Practical Perl Tools
Dance, Browser, Dance!

DAVID N. BLANK-EDELMAN

David N. Blank-Edelman is
the Director of Technology at
the Northeastern University

{ College of Computer and
Information Science and the

author of the O'Reilly book Automating System
Administration with Perl (the second edition of
the Otter book), available at purveyors of fine
dead trees everywhere. He has spent the past
24+ years as a system/network administrator
in large multi-platform environments, including
Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was
the program chair of the LISA "O5 conference
and one of the LISA ‘06 Invited Talks co-chairs.
David is honored to have been the recipient

of the 2009 SAGE Outstanding Achievement
Award and to serve on the USENIX Board of
Directors beginning in June of 2010.

dnb@pobox.com

36 ;login: APRIL 2015

VOL. 40, NO. 2

n past columns, we've written code together that contacted Web sites

that didn’t have an API per se and queried information from them. Tools

like HTTP::Tiny, LWP::Simple, Mojo::UserAgent, and WW W::Mechanize
have made an appearance in this column (some as recently as the previous
column). These are all fantastic tools (some of them more fantastic than oth-
ers), but if you have felt something was lacking, I can’t blame you. With all of
these modules, we've sidestepped, for better or worse, the Web browser. This
has also meant giving up certain functionality found in the browser—the big-
gest elephant being JavaScript. People have written code to glue JavaScript
engines to WWW:Mechanize (e.g., WW W::Mechanize::PhantomJS) or to
drive browsers from these kinds of modules, but they haven’t been particu-
larly widespread in their implementation or adoption. In this column, we're
going to look at how to use Perl with a framework that lots of people use to
drive browsers in a whole range of languages.

The framework we’ll be exploring in brief today is called Selenium. It originated from work
that people have done to create testing frameworks that used real browsers to construct real
tests of Web applications. Let’s say you built a Web app and you'd like to make sure that your
automated test suite (you have a test suite, right?) actually tests the app’s functionality using
the same browsers humans will be using when you finally make it available on the Web.
Enter Selenium (http://www.seleniumhq.org). But, testing is just one thing you could use
this for; driving your browsers (both desktop and mobile) using a script could be applied to all
sorts of things.

Before we dive into how to set all this up and get it to rock from Perl, there is a piece of Sele-
nium history worth mentioning so that you don’t take a wrong turn while learning about this
stuff. Once upon a time, as in version 1, Selenium offered something called Selenium Remote
Control (or Selenium RC as you will see it written) as one of its main interfaces.

There were a number of Perl modules written for Selenium 1, and we're not going to touch any
of them. Selenium 1 was a bit of a hack (basically it injected JavaScript code that manipu-
lated the browser), so at some point Selenium 2 (sometimes called Selenium WebDriver
because that was the name of the other project that merged with Selenium) was born. In this
column, we are going to be using a Perl module that works with Selenium 2 only. If you want
to dive deeper into this subject by searching the Web for more information, be sure to pay
attention to which version of Selenium the resources you find are describing.

Wait, Was that Java I Just Saw Zoom By?

Let’s talk about how we get set up to start using Selenium. While there are ways to directly
talk to a browser using the WebDriver stuff, the Perl module we're going to be using expects
to talk to a standalone Selenium server. That server is written in Java. But, besides needing the
JDK installed and running one command, you can pretend I never mentioned that language.
Actually, let me be a little bit of a tease and mention that there are companies like Sauce Labs
(https://saucelabs.com) that actually provide Selenium as a service so that you could connect

Www.usenix.org

COLUMNS

to their hosted Selenium infrastructure instead of bringing up
your own server. But for our purposes, bringing up a standalone
server (vs. an industrial-strength service) is pretty trivial.

First step (providing you have the JDK installed): go to http://
www.seleniumhg.org and download the latest stable Selenium
server release.

Step 2: start it up like so:
java -jar {name of jar file}

See, that wasn’t so bad. The Java app will produce output that
will look roughly like this:

21:52:09.373 INFO - Launching a standalone server

21:52:09.437 INFO - Java: Apple Inc. 20.65-b04-466.1

21:52:09.437 INFO - 0S: Mac 0S X 10.10.1 x86_64

21:52:09.458 INFO - v2.44.0, with Core v2.44.0. Built from
revision 76d78cf

21:52:09.574 INFO - Default driver org.openga.selenium.
ie.InternetExplorerDriver registration is skipped:
registration capabilities Capabilities \[{platform=WINDOWS,
ensureCleanSession=true, browserName=internet explorer,
version=}] does not match with current platform: MAC

21:52:09.643 INFO - RemoteWebDriver instances should connect
to: http://127.0.0.1:4444/wd/hub

21:52:09.644 INFO - Version Jetty/5.1.x

21:52:09.645 INFO - Started HttpContext\[/selenium-server
/driver,/selenium-server/driver]

21:52:09.646 INFO - Started HttpContext\[/selenium-server
,/selenium-server]

21:52:09.646 INFO - Started HttpContext\[/,/]

21:52:09.717 INFO - Started org.openga.jetty.jetty.servlet
.ServletHandlera3b6fObe8

21:52:09.717 INFO - Started HttpContext\[/wd,/wd]

21:52:09.727 INFO - Started SocketListener on 0.0.0.0:4444

21:52:09.728 INFO - Started 657576922 org.openga.jetty.jetty
.Servera7a3570b0

This output will be primarily useful to us if we want to check
some of the values in use (e.g., what port it is listening on). A
number of values can be set on start; to see what is supported,
run the following:

java -jar {name of jar file} -help

Back to Cool, Refreshing Perl

Once you have a Selenium standalone server running, it is time
to bring Perl into the picture. The module we are going use is
called Selenium::Remote:Driver. It can be a little dependency
heavy (48 other modules if installing into a fresh Perl instance—
I checked), but with the help of the cpanm command mentioned
here in a past column, it is installed with a single command
(cpanm Selenium::Remote::Driver) and a bit of thumb-twiddling.

WWWw.usenix.org

Practical Perl Tools: Dance, Browser, Dance!

Let’s start with a simple script that uses it to tell a browser to
fetch a Web page:

use Selenium::Remote::Driver;

my $driver = new Selenium::Remote::Driver;
$driver->get("http://www.usenix.org');
print $driver->get_title(),"\n";
$driver->quitQ;

This script can be so bare bones because it is using all of the
defaults; we’ll talk about modifying them shortly. When we run
this script, it is a little creepy because Firefox pops open, loads
this page, quits, and then the script prints:

Home | USENIX

We can see what is going on because the window where we
started the standalone server is providing some play-by-play
debug output:

11:36:19.871 INFO - Executing: [new session:

Capabilities [{acceptSslCerts=true,

browserName=firefox, javascriptEnabled=true, version=,

platform=ANY}J1)

11:36:19.894 INFO - Creating a new session for Capabilities

[{acceptSslCerts=true, browserName=firefox,

javascriptEnabled=true, version=, platform=ANY}]

11:36:26.008 INFO - Done: [new session: Capabilities

[{acceptSslCerts=true, browserName=firefox,

javascriptEnabled=true, version=, platform=ANY}]]

11:36:26.018 INFO - Executing: [get: http://www.usenix.orgl)

11:36:28.186 INFO - Done: [get: http://www.usenix.org]

11:36:28.192 INFO - Executing: [get titled)

11:36:28.536 INFO - Done: [get title]

11:36:28.542 INFO - Executing: [delete session: 1abb3d91
-ceba-426d-8096-b4853cf941971)

11:36:28.646 INFO - Done: [delete session: 1abb3d91-cesa
-426d-8096-b4853cf941971]

You Can Seek, But First You Have to Find First
Retrieving the title of the page you opened in the browser via
Selenium magic is probably not the most useful thing you will
want to do (although it can be helpful as part of a larger test suite
to make sure the rest of the code’s assumptions about which
page you're on are correct). Most of the time, you will want to be
working with elements on that page, either retrieving them or
interacting with them (e.g., filling in forms, performing some
kind of navigation).

More often than not, the very first thing you have to do is grab
hold of part of the page using one of these two find_ commands:

find_element
find_elements

;login: APRIL 2015 VOL. 40,NO.2 37

COLUMNS

Practical Perl Tools: Dance, Browser, Dance!

There are other similar commands (e.g., get_active_element,
which returns the element that has focus), but I find almost all
of my scripts include one of those two as the first action after
pulling up the page.

Here’s where things get a little interesting and where one of the
defaults mentioned before comes into play. find_element(s) gives
you three different “strategies” (that’s the term from the docs)
for locating elements:

1. HTML specification (my term). This lets you find an element
by id (id = something in the source)), class (class = something),
link, etc.

2. CSS specification. This lets you find an element using the
standard CSS selectors as the browser implements them. So,
for example, you could specify “div#feature3”.

3. XPath specification. Faithful readers of this column know I @
XPath for its concision and eloquence. They will also recall that
we spent an entire column looking at the XPath syntax and like.
So that we don’t have to do an entire context swap-in of that
info, I'm going to simply say that one can use XPath expressions
as another way of selecting elements on a page but not provide
other examples of this that need to be explained.

By default, find_element will use #3, XPath. To change that
default, each find_element can take a second argument specify-
ing the strategy, or better yet, we can change the default:

my $driver =

Selenium::Remote::Driver->new('default_finder' => 'css');
The docs recommend using HTML selectors (#1) by default, as in:
my $Webelement = find_element('search-bar’,'id");

because it is the most efficient kind of search, but that assumes
you are dealing with Web pages that have well-structured code.
I tend to hope for that but expect to have to use one of the other
kinds of finders.

Now we know ways to find things, but what happens when we suc-
ceed? find_element() will return a WebElement object (or more
precisely, a Selenium:: Remote:WebElement object) representing
the first thing it finds, and find_elements returns an array of
them for all of the matches. With this object, we can do a number
of things (documented in the Selenium:Remote:WebElement
module documentation). Here’s some code that will display the
names of the main tabs on the page:

my (delements) =
$driver->find_elements('ul#main-menu-links U a','css");
foreach my $element (elements){

print $element->get_text(),"\n";

}

38 ;login: APRIL2015 VOL. 40, NO.2

It queries for all of the elements that match a particular CSS
selector (finds all of the links in the list items of the unordered
list with the ID of “main-menu-links”) and then displays the text
associated with each.

Let’s Do Stuff

Selenium has launched a browser for us, so let’s start doing
browse-y things. First off, we might want to start navigating
around the page and clicking on stuff. One thing we could do
would be to click on all of the main menu tabs and retrieve the
page title for each page we land on. Let’s start with code that
does not work, because it will illustrate an important point:

this does not work!
my (delements) =

$driver->findelements('ul#main-menu-links i a','css");

the first link is to the current page, skip it
shift delements;

foreach my $element (Qelements){
$element->click();

print $driver->gettitle(),"\n";
$driver->goback();

}

This would seem to be the right thing. Find all of the links, click
on a link, hit the back button, click on the next link, easy, right?
Here’s what happens when we run the code:

About USENIX | USENIX

Error while executing command: An element command failed
because the referenced element is no longer attached to the
DOM.: Element not found in the cache - perhaps the page has

changed since it was looked up

Tt gets the first click/title print right, but bites the dust on the
second one. Why is that? In this case, we've clicked to another
page before coming back to the home page. When we return to
the home page, there’s no guarantee that the structure of the
page (the DOM to be precise) we return to is exactly the same as
the way we left it. Lots of stuff could happen—the source of the
page could have been changed, JavaScript could have altered
the structure, and so on. Selenium knows we are dealing with
essentially a new page, so the references to parts of the old page
aren’t viable anymore. The best we can do is rerun the find_ele-
ments() and pick the next item in a list whose index we retain.
Here’s code that does work:

my (delements) =

$driver->find_elements('ul#main-menu-links i a','css");

WwWww.usenix.org

COLUMNS

for (my $tab = 1; $tab <= $#elements;$tab++){
$elementsC$tabI->click();

print $driver->get_title(),"\n";

$driver->goback();

delements =
$driver->find_elements('ul#main-menu-links Ui a','css');
}

If we run it, we get the following output:

About USENIX | USENIX

Conferences | USENIX

Publications | USENIX

LISA Special Interest Group for Sysadmins | USENIX
Membership & Services | USENIX

Student Programs | USENIX

USENIX | The Advanced Computing Systems Association

Basically, we do another find each time we return to the home
page and then click on the next tab in the sequence. Long-time
programmers are probably reaching for their pitchforks because
they can smell a race condition when they see one, so let me cop
to it right now. Yup, this code could potentially lead to a race con-
dition. As in the vaudeville skit where the patient says, “Doctor,
Doctor, please help me, it hurts when I move my arm like this,”
the response is “Don’t move your arm like that.”

Practical Perl Tools: Dance, Browser, Dance!

Go Forth and Do Cool Stuff

Asyou can probably guess, Selenium has lots of other actions
you can take on a page. You can select elements, you can send key
presses, drag and drop, move the mouse around, select different
windows, and so on. In addition to the documentation, there are
two good tutorials at http://www.slideshare.net/vroom/testing
-your-Website-with-selenium-perl and http://desmoines.pm.org
/meetings/selenium_july2013.html worth checking out. Enjoy,
and we’ll see you next time.

WWWw.usenix.org

;login: APRIL 2015 VOL.40,NO.2 39

