
6    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

DISTRIBUTEDJump the Queue to Lower Latency
M A T T H E W P . G R O S V E N O R , M A L T E S C H W A R Z K O P F , I O N E L G O G , A N D A N D R E W M O O R E

Matthew P. Grosvenor is a
PhD student at the University
of Cambridge Computer
Laboratory. His interests lie in
cross-layer optimizations of

networks, with a particular focus on network
latency. He has completed research internships
at NICTA (Sydney), Microsoft Research Silicon
Valley, and Microsoft Research Cambridge,
and he maintains strong ties to the high-speed
networking vendor Exablaze.
matthew.grosvenor@cl.cam.ac.uk

Malte Schwarzkopf is
currently finishing his PhD at
the University of Cambridge
Computer Laboratory.
His research is primarily

on operating systems and scheduling for
datacenters, but he dallies in many a trade. He
completed a research internship in Google’s
cluster management group and will join the
PDOS group at MIT after graduating.
malte.schwarzkopf@cl.cam.ac.uk

Ionel Gog is a PhD student in
the University of Cambridge
Computer Laboratory. His
research interests include
distributed systems, data

processing systems, and scheduling. He
received his MEng in computing from Imperial
College London and has done internships at
Google, Facebook, and Microsoft Research.
ionel.gog@cl.cam.ac.uk

In this article, we show that it is possible and practical to achieve
bounded latency in datacenter networks using QJump, an open-source
tool that we’ve been building at the University of Cambridge. Further-

more, we show how QJump can concurrently support a range of network
service levels, from strictly bounded latency through to line-rate throughput
using the prioritization features found in any datacenter switch.

Bringing Back Determinism
In a statistically multiplexed network, packets share network resources in a first come,
first served manner. A packet arriving at a statistically multiplexed (“stat-mux”) switch
(or router) is either forwarded immediately or forced to wait until the link is free. This makes
it hard to determine how long the packet will take to cross the network. In other words,
stat-mux networks do not provide latency determinism.

The desire to retrofit latency determinism onto Internet Protocol (IP) stat-mux networks
sparked a glut of research in the mid-90s on “Quality of Service” (QoS) schemes. QoS tech-
nologies like DiffServ demonstrated that coarse-grained classification and rate-limiting
could be used to control Internet network latencies. However, these schemes were complex
to deploy and often required cooperation between multiple competing entities. For these
reasons (and many others) Internet QoS struggled for widespread deployment, and hence
provided limited benefits [1].

Today, the muscle behind the Internet is found in datacenters, with tens of thousands of
networked compute nodes in each. Datacenter networks are constructed using the same
fundamental building blocks as the Internet. Like the Internet, they use statistical multi
plexing and Internet Protocol (IP) communication. Also like the Internet, datacenter
networks suffer from lack of latency determinism, or “tail latency” problems. Worse still,
the close coupling of applications in datacenters magnifies tail-latency effects. Barroso and
Dean showed that, if as few as one machine in 10,000 is a straggler, up to 18% of user requests
can experience long tail latencies [2].

Unsurprisingly, the culprit for these tail latencies is once again statistical multiplexing. More
precisely, congestion from some applications causes queueing that delays traffic from other
applications. We call the ability of networked applications to affect each others’ latencies
network interference. For example, Hadoop MapReduce can cause queueing that interferes
with memcached request latencies, causing latency increases of up to 85x.

The good news is that datacenters are also unlike the Internet. They have well-known
network structures, and the bulk of the network is under the control of a single authority.
The differences between datacenters and the Internet allow us to apply QoS schemes in new
ways, different and simpler than the Internet does. In datacenters, we can enforce a system-
wide policy, and, using known host counts and link rates, we can calculate specific rate
limits that allow us to provide a guaranteed bound on network latency.

We have implemented these ideas in QJump. QJump is a simple and immediately deployable
approach to controlling network interference in datacenter networks. QJump is open source

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  7

DISTRIBUTED SYSTEMS

Figure 1a shows a timeline of PTPd synchro
nization offset. Figure 1b has a CDF of mem-
cached request latency, and Figure 1c has a
CDF of Naiad synchronization time.

300 400 500
Time since start [sec]

-400
-200

0
200
400
600

C
lo

ck
of

fs
et

[�
s]

alone
+ Hadoop
+ Had. w/ QJ

1a

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

alone
+ Hadoop
+ Had. w/ QJ

Latency in �s

1b

0 500 1000 1500 2000
Latency in �s

0.0

0.2

0.4

0.6

0.8

1.0

alone
+ Hadoop
+ Had. w/ QJ

1c

and runs on unmodified hardware and software. A full paper describing QJump will appear
in the 12th USENIX Symposium on Networked System Design and Implementation
(NSDI ’15) [3]. Additional information including source code and data is available from our
accompanying Web site: http://www.cl.cam.ac.uk/research/srg/netos/qjump.

QJump in Action
To illustrate how bad network interference can get and how well QJump fixes it, we show the
results from a collection of experiments with latency-sensitive datacenter applications (see
Figure 1). In each experiment, the application: (1) runs alone on the network, (2) shares the
network with Hadoop MapReduce, and (3) shares the network with Hadoop, but has QJump
enabled. A complete evaluation of QJump, including full details of these experiments (and
many others), is available in the full paper.

1. Clock Synchronization. Precise clock synchronization is important to distributed sys-
tems such as Google’s Spanner. PTPd offers microsecond-granularity time synchronization
from a time server to machines on a local network. However, it assumes roughly constant
network delay. In Figure 1a, we show a timeline of PTPd synchronizing a host clock on both
an idle network and when sharing the network with Hadoop. In the shared case, Hadoop
causes queueing which delays PTPd’s synchronization packets. This causes PTPd to tem-
porarily fall 200–500 s out of synchronization, 50x worse than on an idle network. With
QJump enabled, the PTPd synchronization remains unaffected by Hadoop’s traffic.

2. Key-Value Stores. Memcached is a popular in-memory key-value store used by Facebook
and others to store small objects for quick retrieval. We benchmark memcached using the
memaslap load generator and measure the request latency. Figure 1b shows the distribution
of request latencies on an idle network and a network shared with Hadoop. With Hadoop
running, the 99th percentile request latency degrades by 1.5x from 779 s to 1196 s. Further
more, around 1 in 6,000 requests takes over 200 ms to complete, over 85x worse than the
maximum latency on an idle network. With QJump enabled, these effects are mitigated.

3. Big Data Computation. Naiad [4] is a framework for big data computation. In some
computations, Naiad’s performance depends on low-latency synchronization between worker
nodes. To test Naiad’s sensitivity to network interference, we execute a synchronization
benchmark (provided by the Naiad authors) with and without Hadoop running. Figure 1c
shows the distribution of Naiad synchronization latencies in both situations. On an idle
network, Naiad takes around 500 s at the 99th percentile to perform a four-way synchro-
nization. With interference, this grows to 1.1–1.5 ms, a 2–3x performance degradation. With
QJump running, the performance nearly exactly conforms to the interference-free situation.

These experiments cover just a small set of applications, but there are many others that can
also benefit from using QJump. Examples include coordination traffic for Software Defined
Networking (SDN), distributed locking/consensus services, and fast failure detectors.

Scheduling and Queueing Latency
To understand how QJump works, we first need to understand the two main sources of
latency nondeterminism in statistically multiplexed (stat-mux) networks: scheduling latency
and queueing latency. In Figure 2a, a collection of packets (P) arrive at an idle switch S0. At

Andrew W. Moore is a Senior
Lecturer at the University
of Cambridge Computer
Laboratory in England, where
he is part of the Systems

Research Group working on issues of network
and systems architecture. His research
interests include enabling open-network
research and education using the NetFPGA
platform. Other research pursuits include
low-power energy-aware networking and novel
network and systems datacenter architectures.
andrew.moore@cl.cam.ac.uk

http://www.cl.cam.ac.uk/research/srg/netos/qjump/login2015/figure1a.html
http://www.cl.cam.ac.uk/research/srg/netos/qjump/login2015/figure1b.html
http://www.cl.cam.ac.uk/research/srg/netos/qjump/login2015/figure1c.html
mailto:andrew.moore@cl.cam.ac.uk

8    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

Figure 2: Latency causes (a) fan-in, packets waiting to be serviced by the
switch scheduler, or (b) queueing, packets waiting behind many other
packets.

S0 S1

LPP P

L

P

P

P

queueing
latency

scheduling latency

1 2 3 4

2

3

4

1

L

P

P

P

DISTRIBUTED SYSTEMS
Jump the Queue to Lower Latency

the same time, a latency sensitive packet (L) also arrives. The
L packet experiences scheduling latency as it waits for other
P packets to be serviced by the switch scheduler. Scheduling
latency is a consequence of fan-in, which happens when mul-
tiple packets contend for the same output port on the switch. If
the switch takes too long to output packets, then new packets
can queue behind existing ones. Figure 2b shows two latency
sensitive packets (L) queued behind many other waiting packets
(P). This is a kind of head-of-line blocking that we call queue-
ing latency. Queuing latency is caused by excessive scheduling
latency. We cannot eliminate scheduling latency in a stat-mux
network. However, using some simple math, we can put a bound
on it. By doing so, we can ensure that packets are issued into the
network at a rate that prevents them from queueing up behind
each other, thus also control queueing latency.

Bounded Queues—Bounded Latency
Considering Figure 2a, in the worst case the L packet will need
to wait for the switch scheduler to service all preceding P pack-
ets before it is serviced. For a switch with n ports, the worst-case
waiting time is n - 1 (approximately n) packets. As the number of
ports on the switch grows, the worst-case latency grows with it.

We can easily expand this understanding to cover multi-hop net-
works by treating the whole network as a single “big switch” (this
is an application of the “hose-constraint” [4] model). Hence we
can apply the same calculation as above. Knowing that a packet
of size P will take P/R seconds to transmit at link-rate R, we can
therefore bound the maximum interference delay at:

where n is the number of hosts, P is the maximum packet size
(in bits), and R is the rate of the slowest link in bits per second.
Equation 1 assumes that hosts have only one (active) link to the
network and that the speed at the core of the network is never
slower than the speed at the edge. We think that these are both
safe assumptions for any reasonable datacenter network.

We refer to the worst-case delay as a network epoch. A network
epoch is the maximum time that an initially idle network will
take to service one packet from every sending host, regardless of
the source, destination, or timing of those packets. Intuitively, if
we imagine the network as a funnel, the network epoch repre-
sents the time that the funnel will take to drain when it is filled
to the top. If all hosts are rate-limited so that they cannot issue
more than one packet per epoch, no permanent queues can build
up, and the end-to-end network delay bound will be maintained
forever. That is, we rate-limit hosts so that the funnel will never
overflow.

The problem with a network epoch is that it is a global concept.
To maintain it, all hosts need to agree on when an epoch begins
and when it ends. It would seem that this requires all hosts
in the network to have tightly synchronized clocks. In fact,
network epochs can work even without clock synchronization.
If we assume that network epochs occur at the same frequency,
but not necessarily in the same phase, the network becomes
mesochronous. This requires us to double the latency bound, but
all other properties hold (see [3] for further details). The network
epoch thus becomes:

Equation 2 is the basis for QJump. QJump is based on the principle
that, if we rate-limit all hosts so that they can only issue one
packet every network epoch, then no packet will take more than
one network epoch to be delivered to the destination even in the
worst case.

Latency Variance vs. Throughput
Although the equation derived above provides an absolute upper
bound on in-network delay, it also aggressively restricts through-
put. Formulating Equation 2 for throughput, we obtain:

For example, with 1,000 hosts and a 10 Gb/s edge, we obtain
an effective throughput of 5 Mb/s per host. Clearly, this is not
ideal. We can improve this situation by making two observa-
tions. First, Equation 2 is pessimistic: it assumes that all hosts
transmit to one destination at the worst time, which is unlikely
given a realistic network and traffic distribution. Second, some
applications, like PTPd, are more sensitive to interference than
others—for example, memcached and Naiad—whereas still
other applications, like Hadoop, are more sensitive to through-
put restrictions. From the first observation, we can relax the
throughput constraints in Equation 2 by assuming that fewer
than n hosts send to a single destination at the worst time. For
example, if we guess that only 500 of the 1,000 hosts concur-

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  9

Ideal
Contended

Eth. Flow Ctrl. ECN
DCTCP

QJump
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

R
M

S
ap

p.
m

et
ric

31
8

12
61

4

Hadoop
runtime

PTPd sync.
offset

memcached
req. latency

Figure 3: Comparison of QJump to several available congestion control
alternatives

DISTRIBUTED SYSTEMS
Jump the Queue to Lower Latency

rently send to a single destination, then those 500 hosts can send
at twice the rate and maintain the same network delay if our
assumption holds. More generally, we define a scaling factor f so
that the assumed number of senders n′ is given by:

Intuitively, f is a “throughput factor”: as the value of f grows, so
does the available bandwidth.

From the second observation, some (but not all) applications
can tolerate some degree of latency variance. Instead, for these
applications we aim for a statistical reduction in latency vari-
ance. This reintroduces a degree of statistical multiplexing to
the network, albeit one that is more tightly controlled. When
the guess for f is too optimistic (the actual number of senders is
greater than n′), some queueing occurs, causing interference.

The probability that interference occurs increases with increas-
ing values of f. At the upper bound (f = n), latency variance is
similar to existing networks and full network throughput is
available. At the lower bound (f = 1), latency is guaranteed, albeit
with reduced throughput. In essence, f quantifies the latency
variance vs. throughput tradeoff.

Jump the Queue with Prioritization
We would like to use multiple values of f concurrently, so that
different applications can benefit from the latency variance
vs. throughput tradeoff that suits them best. To achieve this,
we partition the network so that traffic from latency-sensitive
applications, like PTPd, memcached, and Naiad can “jump-the-
queue” over traffic from throughput-intensive applications like
Hadoop. Ethernet switches support the IEEE 802.1Q standard,
which provides eight (0–7) hardware enforced “service classes”
or “priorities.”

The problem with using priorities is that they can become
a “race to the top.” For example, memcached developers may
assume that memcached traffic is the most important and
should receive the highest priority to minimize latency. Mean-
while, Hadoop developers may assume that Hadoop traffic is the
most important and should similarly receive the highest priority
to maximize throughput. Since there are a limited number of
priorities, neither can achieve an advantage and prioritization
loses its value. QJump is different: it intentionally binds priority
values to rate-limits. High priorities are given aggressive rate
limits (small f values), and priorities thus become useful because
they are no longer “free.” QJump users must choose between
low latency variance at low throughput (high priority) and high
latency variance at high throughput (low priority). We call the
assignment of an f value to a priority a “QJump level.” The latency
variance of a given QJump level depends on the number of QJump
levels above it and their traffic patterns.

Implementation
QJump has two components: a rate-limiter to provide admission
control to the network, and an application utility to configure
unmodified applications to use QJump levels. Our full paper
describes the rate limiter and application utility in detail, and
the source code for both is available from our Web site.

In our prototype, we use our own high-performance rate limiter
built upon the queueing discipline (qdisc) mechanism offered by
the Linux kernel traffic control (TC). TC modules do not require
kernel modifications and can be inserted and removed at run-
time, making them flexible and easy to deploy.

To support unmodified applications, we implemented a utility
that dynamically intercepts socket setup system calls and alters
their options. We inject the utility into unmodified executables
via the Linux dynamic linker’s LD_PRELOAD support.

Performance Comparison
We have already demonstrated that QJump can resolve network
interference, but how does it compare to existing congestion
control mechanisms? To find out, we have tested QJump against
several readily deployable congestion control schemes. In these
experiments, PTPd, memcached, and Hadoop are configured to
run on the same network for a 10-minute period. Since interfer-
ence is transient in these experiments, we measure the degree to
which it affects applications using the root mean square (RMS)
of each application-specific metric. For Hadoop, the metric of
interest is the job runtime, for PTPd it is the time synchroniza-
tion offset, and for memcached it is the request latency. Figure 3
shows six cases: an ideal case, a contended case, and one for each
of the four comparison schemes. All cases are normalized to the
ideal case, which has each application running alone on an idle
network.

http://www.cl.cam.ac.uk/research/srg/netos/qjump/login2015/figure3.html

USENIX Awards
USENIX honors members of the community with three prestigious annual awards
which recognize public service and technical excellence. The winners of these
awards are selected by the USENIX Awards Committee. The USENIX membership
may submit nominations for any or all three of the awards to the committee.

The USENIX Lifetime Achievement (Flame) Award
The USENIX Lifetime Achievement Award recognizes and celebrates singular contri-
butions to the UNIX community in both intellectual achievement and service that
are not recognized in any other forum. The award itself is in the form of an original
glass sculpture called “The Flame,” and in the case of a team based at a single place,
a plaque for the team office.

Details and a list of past recipients are available at www.usenix.org/about/flame.

The Software Tools Users Group (STUG) Award
The Software Tools Users Group Award recognizes significant contributions to
the general community that reflect the spirit and character of those who came
together to form the Software Tools Users Group (STUG). This is a cash award.

STUG and the Software Tools effort were characterized by two important tenets.
The first was an extraordinary focus on building portable, reusable libraries of code
shared among multiple applications on wildly disparate systems. The other tenet,
shared with the UNIX community, is “renegade empowerment.”

The Software Tools Users Group gave users the power to improve their environment
when their platform provider proved inadequate, even when local management
sided with the platform provider. Therefore, nominees for the STUG Award should exhibit one or both of these traits in a conspicuous
manner: a contribution to the reusable code-base available to all or the provision of a significant enabling technology directly to users
in a widely available form.

Details and a list of past recipients are available at www.usenix.org/about/stug.

The LISA Award for Outstanding Achievement in System Administration
This annual award goes to someone whose professional contributions to the system administration community over a number of
years merit special recognition.

Details and a list of past recipients are available at www.usenix.org/lisa/awards/outstanding.

www.usenix.org/about/usenix-awards

Call for Award Nominations
USENIX requests nominations for these
three awards; they may be from any
member of the community. Nominations
should be sent to the Chair of the Awards
Committee via awards@usenix.org by
May 1 each year. A nomination should
include:

1. Name and contact information of
the person making the nomination

2. Name(s) and contact information of
the nominee(s)

3. A citation, approximately 100 words
long

4. A statement, at most one page long,
on why the candidate(s) should receive
the award

5. Between two and four supporting
letters, no longer than one page each

NOMINATIONS DUE MAY 1

10    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

DISTRIBUTED SYSTEMS
Jump the Queue to Lower Latency

Ethernet Flow Control
Like QJump, Ethernet Flow Control is a data link layer conges-
tion control mechanism. Hosts and switches issue special pause
messages when their queues are nearly full, alerting senders
to slow down. Figure 3 shows that Ethernet Flow Control
(Pause frames) has a limited positive impact on memcached
but increases the RMS offset for PTPd. Hadoop’s performance
remains unaffected.

Early Congestion Notification (ECN)
ECN is a network-layer mechanism in which switches indicate
queueing to end hosts by marking TCP packets. Our Arista 7050
switches implement ECN with weighted random early detection
(WRED). The effectiveness of WRED depends on an administra-
tor correctly configuring upper and lower marking thresholds.
We investigated 10 different marking threshold pairs, ranging
between [5, 10] and [2560, 5120], in packets. None of these
settings achieved ideal performance for all three applications,
but the best compromise was [40, 80]. With this configuration,
ECN very effectively resolves the interference experienced by
PTPd and memcached. However, this comes at the expense of
increased Hadoop job runtimes.

Datacenter TCP (DCTCP)
DCTCP uses the rate at which ECN markings are received to
build an estimate of network congestion. It applies this to a new
TCP congestion avoidance algorithm to achieve lower queue-
ing delays. We configured DCTCP with the recommended ECN
marking thresholds of [65, 65]. Figure 3 shows that DCTCP
reduces the variance in PTPd synchronization and memcached
latency compared to the contended case. However, this comes
at an increase in Hadoop job runtimes, as Hadoop’s bulk data
transfers are affected by DCTCP’s congestion avoidance.

QJump

Figure 3 shows that QJump achieves the best results. The vari-
ance in Hadoop, PTPd, and memcached performance is close to
the uncontended ideal case.

Conclusion
QJump applies QoS-inspired concepts to datacenter applications
to mitigate network interference. It offers multiple QJump levels
with different latency variance vs. throughput tradeoffs, includ-
ing bounded latency (at low rate) and full utilization (at high
latency variance). QJump is readily deployable, open source, and
requires no hardware, protocol, or application changes.

Our source code and all experimental data sets are available at
http://www.cl.cam.ac.uk/research/srg/netos/qjump.

References
[1] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield,
“QoS’s Downfall: At the Bottom, or Not at All!” in Proceedings
of the ACM SIGCOMM Workshop on Revisiting IP QoS, 2003,
pp. 109–114.

[2] J. Dean and L. A. Barroso, “The Tail at Scale: Managing
Latency Variability in Large-Scale Online Services,” Commu-
nications of the ACM, vol. 56, no. 2 (Feb. 2013), pp. 74–80.

[3] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson,
A. W. Moore, S. Hand, and J. Crowcroft, “Queues Don’t Matter
if You Can JUMP Them!” forthcoming in Proceedings of the
12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’15), May 2015.

[4] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, and P. Bar-
ham, “Naiad: A Timely Dataflow System,” in Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP),
2013, pp. 439–455.

[5] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K.
Ramakrishnan, and J. E. van der Merive, “A Flexible Model for
Resource Management in Virtual Private Networks,” in Pro-
ceedings of the ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(SIGCOMM), Aug. 1999, pp. 95–108.

Acknowledgments
The full paper version of this work includes contributions from
Jon Crowcroft, Steven Hand, and Robert N. M. Watson. This
work was jointly supported by a Google Fellowship, EPSRC
INTERNET Project EP/H040536/1, the Defense Advanced
Research Projects Agency (DARPA), and the Air Force Research
Laboratory (AFRL), under contract FA8750-11-C-0249. The
views, opinions, and/or findings contained in this article are
those of the authors and should not be interpreted as represent-
ing the official views or policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the Depart-
ment of Defense.

USENIX Awards
USENIX honors members of the community with three prestigious annual awards
which recognize public service and technical excellence. The winners of these
awards are selected by the USENIX Awards Committee. The USENIX membership
may submit nominations for any or all three of the awards to the committee.

The USENIX Lifetime Achievement (Flame) Award
The USENIX Lifetime Achievement Award recognizes and celebrates singular contri-
butions to the UNIX community in both intellectual achievement and service that
are not recognized in any other forum. The award itself is in the form of an original
glass sculpture called “The Flame,” and in the case of a team based at a single place,
a plaque for the team office.

Details and a list of past recipients are available at www.usenix.org/about/flame.

The Software Tools Users Group (STUG) Award
The Software Tools Users Group Award recognizes significant contributions to
the general community that reflect the spirit and character of those who came
together to form the Software Tools Users Group (STUG). This is a cash award.

STUG and the Software Tools effort were characterized by two important tenets.
The first was an extraordinary focus on building portable, reusable libraries of code
shared among multiple applications on wildly disparate systems. The other tenet,
shared with the UNIX community, is “renegade empowerment.”

The Software Tools Users Group gave users the power to improve their environment
when their platform provider proved inadequate, even when local management
sided with the platform provider. Therefore, nominees for the STUG Award should exhibit one or both of these traits in a conspicuous
manner: a contribution to the reusable code-base available to all or the provision of a significant enabling technology directly to users
in a widely available form.

Details and a list of past recipients are available at www.usenix.org/about/stug.

The LISA Award for Outstanding Achievement in System Administration
This annual award goes to someone whose professional contributions to the system administration community over a number of
years merit special recognition.

Details and a list of past recipients are available at www.usenix.org/lisa/awards/outstanding.

www.usenix.org/about/usenix-awards

Call for Award Nominations
USENIX requests nominations for these
three awards; they may be from any
member of the community. Nominations
should be sent to the Chair of the Awards
Committee via awards@usenix.org by
May 1 each year. A nomination should
include:

1. Name and contact information of
the person making the nomination

2. Name(s) and contact information of
the nominee(s)

3. A citation, approximately 100 words
long

4. A statement, at most one page long,
on why the candidate(s) should receive
the award

5. Between two and four supporting
letters, no longer than one page each

NOMINATIONS DUE MAY 1

