). You can 
call Stage 1 “screening” and Stage 2 “confirmation” if you like. 
We have many parallels of this in cybersecurity:

◆◆ Router logs (S1) post-processed by log-analysis tools (S2)
◆◆ Anomaly detection (S1) reviewed by human eyes (S2)
◆◆ SIGINT traffic analysis (S1) to sieve which crypto is worth 

breaking (S2)
◆◆ Anti-virus heuristic scans with low detection threshold (S1) 

followed by direct malware process analysis (S2)

A worked example may make this clearer. Suppose you have 
a million people, lines of code, or whatever to screen, and the 
prevalence of what you are looking for is 1%—i.e., you want to 
cost-effectively find the 10,000 buried in the 1,000,000. This is 
what we know:

Truth

Test + -

+

-

10,000 990,000 10^6

We begin with a test that is sensitive but not especially specific—
i.e., which misses few true positives at the cost of a meaningful 
number of false positives, and for which a negative result is not 
enormously meaningful. Let’s say sensitivity is 99.99% and 
specificity is 90%,

Truth

Test + -

+ 99.99% 10%
- .01% 90%

10,000 990,000 10^6

meaning we now have:

Truth

Test + -

+ 9,999 99,000 108,999

- 1 891,000 891,001

10,000 990,000 10^6

The predictive value negative is .999999 while the predictive 
value positive is .09. In other words, with a sensitivity of 99.99%, 
we get one false negative and we can forget about 89% of the pop-
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ulation. Combined with the prevalence of 1%, a negative result 
is .999999 likely to be correct. Now we take just the remaining 
108,999 and use a second test that has, for convenience, the 
reverse sensitivity and specificity, that is to say 90% sensitivity 
and 99.99% specificity. S2 thus returns:

Truth

Test + -

+ 8,999 10 9,009

- 1,000 98,990 99,990

9,999 99,000 108,899

With a predictive value positive of .9989 and a predictive value 
negative of .99, we can forget an additional 99,990 test subjects. 
The big picture of S1 followed by S2 is therefore:

Truth

Test + -

+ 8,999 10 9,009

- 1,001 989,990 990,991

10,000 990,000 10^6

We now have a compound result in which the predictive value of 
the compound test is high both for positives and for negatives—
which is arguably what we would want, although debate may 
ensue on the downstream cost of a false negative versus a false 
positive.

89.99% sensitivity with 10 false positives 
99.999% specificity with 1,001 false negatives

To further illustrate the cost-effectiveness of combining tests, 
let’s say the cost of S1 is 30¢ while the cost of S2 is two orders of 
magnitude higher at $30.00. Everybody has to be tested in some 
way, but the question is by which protocol. Here are our four 
choices, with the results displayed graphically in Figure 1:

only S1 @ 30¢/test => $0.3M & 99,001 wrong
only S2 @ $30/test => $30M & 1,099 wrong
S1|S2 => $3.6M & 1,011 wrong
S2|S1 => $30M & 1,011 wrong

where “S1|S2” means S1 then S2 for only those which S1 did not 
rule out (and similarly for “S2|S1”). The calculation works like 
this for the S1-only line: Apply the 30¢ S1 test one million times 
costing $0.3M. That test will tell you that there are 108,999 
cases to treat, so the cost of finding one “case” is $2.75, but you 
also get 99,000 false positives plus one false negative for a total 
of 99,001 that are wrong. The calculation for the S2-only line is 
parallel: Apply the $30 S2 test one million times costing $30M. 
That test will tell you that there are 9,099 cases to treat, so the 

cost of finding one case is $3,297.07, but you also get 99 false posi-
tives plus 1,000 false negatives for a total of 1,099 that are wrong.

Neither of the S1-only nor the S2-only testing protocols is attrac-
tive. If you do the S1 testing first and then the S2 testing on just 
those who tested positive with S1, then you’ve spent 30¢ one 
million times for the S1 stage plus $30 108,999 times for the S2 
stage. The overall cost of finding one case, therefore, is $396.27 
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Figure 1: Cost and error rates for the four options, where the prevalence 
rate is 1%
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Figure 2: Same as Figure 1, but where the prevalence is 70%
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Figure 3: Same as Figure 1, but where the prevalence is 0.05%
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and you get 10 false positives plus 1,001 false negatives, for a 
total of 1,011 that are wrong. This is an improvement in cost-
effectiveness, and that improvement is dependent on the order of 
testing: If you do the S2 testing first then the S1 testing on just 
those who tested positive with S2, then you’ve spent $30 one mil-
lion times for the S2 stage plus 30¢ 9,009 times for the S2 stage. 
This means that the cost of finding one case is $3,331.01 and you 
still get those 10 false positives plus 1,001 false negatives, for a 
total of 1,011 that are wrong—i.e., the same total error rate but a 
lot poorer cost-effectiveness than the S1-then-S2 version.

Suppose the prevalence is not 1% but rather 70%. Then Figure 2 
is what we have, and the decision on testing strategy is harder. 
On the other hand, if the prevalence is neither 1% nor 70% but 
rather 0.05%, then Figure 3 captures the situation. Comparing 
1% prevalence to 70% prevalence to 0.05% prevalence high-
lights the choices to be made, and how they are dependent on the 

prevalence of the disease. Or, as we said above, a test of constant 
specificity and constant sensitivity will have a different predic-
tive value when the true rates of disease change.

In summary, testing, including multi-stage testing, already has 
obvious roles in cybersecurity,

◆◆ AVS signature finding

◆◆ IDS anomaly identification

◆◆ Automated code analyses

◆◆ Firewall packet inspection

◆◆ Patch management performance

and we perhaps should know more about the terms and tech-
niques used elsewhere rather than inventing new ones.
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