
22    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

SYSADMINThe Living Dead
T I M B R A D S H A W

Tim Bradshaw was going to
be a physicist before getting
side-tracked by computers, in
the form of UNIX and Lisp. He’s
worked on the border between

programming and system administration for
about 25 years. He worked in a large British
retail bank during and after the crisis of
2007–2008 and is hoping not to be anywhere
near one next time around. tfb@tfeb.org

It has been claimed [1] that system administration is dead: that may be
so, but if you think that the dead are not a problem, you have been watch-
ing the wrong kind of movies. System administration may be dead, but it

still walks.

The kind of system administration we’d like to be dead is manual system administration: the
management of computing systems by people, rather than by programs. Not only is this very
expensive but people are not up to the task: they make mistakes and forget things, so incon-
sistencies accumulate over time, leading to a slow collapse of the system. Long before the
final collapse, it becomes impossible to deal with performance and security problems. These
problems slowly kill organizations that try to run large systems using traditional approaches.

Why should we care? If we know how to do better now, then why not let organizations that
cannot or will not learn fail? That’s a solution only if we don’t care about those organizations
collapsing, and if we really do know how to do better.

I Walked with a Zombie
Consider an example of an organization that has solved the problem and one that hasn’t: I’ll
pick Google for the former and a large retail bank of your choice for the latter. How bad would
a week-long outage to each of these organizations be?

Google. This would be reasonably bad: search itself is a solved problem now—there are other
adequate providers—but a lot of people have built their lives and businesses around products
like Gmail without much thought. They’d have a bad week, and some businesses would die.

The Bank. This would be rather worse. If it was your bank, you would have no access to
money at all other than cash you were carrying, and you would be hungry when that ran out.
This may not be the end: banks are real-time organizations and can only be down for so long
before they cannot recover, whether or not they have lost data. Opinions vary on how long
this is but it’s around a couple of days; your bank might never come back, and you would have
to pick up the pieces of your financial affairs over months. This too may not be the end: the
banking system is heavily interlinked, and the failure of a large retail bank could easily cause
a cascade failure of other banks. The correct defense against that involves canned food,
firearms, and growing a beard: you do not want a banking collapse to happen.

A failure like this is not easy to fix: you can bail out a bank that has run out of money by
pouring money into it, but you can’t bail out a bank whose computer systems have failed by
pouring computers into it. We also should not assume that “someone else” will magically
fix it for us. If the people who regulate banks were not competent [2] to see a rather obvious
financial crisis coming in 2007–2008 until it was too late, they certainly are not competent
to spot crises in computer systems, let alone fix them. And crises do happen. The 2012 RBS
batch problem [3] was a damned near-run thing, and there is every reason to believe that
something like it will happen again in a bank or some other equally critical organization.

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  23

SYSADMIN
The Living Dead

Perhaps a banking collapse is not very likely, but it is definitely
possible, and even a fairly small risk of the apocalypse is a thing
to be avoided. Poor system administration practices matter, and
it is not enough to declare them dead. We actually have to do
something to stop them lurching around eating us.

Bone Sickness
We understand and can solve many of the roots of this malaise.
Structural and funding problems and organizations outsourcing
their own brains result from incompetent management.
Administrators who do not program and programmers
(“developers”) who do not administrate lead to the problems you
would expect, the solution to which is some variant of DevOps.
Additionally, the people who build and deliver systems should
be the same people who later maintain them; throwing rubbish
over the wall is less appealing if you know you will have to clean
it up later.

But these are not the only difficulties.

Old. The organizations I’m worrying about are old, which
means they are not growing exponentially. All exponentially
growing organizations are, effectively, young (although not
all young organizations grow exponentially). Exponential
growth famously kills companies, but there’s a converse: if
you can handle it, then all other problems are easy because
all your mistakes get inflated away. Organizations growing
exponentially can simply ignore old systems. Unfortunately, and
despite what economists pretend to believe, exponential growth
is necessarily ephemeral.

Contracts. If you have contracts with teeth, then you can’t just
turn off the system that is supporting a contract when it suits
you. Dealing with this requires either applications and languages
that are compatible for many years or physically supporting very
old machines. The “Cascade of Attention-Deficit Teenagers”
development model [4] means that the second option is often
less bad, and we should be ashamed of this. Exponential growth
inflates this problem away as well, while it goes on, but avoiding
meaningful contracts is a clever trick if you can do it. Banks,
sadly, are entirely made of contracts.

It is interesting that the canonical “good” organizations are
exponentially growing, have avoided contracts with any real bite,
and indeed do simply turn off services [5] when it suits them.
Whether they really have solved the system administration
problem will become more clear as their growth slows and
contracts start to bite in the coming few years.

Power and Safety. To solve the system administration
problem, you need powerful tools: tools that can influence
very many machines, and tools that may themselves be
computationally powerful and, hence, have behavior that is hard

to reason about. Name services are an example of the former, and
systems that can run arbitrary code on many machines, such as
configuration management or patch deployment systems, are
examples of the latter.

Such tools have inherent safety problems.

To start with, you need to be sure that whatever you are
doing is either correct, does no harm if it is not correct, or, if
harm is done, is fully reversible. Related to this are questions
about authority and auditability: if you work for the sort of
organizations we’re discussing, you need to be able to show
that you have authority to do something and later demonstrate
convincingly to auditors that you had authority, that you actually
did the thing you had authority to do, and so on.

Both of these problems exist already: a very powerful system
simply makes them enormously more serious. It’s the difference
between the precautions you would take handling a stick of
dynamite and handling an MK-53. These problems are mostly
solvable in principle, although I don’t think they are very close to
being solved in practice. One non-solution is to divide the system
up by some security mechanism so that large changes can’t be
made; well, yes, but then you will need lots of administrators for
all the divided chunks, which is where we came in.

There is a graph that describes control and authority in
a system: root nodes and nodes near them are extremely
sensitive, as a compromise of them is a compromise of the
system. Understanding the graph and working a lot harder
on the security of the programs and protocols that sit at or
near the roots of it would be a good start at dealing with this.
Unfortunately, understanding the graph tells you one enormous
thing: the roots are people and buildings, all of which can be
attacked in very traditional ways, and the 2014 Sony attack [6]
seems to be an example of that.

There are parts of the graph beyond any given organization that
can themselves be compromised. For instance, the kernel.org
compromise [7] was only not serious because it was discovered
quickly and because of good engineering practices. Generally,
there is blind faith that “vendor code,” while probably buggy,
won’t be intentionally compromised or, if it is, only by the good
guys [8]: why do we think that, since that code is right at the
roots of the graph?

Banks are forced to care about these questions, and they are
encrusted with auditors whose job is to make them care. They
only have answers to some of them, and their answers tend to
involve a deeply hideous bureaucracy. That very bureaucracy
makes it extremely hard for them to think clearly about
underlying problems such as the control and authority graph.
This is particularly alarming given the sorts of configuration-
management tools that they are being sold.

24    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

SYSADMIN
The Living Dead

Warm Bodies
It is not just banks that are vulnerable, but utility companies,
air traffic control, and governments: every organization whose
failure would be most damaging. And bludgeoning the zombies
isn’t enough, since the problem is not really solved at all, other
than in some rather special and almost certainly ephemeral
cases. Do we really know how to manage large systems in
general in a way that is demonstrably safe? Do we know how
to build large systems that are safe at all? I don’t think we do,
not least because really general solutions do not exist. And
claiming that we have solved problems that we, in fact, have not
solved at all will simply suppress efforts to find answers that
might be good enough. The obituary of system administration
has been written prematurely.

References
[1] Todd Underwood, “The Death of System Administration,”
;login:, April 2014: https://www.usenix.org/publications/login
/apr14/underwood.

[2] Sewell Chan, “Financial Crisis Was Avoidable, Inquiry
Finds,” The New York Times, January 25, 2011: http://www
.nytimes.com/2011/01/26/business/economy/26inquiry.html.

[3] John Campbell, “Ulster Bank IT Problems: What Went
Wrong,” BBC News, November 20, 2014: http://www.bbc.co.uk
/news/uk-northern-ireland-30127164.

[4] Jamie Zawinski, “The CADT Model,” 2003: http://www
.jwz.org/doc/cadt.html.

[5] “A Second Spring of Cleaning,” Google, March 13, 2013:
http://googleblog.blogspot.com/2013/03/a-second-spring-of
-cleaning.html.

[6] Bruce Schneier, “Comments on the Sony Hack,” December
11, 2014: https://www.schneier.com/blog/archives/2014/12
/comments_on_the.html.

[7] Jonathan Corbet, “The Cracking of kernel.org,” August 31,
2011: http://www.linuxfoundation.org/news-media/blogs
/browse/2011/08/cracking-kernelorg.

[8] Bruce Schneier, “More About the NSA’s Tailored Access
Operations Unit,” December 31, 2013: https://www.schneier
.com/blog/archives/2013/12/more_about_the.html.

More craft.
Less cruft.

Nov. 8 – 13, 2015 | Washington, D.C.
usenix.org/lisa15

Sponsored by USENIX in cooperation with LOPSA

The LISA conference is where IT operations professionals,
site-reliability engineers, system administrators, architects,
software engineers, and researchers come together, discuss,
and gain real-world knowledge about designing, building, and
maintaining the critical systems of our interconnected world.

Submit your ideas for talks, tutorials, panels, paper
presentations, and workshops by April 17, 2015.

Topics of particular interest at this year’s conference
include systems and network engineering, monitoring
and metrics, SRE/software engineering, and culture.

