
18    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

DISTRIBUTED SYSTEMS

Interview with Andrew Tanenbaum
R I K F A R R O W

A lthough I had certainly encountered Andrew Tanenbaum at other
conferences, the first time I remember talking to him was in a
“terminal” room at USENIX Annual Tech in 2004. By that time, a

terminal room was a place where you could have a hardwired connection to
the Internet, and Andy showed me www.electoral-vote.com, a political Web
site which he was working on that analyzes polling data. For someone who
focuses on working with PhD students, and writing books and operating
systems, building such a useful political site seemed a bit far afield to me.
But the more you know about Andy, the more you learn just how broad his
interests are.

After that meeting, we would usually spend some time talking at the systems conferences
that we both attended. While we mostly discussed MINIX 3 (www.minix3.org), we also
talked about other things, such as his current position within Vrije Universiteit in The
Netherlands. If you are wondering how Andy wound up there, you should read his FAQ [1].
But given the brief meetings, there were some things I didn’t get to ask him, and with his past
experience in distributed systems, I thought that now would be a good time to interview him.

Rik: While at the OSDI conference (2014), I heard someone mention that people have forgotten
about all the work that was done on building distributed or parallel systems in the 1980s and
early ’90s. Could you explain why there was such strong interest in systems like Amoeba [2, 3],
and Sprite?

Andy: There wasn’t a lot of commercial interest in parallel or distributed systems in the
1980s, but there was some in academia from people who try to stay ahead of the curve.
Already then, cheap workstations and PCs existed, and it occurred to some people that you
could harness them together and get a bigger bang for the buck than buying a supercomputer.
At the University of Wisconsin, for example, there was work on harvesting the power of idle
workstations to form an ad hoc supercomputer.

My work consisted of putting sixteen Motorola 68000s in a rack and letting people start jobs
there from their desktop machines without having to worry too much about the details. We
called the rack the “processor pool” and built an operating system (Amoeba) to control it. We
published some papers about it, but it didn’t get much attention in commercial circles. Nowa-
days it is called “cloud computing” and gets a lot of attention.

Rik: I think people often forget just how slow processors were in the ’80s, right into the early
’90s. My first UNIX system, a 68010, had a blistering clock rate of 10 MHz (1983). A 1987
Sun-4/260 ran at 16.67 MHz, and was noticeably faster than the 68030s it replaced. Having
a rack of systems, where a user could run programs on the least busy one, surely must have
seemed like a great idea.

Andrew S. Tanenbaum was
born in New York City and
raised in White Plains, NY. He
has a BS from MIT and a PhD
from the University of California

at Berkeley. He is currently a Professor of
Computer Science at the Vrije Universiteit
in Amsterdam. Professor Tanenbaum is the
principal designer of three operating systems:
TSS-11, Amoeba, and MINIX. In addition, he
is the author or coauthor of five books, which
together have been translated into more than
20 languages. In 2004 Tanenbaum became
an Academy Professor, which carried with it
a five-year grant totaling one million euro to
do research on reliable operating systems.
His university matched this amount. In 2008
he received a prestigious European Research
Council grant of 2.5 million euro to continue
this research. Tanenbaum is a Fellow of the
ACM, a Fellow of the IEEE, and a member
of the Netherlands Royal Academy of Arts
and Sciences. In 1994 he was the recipient
of the ACM Karl V. Karlstrom Outstanding
Educator Award. In 1997 he won the ACM
SIGCSE Award for Outstanding Contribution
to Computer Science Education. In 2007 he
won the IEEE James H. Mulligan, Jr. Education
Medal. ast@cs.vu.nl

Rik is the editor of ;login:.
rik@usenix.org

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  19

DISTRIBUTED SYSTEMS
Interview with Andrew Tanenbaum

Andy: What the Amoeba processor pool did was create a shared
resource, which is more efficient than dedicated ones. If all the
money available for computing resources was spent to give each
user the most powerful computer you could buy for that amount,
you would often have the situation that one user needed a lot of
computing power for a short time, for example, to run “make”
to compile a big program, while all the other computers were
idle but unavailable to the one who needed the power. By having
a processor pool available to everyone, if one user needed the
whole thing and nobody else needed any computing, the one user
could get all of it. If two users needed a lot of computing, they
would each get half. So the model was to put most of the power
in the processor pool and just give users simple terminals. This
whole model foreshadowed cloud computing, which also cen-
tralizes the computing power and lets you take as much as you
need for a short period and nothing when you are sitting around
scratching your head deciding what to do next.

Rik: Did the work on Amoeba have anything to do with the
development of MINIX, the operating system you wrote to help
students learn about operating systems?

Andy: Amoeba didn’t influence the development of MINIX much
as Amoeba was intended as a research vehicle and not as a UNIX
clone. For example, the Amoeba file system, the bullet server,
wrote files onto the disk as consecutive sectors so they could
be read back at very high speed (basically one disk command to
read a whole file). Files were also immutable. The system was
based on cryptographically secure capabilities managed directly
by user programs. It was an attempt to push the envelope on
research and was completely different from MINIX, which was
initially intended for teaching students how a UNIX-like system
worked inside.

Rik: MINIX started out as a microkernel, moving away from the
generally accepted design of monolithic kernels, which are still
dominant today. What were the advantages of using a microker-
nel for MINIX?

Andy: Since my initial goal in writing MINIX was to have stu-
dents learn from it, I thought that breaking it into a number of
smaller chunks that interacted in very well defined ways would
make it easier to understand. Generally speaking, for example,
six programs of 2000 lines are easier to understand than one
program of 12,000 lines.

But also from the beginning, I was aware that putting most
of the operating system in “user mode” as multiple processes
would make it more reliable and more secure against attempts
to hack it. Now the 8088 didn’t have kernel and user modes, but I
assumed that some future version of the 8088 would have them,
and that is what happened, of course.

Rik: So why don’t we see more microkernels used today?

Andy: Because they are mostly used in embedded systems, where
reliability matters. In mission-critical embedded systems,
microkernels like QNX are widely used but they are invisible to
the user. Also, L4 is used in the radio chip inside over a billion
smartphones. I think monolithic kernels are mostly used due to
inertia, whereas for each new embedded system the designers
look around and see what is best right now without worrying
too much about legacy. Performance used to be a problem with
microkernels, but L4 showed this is not inherent. In many other
areas legacy systems dominate, even though they are inferior to
other ones.

For example, I have never heard an argument why the furlong-
stone-fortnight system used in the UK and US is better than
the metric system other than “We’ve always done it that way.”
Consider Fahrenheit vs. Celsius. Try arguing that the NTSC
(Never Twice the Same Color) television system is better than
the alternatives. What about point-and-shoot cameras that have
an aspect ratio of 4:3, like 1950s TV sets? C is still widely used
even though it is not type safe, and C programs are subject to
buffer overflow attacks and more. COBOL is horrible but lasted
for decades. In general, once some technology gets established, it
is very hard to dislodge.

I think the research community is too fixated on Linux, and any
monoculture is bad. Even a stable, mature, open-source system
like FreeBSD hardly gets any attention.

Rik: I’ve written many times that running microkernels on
current CPU architectures cannot work well, as microkernels
and monolithic kernels rely on very different designs for system
communication. Monolithic kernels keep all modules in one
privileged address space, which is convenient, fast, as well as
considerably less secure. Microkernels minimize the amount of
code running within the privileged address space, but at the cost
of having to make context changes when communicating with
or between system modules. Also, unprivileged modules need
privileged access for many of the tasks they perform.

Do system architecture changes like the IOMMU [4], as well as
others I either don’t know about or haven’t imagined yet, help
microkernels run as fast or faster than monolithic ones, but with
a much higher level of security?

Andy: Better hardware certainly helps but I don’t think IOMMUs
are necessarily the answer. One thing that may help is multicore
architectures. One of my PhD students has been doing research
on a prototype system in which the major server components each
run on their own core. This way when it is needed, there is no con-
text switching, the cache is warm, and the server is ready to run
with no overhead. As we move toward a world in which all chips

20    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

DISTRIBUTED SYSTEMS
Interview with Andrew Tanenbaum

have cores to spare, this could make microkernels more competi-
tive since people won’t worry about “wasting” cores, just as no
one worries about “wasting” RAM on bloated software now.

Rik: Now that you’ve been retired [5] from Vrije Universiteit,
what do you plan on doing? You’ve always stayed busy, much
more so than most people.

Andy: For one thing, I will continue teaching one course I give in
our masters program (on how to write a grant proposal). I also
still have five PhD students to supervise.

For another, I want to continue publicizing MINIX 3. It is more
popular than many people realize. According to the statistics
from the log, visible at minix3.org/stats, we had over 60,000
downloads of the .iso file in 2014 and over 600,000 since 2007.
The minix3.org site has had over 3 million visits since I put the
counter on there about five years ago.

Still, I would like to build a more active community. One thing
I will probably do in that respect is sign up for the ACM Distin-
guished Speakers Program and give lectures about MINIX at
universities. I need to maintain my Platinum Medallion status
on Delta Airlines somehow :-)

Furthermore, I have five books that are current and in constant
need of new editions. Fortunately, I have excellent coauthors to
help me out.

In addition, I had about 50,000 of my negatives and slides
scanned in, and I want to organize, label, and clean them up with
Photoshop. I also have a couple hundred hours of video that need
work. I recently bought a Mac Pro (garbage can model) to handle
the video processing.

So I don’t think I’ll be bored, for a few months, anyway.

References
[1] Andrew S. Tanenbaum’s FAQ: http://www.cs.vu.nl/~ast
/home/faq.html.

[2] A. Tanenbaum et al, “The Amoeba Distributed Operating
System”: http://www.cs.vu.nl/pub/amoeba/Intro.pdf.

[3] This page has links to papers, as well as a good description of
Amoeba: http://en.wikipedia.org/wiki/Amoeba_%28operating
_system%29.

[4] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and Timo-
thy Roscoe, “Arrakis: The Operating System Is the Control
Plane,” OSDI ’14.

[5] Retirement: http://www.few.vu.nl/~ast/afscheid/.

Buy the Box Set!
Whether you had to miss a conference or just didn’t make it to all of the sessions, here’s your chance to watch
(and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive containing the
high-resolution videos from the technical sessions. This is perfect for folks on the go or those without consistent
Internet access.

Box Sets are available for:
 SREcon15

 FAST ’15: 13th USENIX Conference on File and Storage Technologies

 LISA14: 27th Large Installation System Administration Conference

 OSDI ’14: 11th USENIX Symposium on Operating Systems Design and Implementation

 TRIOS ’14: 2014 Conference on Timely Results in Operating Systems

 USENIX Security ’14: 23rd USENIX Security Symposium

 3GSE ’14: 2014 USENIX Summit on Gaming, Games, and Gamification in Security Education

 FOCI ’14: 4th USENIX Workshop on Free and Open Communications on the Internet

 HealthTech ’14: 2014 USENIX Summit on Health Information Technologies

 WOOT ’14: 8th USENIX Workshop on Offensive Technologies

 URES ’14: 2014 USENIX Release Engineering Summit

 USENIX ATC ’14: 2014 USENIX Annual Technical Conference

 UCMS ’14: 2014 USENIX Configuration Management Summit

 HotStorage ’14: 6th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’14: 6th USENIX Workshop on Hot Topics in Cloud Computing

 NSDI ’14: 11th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’14: 12th USENIX Conference on File and Storage Technologies

 LISA ’13: 27th Large Installation System Administration Conference

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Management Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at: www.usenix.org/boxsets

