
2    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org A frontal attack on idleness. That’s how I see distributed systems: a

way to keep systems as busy as possible. Decades ago, computers
were much too expensive to be allowed to sit idle. Today, computers

are immensely more powerful, less expensive, and often set up in enormous
clusters, but we still need to keep them busy.

Letting a modern system sit idle wastes resources, even if CPUs have gotten more efficient at
doing nothing. Hard disks will continue to spin, DRAM will still require dynamic refreshing,
and the power supplies and other hardware will continue to turn electricity into heat, whether
a system is busy or not. Certainly a busy system will use more energy, but not a lot more.

And all the while a system is sitting there idle, it’s becoming obsolete. No wonder there has
been such a focus on distributed systems.

History
While researching for this issue, I took a look at the table of contents for Andy Tanenbaum’s
1994 edition of Distributed Systems. I was quickly reminded that the distributed systems that
come to mind today have their roots in the past, going back as far as the diode and tube-based
DYSEAC in 1954. The DYSEAC not was actually distributed, but the potential was there and
was discussed. The DYSEAC was perhaps the first mobile computer, housed inside a truck.

We need to skip ahead many years before we begin to see functioning distributed systems.
While there were parallel systems built earlier, the earliest commercial distributed system
was the Apollo AEGIS operating system in 1982, later Apollo Domain. Apollo used Ethernet
to share storage and provide security, processing, and even signed software updates. Sun’s
“the network is the computer” occurred because Sun was attempting to build an Apollo-like
system on top of BSD UNIX.

By the end of the 1980s, two well-known research distributed systems had been implemented:
Amoeba and Sprite. Both presented single system images, in that a person sitting at any
terminal could be using resources on any of the connected systems transparently. Sprite
could even migrate processes from one system to another, while both systems used network
file systems.

In the early 1990s, largely as a result of the UNIX wars [1] that began when Sun and AT&T
decided to unite SunOS (BSD 4.2 to 4.3) and System V UNIX, the Distributed Computing
Environment (DCE [2]) was born. The bastard offspring of Apollo Domain (then owned
by HP) and the Andrew File System, DCE was designed to provide many of the features of
Apollo Domain, but be able to do so across a network consisting of systems from different
vendors. Although the Wikipedia page mentions just three major components, getting DCE
to run required running six different services, starting them in the correct order, and was not
easy to do. And there was no single reference implementation, so with each vendor writing its
own version, interoperability was only experimentally achieved.

The Common Object Request Broker Architecture (CORBA [3]) actually has been more
successful than DCE. CORBA supports data sharing and remote processing using an
interface definition language (IDL) to create abstractions of objects or data structure in

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  3

EDITORIAL
Musings

many programming languages. The use of an IDL goes back to
work Sun did on remote procedure calls (and likely earlier) as
a mechanism for sharing data portably. And each participating
host needs to run just one service, the request broker, making it
simpler to operate than DCE.

Today, we have truly massive distributed systems. These sys-
tems use Java programs as their middleware, something that
really puzzled me when I first heard of this. Why Java, I thought,
when earlier distributed systems, like Amoeba and Sprite, were
microkernel-based for performance and efficiency?

MapReduce focuses on the processing of bulk, line-oriented
data, where the latency of disk I/O is the big limiting factor,
not the processor. The ease of programming in Java greatly
outweighed any performance issues through the use of Java.
Systems like Cassandra are very successful, and stable, partially
because of their reliance on Java.

Idleness
And what does any of this have to do with idleness? In the cases
of Amoeba and Sprite, a workstation user could enter a command
that would be executed on any available system. Amoeba included
a parallel Make (Amake) for compiling in parallel, the better to
use resources.

For datacenters, the cost of power and cooling are second only to
the costs of servers [4], so keeping those servers busy maximizes
efficiency. As servers will only last three to five years before being
replaced, letting them sit idle is another form of waste.

There are other ways of using idle servers, the most popular
being clouds running VMs. In some ways these too are distributed
systems, as they are relying on distributed storage, authoriza-
tion, and control systems. But cloud systems are not considered
distributed systems.

The Lineup
We begin this issue with two articles related to distributed com-
puting. Matthew Grosvenor, Malte Schwarzkopf, Ionel Gog, and
Andrew Moore preview their NSDI paper [5] about a technique
and software they’ve developed to reduce network latency for
latency-sensitive applications. They first explain the problems
caused by queueing, examine other solutions, explain how their
simple solution works, then provide some data to back this up. I
think their software may be a hit in datacenters.

Ben Pfaff and a large group of people from VMware write about
some software that is already a hit. Open vSwitch [6] is the most
widely used virtual switch in cloud environments, and runs
on all major hypervisor platforms. The authors describe the
architecture of vSwitch and techniques that have been used to
both improve performance and increase efficiency of this open
source software.

I decided to interview Andy Tanenbaum for this issue. Andy has
published two editions of his very successful book about distrib-
uted systems, but what I was initially interested in was Amoeba,
a distributed system designed by Andy and his students in the
late ’80s. I also wanted to take advantage of the interview to ask
some questions about some of his other projects, and to get his
opinion on the acceptance of microkernels.

We also have four articles focused on aspects of system admin-
istration. Tim Bradshaw leads off with an article about the living
dead. These zombies are old systems that you cannot stop sup-
porting even when the official support for the platform has long
been deceased. Tim contrasts nimble and fast-growing organi-
zations with ones burdened with decaying body parts, and what
this means for system administrators and security.

I convinced Adam Moskowitz to write about his experience
creating a testing framework for shell scripts. Adam does a great
job making clear why you don’t just want, but need, testing for all
your scripts. Adam also shares the framework he built for auto-
mating script testing as much as possible. If you find yourself
disturbed at the thought of having to add testing to your scripts,
I suggest you read Adam’s article. Perhaps you will see the light,
as well as appreciate the toolset Adam recommends.

Andrew Stribblehill and Kavita Guliani take on the topic of
managing incidents. Quite simply, you get to manage incidents,
instead of managing crises, when you have previously prepared
and practiced how to do so. Stribblehill and Guliani contrast
unmanaged incidents (crises management) with managed inci-
dents, and provide the elements of a managed incident process.

Andy Seely shares his own generational theory of sysadmins. I
fit into the category that his father does (the first generation of
explorers), but I do see his point. Like any system of categori-
zation, Andy’s system will not be a perfect fit for anyone, but I
found his system to be a useful way of understanding the differ-
ent types of sysadmins you will encounter.

David Blank-Edelman makes browsers dance in his column.
David describes how to use the Selenium framework to remotely
control a browser from Perl, allowing you to create repeatable
tests for software that will be interacting with Web browsers.

Dave Beazley takes issue with how too many Python program-
mers handle exceptions. Dave criticizes much of the extreme
coding he sees, from over-catching exceptions to ignoring them,
while providing really practical advice.

Dave Josephsen expands his discussion of Graphios, a tool that
he brief ly mentioned in his February 2015 column. Dave has
been working with the creator of Graphios (Shawn Sterling) to
replace Graphios’ Graphite-specific backend with a modular
framework, so Graphios can extract data from Nagios and share
it with other tools.

4    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

EDITORIAL
Musings

Dan Geer borrows from biological survey techniques to suggest
analysis techniques that can help us decide whether patching is
really improving software over time. While most of us wonder
how patching cannot be helping (by removing exploitable code),
Dan’s focus is on whether the patching is making any difference
to the overall security of a specimen of software.

Robert Ferrell takes a humorous look at both system administra-
tion and distributed systems. While you might imagine these
would be difficult topics for humor, Robert manages to do a good
job of it.

USENIX is celebrating its fortieth year, and we are adding
some new features to ;login:. Peter Salus will be writing for
;login: again, reviving his history column with the story of the
UNIX wars. We also have the very first issue of UNIX News, the
predecessor of ;login:. Finally, we have included another article
from our archives. David Brumley, now an associate professor at
CMU, wrote about the rootkits he encountered while working at
Stanford University.

We have just two book reviews this month, both by Mark Lamou-
rine. We also have a handful of reports from LISA14.

Conference Reports
Speaking of reports, we, the USENIX Board and staff, have
decided that we are going to handle reports differently in the
future. In the past, we have worked hard in an attempt to cover
every session of every conference, symposium, or workshop that
USENIX runs, and have done a fairly good job. While we occa-
sionally managed to cover all sessions—for example, at a well-
attended, single-track conference like OSDI—conferences like
LISA, with its five tracks, have always been difficult to cover.

We also found ourselves competing with the sound and video
recordings made of the sessions. USENIX has been recording
sessions for many years now, and providing those recordings
to anyone interested as part of our commitment to open access
to research. Actual recordings of a presentation are much more
accurate than reports, as they reproduce what actually hap-
pened instead of the summarizer’s version of the presentation.
While I personally attended many sessions, I lacked the ability
to be in many places at once, no matter how many tracks were
happening concurrently. I would use my notes to improve some
of the reports I received, but will confess that by the end of
two (or three or more) days of note taking, my notes were getting
a bit sketchy.

In the future, we will continue to solicit and publish reports
that we receive when they meet our standards. We will not go to
the lengths we have in the past to round up summarizers in an
attempt to cover every session, including those (the majority)
that are being recorded. As a result, future issues of ;login: may

be a bit thinner. But USENIX will continue to provide audio and
video recordings of as many sessions as possible.

The attack on idleness continues to this day, with even smart-
phones getting into the act. Most any Web program expects to
execute code (JavaScript) with the browser, as well as code on
the server. Bitcoin mining malware authors have been using dis-
tributed systems since 2011, and in 2014, five apps were removed
from Google Play because they were attempting to use the
comparatively puny processing power of smartphones to mine
Bitcoins [7]. Malware that targets desktops with power to spare
has been modestly more successful as conscripted miners.

The Internet of Things will continue the movement toward
distributed systems, with each Thing doing more than simply
collecting and forwarding data, like a FitBit or a Nike shoe.
To help with this process, and to leverage the large number of
programmers at home in Windows environments, Microsoft has
announced that they will be releasing a version of Windows 10
for the Pi 2 [8]. While I welcome the news, I do feel a bit of trepi-
dation, and hope that this is a securely stripped-down version of
Windows. In the future, even Things will be kept busy.

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  5

EDITORIAL
Musings

References
[1] UNIX wars: http://en.wikipedia.org/wiki/Unix_wars.

[2] DCE, pretty decent reference: http://en.wikipedia.org
/wiki/Distributed_Computing_Environment.

[3] CORBA: http://en.wikipedia.org/wiki/Common_Object
_Request_Broker_Architecture.

[4] James Hamilton’s blog, Perspectives, September 18, 2010:
http://perspectives.mvdirona.com/2010/09/18/OverallData
CenterCosts.aspx.

[5] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert N. M. Watson, Andrew W. Moore, Steven Hand,
and Jon Crowcroft, University of Cambridge, “Queues
Don’t Matter When You Can JUMP Them!”; NSDI ’15:
 https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/grosvenor.

[6] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson,
Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe
Stringer, Pravin Shelar, Keith Amidon, Martin Casado,
VMware, Inc., “The Design and Implementation of Open
vSwitch”; NSDI ‘15: https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/pfaff.

[7] http://www.theregister.co.uk/2014/04/25/yes_there_is
_now_bitcoinmining_malware_for_android/.

[8] Windows 10 for Raspberry Pi 2: https://dev.windows.com
/en-us/featured/raspberrypi2support.

Letter to the Editor
I read with great interest your interview with Dan Farmer.
A strong character, who loves to create things, but wants
no part of “productizing”! His tale about Symantec and
outsourcing security products made me wonder how that
company assesses the honesty of its wares and brought
to mind the genre of spam that offers to help rid one’s
machine of malware.

The piece also brought to mind some bits of ancient
history:

COPS definitely wasn’t the earliest vulnerability scanner,
though it may have been the earliest to be publicly distrib-
uted. In fact the README file that comes with COPS says
that sysadmins had been in the habit of rolling their own
bits and pieces of it before. For one, Fred Grampp—who
together with Robert Morris senior wrote a classic paper
on UNIX security—had distributed a quite comprehensive
security-sniffing suite within Bell Labs; unfortunately, I
can’t remember its name. The company’s first computer-
security task force, which I chaired in 1982, was able to
back up its warnings with real data, thanks much to Fred.

I well remember the Morris worm. A bunch of people
gathered in the research UNIX lab, watching it beat on
the gate as we followed its progress by phone contact with
other sites across the country. Peter Weinberger, in par-
ticular, spent much of the time on the phone with CMU’s
Software Engineering Institute, whose CERT division
today proudly says, “We were there for the first Internet
security incident and we’re still here 25 years later.” That
incident led to the formalization of CERT’s national role,
which in turn provided Dan’s first job.

The worm didn’t get into Bell Labs, because Dave Presotto
recoiled from installing the inscrutable Sendmail system
and decided to roll his own. Then, in a reverse twist, he
named it after a poison tree. If Dave put into Upas any-
thing like Sendmail’s trojan horse (a back door intended
for diagnosing troubles reported by confused sysadmins),
nobody has found it yet.

Doug McIlroy
doug@cs.dartmouth.edu

