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In this article, we show that it is possible and practical to achieve 
bounded latency in datacenter networks using QJump, an open-source 
tool that we’ve been building at the University of Cambridge. Further-

more, we show how QJump can concurrently support a range of network 
service levels, from strictly bounded latency through to line-rate throughput 
using the prioritization features found in any datacenter switch. 

Bringing Back Determinism
In a statistically multiplexed network, packets share network resources in a first come,  
first served manner. A packet arriving at a statistically multiplexed (“stat-mux”) switch  
(or router) is either forwarded immediately or forced to wait until the link is free. This makes 
it hard to determine how long the packet will take to cross the network. In other words, 
stat-mux networks do not provide latency determinism. 

The desire to retrofit latency determinism onto Internet Protocol (IP) stat-mux networks 
sparked a glut of research in the mid-90s on “Quality of Service” (QoS) schemes. QoS tech-
nologies like DiffServ demonstrated that coarse-grained classification and rate-limiting 
could be used to control Internet network latencies. However, these schemes were complex 
to deploy and often required cooperation between multiple competing entities. For these 
reasons (and many others) Internet QoS struggled for widespread deployment, and hence 
provided limited benefits [1]. 

Today, the muscle behind the Internet is found in datacenters, with tens of thousands of 
networked compute nodes in each. Datacenter networks are constructed using the same 
fundamental building blocks as the Internet. Like the Internet, they use statistical multi
plexing and Internet Protocol (IP) communication. Also like the Internet, datacenter 
networks suffer from lack of latency determinism, or “tail latency” problems. Worse still,  
the close coupling of applications in datacenters magnifies tail-latency effects. Barroso and 
Dean showed that, if as few as one machine in 10,000 is a straggler, up to 18% of user requests 
can experience long tail latencies [2]. 

Unsurprisingly, the culprit for these tail latencies is once again statistical multiplexing. More 
precisely, congestion from some applications causes queueing that delays traffic from other 
applications. We call the ability of networked applications to affect each others’ latencies 
network interference. For example, Hadoop MapReduce can cause queueing that interferes 
with memcached request latencies, causing latency increases of up to 85x. 

The good news is that datacenters are also unlike the Internet. They have well-known 
network structures, and the bulk of the network is under the control of a single authority. 
The differences between datacenters and the Internet allow us to apply QoS schemes in new 
ways, different and simpler than the Internet does. In datacenters, we can enforce a system-
wide policy, and, using known host counts and link rates, we can calculate specific rate 
limits that allow us to provide a guaranteed bound on network latency. 

We have implemented these ideas in QJump. QJump is a simple and immediately deployable 
approach to controlling network interference in datacenter networks. QJump is open source 
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Figure 1a shows a timeline of PTPd synchro
nization offset. Figure 1b has a CDF of mem-
cached request latency, and Figure 1c has a 
CDF of Naiad synchronization time.
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and runs on unmodified hardware and software. A full paper describing QJump will appear 
in the 12th USENIX Symposium on Networked System Design and Implementation 
(NSDI ’15) [3]. Additional information including source code and data is available from our 
accompanying Web site: http://www.cl.cam.ac.uk/research/srg/netos/qjump. 

QJump in Action
To illustrate how bad network interference can get and how well QJump fixes it, we show the 
results from a collection of experiments with latency-sensitive datacenter applications (see 
Figure 1). In each experiment, the application: (1) runs alone on the network, (2) shares the 
network with Hadoop MapReduce, and (3) shares the network with Hadoop, but has QJump 
enabled. A complete evaluation of QJump, including full details of these experiments (and 
many others), is available in the full paper.

1. Clock Synchronization. Precise clock synchronization is important to distributed sys-
tems such as Google’s Spanner. PTPd offers microsecond-granularity time synchronization 
from a time server to machines on a local network. However, it assumes roughly constant 
network delay. In Figure 1a, we show a timeline of PTPd synchronizing a host clock on both 
an idle network and when sharing the network with Hadoop. In the shared case, Hadoop 
causes queueing which delays PTPd’s synchronization packets. This causes PTPd to tem-
porarily fall 200–500 s out of synchronization, 50x worse than on an idle network. With 
QJump enabled, the PTPd synchronization remains unaffected by Hadoop’s traffic. 

2. Key-Value Stores. Memcached is a popular in-memory key-value store used by Facebook 
and others to store small objects for quick retrieval. We benchmark memcached using the 
memaslap load generator and measure the request latency. Figure 1b shows the distribution 
of request latencies on an idle network and a network shared with Hadoop. With Hadoop 
running, the 99th percentile request latency degrades by 1.5x from 779 s to 1196 s. Further
more, around 1 in 6,000 requests takes over 200 ms to complete, over 85x worse than the 
maximum latency on an idle network. With QJump enabled, these effects are mitigated. 

3. Big Data Computation. Naiad [4] is a framework for big data computation. In some 
computations, Naiad’s performance depends on low-latency synchronization between worker 
nodes. To test Naiad’s sensitivity to network interference, we execute a synchronization 
benchmark (provided by the Naiad authors) with and without Hadoop running. Figure 1c 
shows the distribution of Naiad synchronization latencies in both situations. On an idle 
network, Naiad takes around 500 s at the 99th percentile to perform a four-way synchro-
nization. With interference, this grows to 1.1–1.5 ms, a 2–3x performance degradation. With 
QJump running, the performance nearly exactly conforms to the interference-free situation. 

These experiments cover just a small set of applications, but there are many others that can 
also benefit from using QJump. Examples include coordination traffic for Software Defined 
Networking (SDN), distributed locking/consensus services, and fast failure detectors.

Scheduling and Queueing Latency
To understand how QJump works, we first need to understand the two main sources of 
latency nondeterminism in statistically multiplexed (stat-mux) networks: scheduling latency 
and queueing latency. In Figure 2a, a collection of packets (P) arrive at an idle switch S0. At 
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Figure 2: Latency causes (a) fan-in, packets waiting to be serviced by the 
switch scheduler, or (b) queueing, packets waiting behind many other 
packets.
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the same time, a latency sensitive packet (L) also arrives. The 
L packet experiences scheduling latency as it waits for other 
P packets to be serviced by the switch scheduler. Scheduling 
latency is a consequence of fan-in, which happens when mul-
tiple packets contend for the same output port on the switch. If 
the switch takes too long to output packets, then new packets 
can queue behind existing ones. Figure 2b shows two latency 
sensitive packets (L) queued behind many other waiting packets 
(P). This is a kind of head-of-line blocking that we call queue-
ing latency. Queuing latency is caused by excessive scheduling 
latency. We cannot eliminate scheduling latency in a stat-mux 
network. However, using some simple math, we can put a bound 
on it. By doing so, we can ensure that packets are issued into the 
network at a rate that prevents them from queueing up behind 
each other, thus also control queueing latency. 

Bounded Queues—Bounded Latency
Considering Figure 2a, in the worst case the L packet will need 
to wait for the switch scheduler to service all preceding P pack-
ets before it is serviced. For a switch with n ports, the worst-case 
waiting time is n - 1 (approximately n) packets. As the number of 
ports on the switch grows, the worst-case latency grows with it. 

We can easily expand this understanding to cover multi-hop net-
works by treating the whole network as a single “big switch” (this 
is an application of the “hose-constraint” [4] model). Hence we 
can apply the same calculation as above. Knowing that a packet 
of size P will take P/R seconds to transmit at link-rate R, we can 
therefore bound the maximum interference delay at:

where n is the number of hosts, P is the maximum packet size 
(in bits), and R is the rate of the slowest link in bits per second. 
Equation 1 assumes that hosts have only one (active) link to the 
network and that the speed at the core of the network is never 
slower than the speed at the edge. We think that these are both 
safe assumptions for any reasonable datacenter network.

We refer to the worst-case delay as a network epoch. A network 
epoch is the maximum time that an initially idle network will 
take to service one packet from every sending host, regardless of 
the source, destination, or timing of those packets. Intuitively, if 
we imagine the network as a funnel, the network epoch repre-
sents the time that the funnel will take to drain when it is filled 
to the top. If all hosts are rate-limited so that they cannot issue 
more than one packet per epoch, no permanent queues can build 
up, and the end-to-end network delay bound will be maintained 
forever. That is, we rate-limit hosts so that the funnel will never 
overflow. 

The problem with a network epoch is that it is a global concept. 
To maintain it, all hosts need to agree on when an epoch begins 
and when it ends. It would seem that this requires all hosts 
in the network to have tightly synchronized clocks. In fact, 
network epochs can work even without clock synchronization. 
If we assume that network epochs occur at the same frequency, 
but not necessarily in the same phase, the network becomes 
mesochronous. This requires us to double the latency bound, but 
all other properties hold (see [3] for further details). The network 
epoch thus becomes:

Equation 2 is the basis for QJump. QJump is based on the principle 
that, if we rate-limit all hosts so that they can only issue one 
packet every network epoch, then no packet will take more than 
one network epoch to be delivered to the destination even in the 
worst case.

Latency Variance vs. Throughput
Although the equation derived above provides an absolute upper 
bound on in-network delay, it also aggressively restricts through-
put. Formulating Equation 2 for throughput, we obtain:

For example, with 1,000 hosts and a 10 Gb/s edge, we obtain 
an effective throughput of 5 Mb/s per host. Clearly, this is not 
ideal. We can improve this situation by making two observa-
tions. First, Equation 2 is pessimistic: it assumes that all hosts 
transmit to one destination at the worst time, which is unlikely 
given a realistic network and traffic distribution. Second, some 
applications, like PTPd, are more sensitive to interference than 
others—for example, memcached and Naiad—whereas still 
other applications, like Hadoop, are more sensitive to through-
put restrictions. From the first observation, we can relax the 
throughput constraints in Equation 2 by assuming that fewer 
than n hosts send to a single destination at the worst time. For 
example, if we guess that only 500 of the 1,000 hosts concur-
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rently send to a single destination, then those 500 hosts can send 
at twice the rate and maintain the same network delay if our 
assumption holds. More generally, we define a scaling factor f so 
that the assumed number of senders n′ is given by:

Intuitively, f is a “throughput factor”: as the value of f grows, so 
does the available bandwidth. 

From the second observation, some (but not all) applications 
can tolerate some degree of latency variance. Instead, for these 
applications we aim for a statistical reduction in latency vari-
ance. This reintroduces a degree of statistical multiplexing to 
the network, albeit one that is more tightly controlled. When 
the guess for f is too optimistic (the actual number of senders is 
greater than n′), some queueing occurs, causing interference.

The probability that interference occurs increases with increas-
ing values of f. At the upper bound ( f = n), latency variance is 
similar to existing networks and full network throughput is 
available. At the lower bound ( f = 1), latency is guaranteed, albeit 
with reduced throughput. In essence, f quantifies the latency 
variance vs. throughput tradeoff.

Jump the Queue with Prioritization
We would like to use multiple values of f concurrently, so that 
different applications can benefit from the latency variance 
vs. throughput tradeoff that suits them best. To achieve this, 
we partition the network so that traffic from latency-sensitive 
applications, like PTPd, memcached, and Naiad can “jump-the-
queue” over traffic from throughput-intensive applications like 
Hadoop. Ethernet switches support the IEEE 802.1Q standard, 
which provides eight (0–7) hardware enforced “service classes” 
or “priorities.” 

The problem with using priorities is that they can become 
a “race to the top.” For example, memcached developers may 
assume that memcached traffic is the most important and 
should receive the highest priority to minimize latency. Mean-
while, Hadoop developers may assume that Hadoop traffic is the 
most important and should similarly receive the highest priority 
to maximize throughput. Since there are a limited number of 
priorities, neither can achieve an advantage and prioritization 
loses its value. QJump is different: it intentionally binds priority 
values to rate-limits. High priorities are given aggressive rate 
limits (small f values), and priorities thus become useful because 
they are no longer “free.” QJump users must choose between 
low latency variance at low throughput (high priority) and high 
latency variance at high throughput (low priority). We call the 
assignment of an f value to a priority a “QJump level.” The latency 
variance of a given QJump level depends on the number of QJump 
levels above it and their traffic patterns. 

Implementation
QJump has two components: a rate-limiter to provide admission 
control to the network, and an application utility to configure 
unmodified applications to use QJump levels. Our full paper 
describes the rate limiter and application utility in detail, and 
the source code for both is available from our Web site. 

In our prototype, we use our own high-performance rate limiter 
built upon the queueing discipline (qdisc) mechanism offered by 
the Linux kernel traffic control (TC). TC modules do not require 
kernel modifications and can be inserted and removed at run-
time, making them flexible and easy to deploy. 

To support unmodified applications, we implemented a utility 
that dynamically intercepts socket setup system calls and alters 
their options. We inject the utility into unmodified executables 
via the Linux dynamic linker’s LD_PRELOAD support.

Performance Comparison
We have already demonstrated that QJump can resolve network 
interference, but how does it compare to existing congestion 
control mechanisms? To find out, we have tested QJump against 
several readily deployable congestion control schemes. In these 
experiments, PTPd, memcached, and Hadoop are configured to 
run on the same network for a 10-minute period. Since interfer-
ence is transient in these experiments, we measure the degree to 
which it affects applications using the root mean square (RMS) 
of each application-specific metric. For Hadoop, the metric of 
interest is the job runtime, for PTPd it is the time synchroniza-
tion offset, and for memcached it is the request latency. Figure 3 
shows six cases: an ideal case, a contended case, and one for each 
of the four comparison schemes. All cases are normalized to the 
ideal case, which has each application running alone on an idle 
network. 

http://www.cl.cam.ac.uk/research/srg/netos/qjump/login2015/figure3.html
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Ethernet Flow Control 
Like QJump, Ethernet Flow Control is a data link layer conges-
tion control mechanism. Hosts and switches issue special pause 
messages when their queues are nearly full, alerting senders 
to slow down. Figure 3 shows that Ethernet Flow Control 
(Pause frames) has a limited positive impact on memcached 
but increases the RMS offset for PTPd. Hadoop’s performance 
remains unaffected.

Early Congestion Notification (ECN) 
ECN is a network-layer mechanism in which switches indicate 
queueing to end hosts by marking TCP packets. Our Arista 7050 
switches implement ECN with weighted random early detection 
(WRED). The effectiveness of WRED depends on an administra-
tor correctly configuring upper and lower marking thresholds. 
We investigated 10 different marking threshold pairs, ranging 
between [5, 10] and [2560, 5120], in packets. None of these 
settings achieved ideal performance for all three applications, 
but the best compromise was [40, 80]. With this configuration, 
ECN very effectively resolves the interference experienced by 
PTPd and memcached. However, this comes at the expense of 
increased Hadoop job runtimes.

Datacenter TCP (DCTCP) 
DCTCP uses the rate at which ECN markings are received to 
build an estimate of network congestion. It applies this to a new 
TCP congestion avoidance algorithm to achieve lower queue-
ing delays. We configured DCTCP with the recommended ECN 
marking thresholds of [65, 65]. Figure 3 shows that DCTCP 
reduces the variance in PTPd synchronization and memcached 
latency compared to the contended case. However, this comes 
at an increase in Hadoop job runtimes, as Hadoop’s bulk data 
transfers are affected by DCTCP’s congestion avoidance.

QJump

Figure 3 shows that QJump achieves the best results. The vari-
ance in Hadoop, PTPd, and memcached performance is close to 
the uncontended ideal case.

Conclusion
QJump applies QoS-inspired concepts to datacenter applications 
to mitigate network interference. It offers multiple QJump levels 
with different latency variance vs. throughput tradeoffs, includ-
ing bounded latency (at low rate) and full utilization (at high 
latency variance). QJump is readily deployable, open source, and 
requires no hardware, protocol, or application changes. 

Our source code and all experimental data sets are available at 
http://www.cl.cam.ac.uk/research/srg/netos/qjump.
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