
O C T O B E R 2 0 1 4   V O L . 3 9 , N O . 5
E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2014 | VOL. 39, NO. 5  | WIAC ’14 | WWW.USENIX.ORG	 PAGE 1

WiAC ’14: 2014 USENIX Women in
Advanced Computing Summit
June 18th, 2014, Philadelphia, PA
Summarized by Amy Yin

Opening Talk: Becoming a Researcher: Practical
Strategies for Taming the Angst and Changing the World
Professor Jeanna Matthews, Clarkson University

Jeanna, a program co-chair for WiAC ’14, commenced the 2014
conference with lessons about being a researcher that can be
generalized to industry. As an associate professor at Clarkson
with stints at VMware and Intel, Jeanna has been successful in
both realms, and she focused her talk on how to find and solve
problems by using community to your advantage. She stressed
picking good conferences, joining communities, and learning
from existing work as keys to success.

Research is angsty. Jeanna could not have stressed this more. It
is one of the first times in your life that you will have to define
your own questions and then prove to yourself and others that
you have solved these questions. It is not enough to solve a prob-
lem and leave others to write up the solution or figure out how to
apply the results. However, joining a community can be hugely
helpful at all stages of this process.

The first step: Scope out communities by identifying good con-
ferences. Find out who is going to be at the conference; read the
titles of the papers and the sessions, and the names of the pro-
gram committee and the other likely attendees. They will help
you form a targeted list of questions. One of my favorite pieces of
advice: When you get coffee, don’t talk about the weather! Every
moment is a valuable networking opportunity. If you don’t like
the idea of networking, think of it as an open opportunity to pick
the brains of people you want to emulate.

Finding a community early on makes identifying an important
problem that much easier. Figure out what the community
knows by reading, going to conferences, and talking to others in
the field. Read with purpose and with varying levels of depth. At
the very least, Jeanna recommended reading the titles, authors,
and abstracts published in the past 5–10 years and talking more
deeply about the pieces that interest you in reading groups with
peers. Once you figure out what the community wants to know
but doesn’t yet, make one of those things your area of research.
In my opinion, this is similar to what you can do in industry.
Look at the commits and codebase of your team. Read your
teammates’ in-company documentation, review new and old
source code, and figure out what issues have arisen in the past,
whether through conversation, old meeting notes, or company-
wide agendas. Figure out what your team has done and what it
still needs to do. Then do it without being asked (or at least pro-
pose the idea so that your teammates know you are on the same
page as they are).

Conference Reports
In contrast, it is much more difficult to find a problem and then
a community. By finding a community first, you allow yourself
to be guided to a question with genuine curiosity surround-
ing it, even by people you haven’t met before! Look at what a
few researchers in that community are doing—what are they
publishing? What have they done? And follow them closely. You
never have to speak (although at some point you might want to!),
but their work can inform and guide your own contributions. I
see the same for programmers—find someone whose career suc-
cess at your own company you would like to emulate, and figure
out how that person got there. You can do this by studying code,
proposing ideas, talking to that person or colleagues, following
him or her on social media, or reading the books that you know
have influenced that person.

After explaining the importance of community for choosing
a research question, Jeanna went on to discuss her Repeated
Research model, in which you position yourself for follow-on
work. She challenges you to examine papers and ask, “Do I
understand how this was generated and what ‘gotchas’ might be
hiding?” Ask yourself, if I were the researcher and had this setup
and equipment, could I have done better? What else would I have
tested? Don’t be afraid to repeat research when you feel you can
take it meaningfully further! Further, look for methods, not just
results. Jeanna always asks herself, What data did they use in
this paper? What systems?

Finally, get concrete. Get your hands dirty and play with some
APIs, write and throw away some code, and have something
cooking on the side so that if you get frustrated with one project,
you can focus on another.

In all Jeanna could not stress more that, yes, research is hard. If
we knew the answer, then it wouldn’t be research, but with the
tricks detailed above, she hopes that entering research will seem
less perilous. The talk resonated deeply with many women at the
conference, including those in industry. I later overheard a PhD
student comment, “I wish I had gone to this talk BEFORE I did
five years in graduate school!” and Jeanna said she wished she
had, too!

Diagnosing Production-Run Concurrency-Bug Failures
Professor Shan Lu, University of Wisconsin-Madison

Professor Shan Lu opened the second talk of the day on a
personal note. The name Shan means “mountain” in Chinese,
and her father gave her this masculine name because he always
had thought that he would have a son. Shan’s family hails from
Heifei, the largest city in Anhui province in Eastern China, and
she has a one-year-old daughter with whom she plays Animal
Crossing, a life simulation video game. Shan talked about how, in
the game, she has to shake the apple trees to collect the apples for
money to upgrade her house, but sometimes the computer would
freeze and lose all her tree-shaking progress. However, she

E L E C T R O N I C S U P P L E M E N T

 | FEBRUARY 2014 | VOL. 39, NO. 1  | SESA ’13 | WWW.USENIX.ORG	 PAGE 2

doesn’t like to save her progress because to do so she has to go to
her virtual home and sleep.

The story was a funny metaphor for the subject of the talk: bugs
and debugging. Shan started out by identifying four categories:
in-house bug detection, in-field failure recovery, in-field failure
diagnosis, and in-house bug fixing. She focused on in-field bug
detection software (software used in production), which involves
a lower overhead compared with in-house, which is more focused
on high accuracy.

A challenge described for in-field bug detection software was
concurrency bugs, which could be anything from untimely
accesses among threads (buggy interleavings) to shared vari-
ables. Shan commented that since most machines are now multi-
core—e.g., Intel Core 2 Duo—concurrency bugs are becoming
even more prevalent. They are the same type of bug that caused
the NASDAQ glitch in the Facebook IPO.

In-field bug detection requires a certain degree of user consent
and cooperation, but Shan found that very few users actually
click the “Send Error Report” button. When users do feel confi-
dent about their privacy or feel that the company will actually
do something if they send a report, developers often get a very
generic call dump. Her first challenge was figuring out what
to collect from production runs, and how to collect and how to
process information while maintaining performance, good UI,
capability, and low latency.

Core dump has a huge performance advantage and does not have
runtime overhead, but the messages take developers hours to
dig through. In contrast, replay and bug detectors have lower
performance and require huge amounts of overhead and data,
but developers save themselves the manual effort that core dump
requires.

Shan refused to believe in this all-or-nothing collection method.
She first tried applying an existing technique called Coopera-
tive Bug Isolation (CBI) on concurrency bugs. For each user, CBI
has the software randomly decide which branches should be
recorded. Statistical analysis then figures out which predicate is
most correlated with failure without nearly as much overhead.

This technique is powerful but not perfect. If a “throw error”
branch is taken, we don’t need statistics to tell us that failure
has happened, so Shan designed new types of program proper-
ties, instead of branches, to sample at runtime. She also designed
thread-coordinated, bursty sampling to test these new proper-
ties. This way, she would know which thread certain data were
coming from by continuing to sample for at least a few memory
accesses beyond the start.

Shan concluded her talk with a reminder that debugging tools
need not be custom made. She was able to greatly improve the
speed of this CBI by accessing the program counter with no
change to the hardware, since that information was already
available based on the machine’s architecture.

Machine Intelligence
Neha Pattan, Google researcher

Neha began her talk on machine intelligence by discussing the
famous Turing Test, by which Alan Turing proposed testing
whether or not a machine could be considered “intelligent.”
In a version of “The Imitation Game,” if a human, messaging
a machine, could not accurately judge if her interlocutor were
machine or human, then the machine would have successfully
answered the question, “Are there imaginable digital computers
which would do well in the imitation game?”

Neha’s point in discussing the Turing Test was this: For
machines to be made useful, they must be able to understand
context and environment, common-sense reasoning, actions,
temporal representation, spatial representation, and natural
language disambiguation. To illustrate this, she pulled up a clip
from Small Wonder, a TV show she watched as a kid. A family
buys a little girl robot and asks her, “Coffee, please.” The machine
does not understand, so the mother instructs her husband to
be more specific. He asks, “Can you pour me coffee in my mug,
please?” so the robot grabs the mug and starts pouring coffee
into the mug and doesn’t stop even when it overflows over his lap.

For the little girl robot to have properly poured coffee into the
father’s cup, she would have needed to understand that her
context and environment were helping with breakfast in the
kitchen. She lacked the common sense necessary to know that
she should have stopped pouring when the cup was full. The only
way for her to have completed the command would have been to
break down the actions: Lift the carafe, pour the coffee, place the
carafe back on the table. Spatial representation was needed to
understand the distance of her hand from the carafe, and tempo-
ral representation to understand how events cause, overlap, and
relate to each other. Finally, she would have had to have basic
natural language understanding to interpret the sentence, “Can
you pour me coffee?”

Neha ended her talk with the quote, “We can see only a short dis-
tance ahead, but we can see that much remains to be done,” and
by affirming Jeanna Matthews’ comment that being as good as a
human is too easy. The Turing Test is just one benchmark along
the long road ahead for machine intelligence.

Fast and Flexible Development
Meg Green, Life360 engineer

Meg began her talk with a famous quote from Thomas Edison,
“I have not failed, I’ve just found 10,000 ways that won’t work.”
She discussed applying Edison’s precept to her own work as an
engineer, specifically while working with the application Tom-
cat, easing application deployments and tracking configuration
changes, to get to a best platform for rapid development work.

Apache Tomcat is an open source Java application server that
she used as a Genentech software infrastructure engineer (she
made special note to thank the open source communities that
made her work possible). With Tomcat, multiple engines (aka

E L E C T R O N I C S U P P L E M E N T

 | FEBRUARY 2014 | VOL. 39, NO. 1  | SESA ’13 | WWW.USENIX.ORG	 PAGE 3

containers) can share a single set of files needed for the core
Tomcat server, which gives the engineers fewer places to main-
tain the full Tomcat server and makes adding more individual
containers cheaper and more convenient. However, this central-
ization went too far and led to oversharing, making it difficult
for projects to use libraries with different versions and harder to
maintain in the long run. Meg recounted battling these over-
centralized libraries, toning down places that were over-auto-
mated, recoding premature optimizations, and chasing—instead
of managing—configurations.

Because of the lessons learned while working on Tomcat, the
community of Java developers at Genentech can rely on quickly
generated platforms to support the research organization’s
culture of moving from ideas to investigation in hours or days
instead of weeks.

Operating System Innovation: Engineering Complete,
Integrated, and Automated Software in Oracle Solaris
Liane Praza, Oracle senior principal engineer

Liane talked about how she and her team at Oracle put a whole
operating system together in a meaningful way, specifically
the UNIX operating system Solaris. Solaris is “Big Memory at
Big Scale,” and Liane has been a part of the construction of this
Oracle OS for the last 15 years, witnessing everything from its
new virtual memory system to ZFS data management.

Over this time, Liane has seen an interesting progression in
operating systems: At first, a computer was huge and took up
an entire room, and computing power was carefully doled out
among many people. Then personal computers put an operat-
ing system in every lap. Now, with the explosion of computing
infrastructures, operating systems control massive numbers of
systems and share that power among many people.

She talked about improvements in hardware fault detection and
isolation—instead of taking down whole systems when one bit
was corrupted, a particular piece of memory that fails can now
be isolated and dealt with separately. Oracle has built self-heal-
ing systems with a telemetry à prediction à diagnosis à restart à
offlining à notification progression.

She talked about Solaris Zones—which is built-in, free virtu-
alization: a shared kernel—and how reduced administration
overhead because of this shared kernel has led to a fundamental
management paradigm shift. Before, there was one admin per
OS instance. That admin would babysit the OS instance and
rescue it when it went down. But with a shared kernel, admins
are able to monitor many systems at once.

Liane concluded by saying that systems are already managed as
collections, and operating systems no longer end at the hardware
boundary. Cloud platforms are a natural progression, and she
sees Oracle at the frontier of these advances.

From Backend to Mobile Development, Career Transitions
at Facebook
Lavinia Petrache, Facebook engineer

Lavinia opened with a bright anecdote about her career as a
young programmer. Before she discovered programming, she
wanted to be a journalist, a translator, a teacher, and then a
lawyer, but at some point, she figured out she was good at math
and became a software engineer. In Romania, where Lavinia
grew up, only operating systems and compilers were considered
“serious.” She carried this mentality with her to Facebook, her
first job out of college. She knew the theory of Linux and how
to handle hypothetical problems, and wanted her colleagues to
know she was a serious coder, so she worked on spam detection
infrastructure, checking whether messages were genuine or not
(she joked that she used to love visiting Brazil and Turkey, but
now grimaces at the mention of either, because they are some of
the biggest producers of spam content on the site).

After a year at Facebook, Lavinia did a hack-a-month with
Android because all her friends in Romania were using Ginger-
bread, one of the older operating systems. In Romania, she had
done only “serious” distributed systems work, not mobile, and
PHP was not emphasized, so Facebook gave her a week of train-
ing in Android, starting with “hello world,” and she ended up lov-
ing the product side. She thrived on strict deadlines associated
with products and one-month release cycles. Her infrastructure
team tended to work on its own schedule, but in a customer-fac-
ing unit she got to think and code for millions of Android users
every day.

Lavinia emphasized that whatever everyone else thinks is cool,
which in her case was distributed systems in Romania, is not
necessarily going to be the most satisfying or best career path for
you personally. If she hadn’t tried Android for a month, she would
never have ended up as happy as she is now on the Facebook
Android photos team, and she hopes that other women and engi-
neers will similarly look to unfamiliar terrain for inspiration.

Release Engineering as More Than a Part-time Past-time
Dinah McNutt, Google

Dinah is a mechanical engineer by training and has been actively
involved in USENIX as program chair of the USENIX Release
Engineering Workshop ’14, chair of LISA VIII, and other roles.
In her job at Google, she is a release engineer, which means, in her
words, “accelerating the path from development to operations.”

Traditionally, release engineering has been an afterthought. To
their own detriment, startups have always wanted engineers
to build features, not think about release. It is much cheaper to
put good practices in place early instead of battling legacy code.
Releng, the Google slang for release engineering, works with
developers and SREs. Release engineers must understand how
code should be built and deployed and then define these processes.

E L E C T R O N I C S U P P L E M E N T

 | FEBRUARY 2014 | VOL. 39, NO. 1  | SESA ’13 | WWW.USENIX.ORG	 PAGE 4

Dinah described releng “building blocks” as consisting of
source code management, building configuration files, learn-
ing to deploy “as fast as makes sense for the product,” Logsaver,
automated build systems, building identification mechanisms,
packaging (versioning, naming), reporting/auditing, and best
practices. With these tools releng can ensure a continuous
delivery of new products, early bug identification, repeatability,
enforcement of policy and procedures, and an airtight, hermetic
build process.

Dinah sees the future of releng changing. As of now, few early-
stage companies have the foresight to hire a release engineer,
and big companies that need to scale and maintain huge systems
do not have a reliable way of identifying qualified job candidates.
Job descriptions are all over the place, and there is no standard
hierarchy or job ladder. She envisions a future with industry
standards for job ladders and descriptions, best practices, met-
rics, and compliance, as well as college curricula and classes and
more end-to-end solutions from vendors.

Untitled Talk
Yuanyuan Zhou, University of California, San Diego

Yuanyuan, who was Professor Shan Lu’s graduate advisor, has
co-founded two startups, Emphora and Pattern Insight, and is
the Qualcomm Chair Professor at UCSD. Her talk focused on
logs and how they can be useful for debugging.

Software bugs are the most labor-intensive type of bugs and are
also difficult to diagnose. Of all the NetApp customer issues
from hardware fault, 25% were from software misconfiguration.

Troubleshooting is expensive and downtime is costly for cus-
tomers. On average, downtime costs a customer 18.35% of TCO
(total cost of ownership), which is the total cost of purchasing
and operating a server or technology product over a lifetime.
Vendors spend an average of 8% of total revenue and 15% of total
employee cost on customer problem support. Cloud computing
has only deepened the problem.

Production run failure diagnosis is hard to reproduce, and the
inputs leading to the failure are often not available. NetApp col-
lects 40 million log messages a day and 99% of organizations col-
lect logs, but the question becomes, what do we do with this data?

At her former company, Pattern Insight, Yuanyuan developed a
tool called Log Insight. Log Insight analyzes large amounts of
machine-generated data (e.g., logs) in real time and allows users
to quickly diagnose and fix problems. It saves the vendors many
phone calls and allows the customer admin teams to reduce
downtime. Yuanyuan sold Log Insight to VMware in 2012, a
move that she joked made investors very happy because of the
return on investment and made her very happy because VMware
kept the name she chose.

She also talked about when to log. She frequently found that a
developer would check an error but wouldn’t log it, making it dif-
ficult to diagnose a problem when a user would ask for help but

the troubleshooter could only see the logs. There have been 5409
log enhancements in Apache’s history over five years because
developers have found that log messages can provide greater
detail and shed light on bug complexities with more features.

She finished the talk with the classic Fault-Error-Failure model.
Logging the fault (i.e., the root cause of the failure) is hard. These
faults lead to abnormal behaviors, called errors, which may not
manifest themselves to the user or may be silently handled by the
system. However, a few propagate and will cause the program
to crash, hang, give an incorrect result, etc. These perceivable
errors are easy to log. In a study Yuanyuan conducted in 2012,
77% of user-reported failures were concrete error patterns (e.g.,
error return codes, switch statement “fall-through”), yet 57%
of these easily detectable errors were not logged, dramatically
increasing the time to resolve the problems (2.2x).

Yuanyuan concluded her talk by emphasizing that there were
many instances in which logging an error would be simple for the
developer and would dramatically improve the lives of the engi-
neers supporting that code as well as improve the software’s per-
formance at runtime. However, little empirical evidence exists
about how well existing logging practices work, so engineers do
not have a set of “best practices” to follow when deciding where
to log. Yuanyuan developed a tool called Errlog that adds only
1.4% logging overhead yet can speed up failure diagnosis by
60.7%, which showed that the usefulness and importance of good
logging will only continue to grow.

