
46    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

COLUMNS

iVoyeur
Graphios

D A V E J O S E P H S E N

Dave Josephsen is the
sometime book-authoring
developer evangelist at Librato.
com. His continuing mission: to
help engineers worldwide close

the feedback loop. dave-usenix@skeptech.org

Hello again, intrepid reader. It seems like only yesterday that we were
talking about implementing spread data in Graphite [1]. In that
article I alluded to a tool called Graphios, with which you may not be

familiar. More specifically, I was using it to collect metrics data from Nagios
and inject it into Graphite, but I was a little short on the details surround-
ing that particular tool. This month I thought I’d correct that by taking some
time to elucidate on Graphios.

Really, there are two very good reasons I want to talk about Graphios. The first is that
although Graphios is not very widely used today (compared, to say, PNP4Nagios), it is
certainly the easiest way to connect Nagios to systems like StatsD, Graphite, and Librato.
Indeed, if you need to emit metric data from Nagios to one of the newer time-series analysis
systems like InfluxDB or OpenTSDB, Graphios (via StatsD) is pretty much your only option
besides coding up something yourself.

The second reason I want to talk about Graphios is that its creator Shawn Sterling and I
recently spent the better part of several months ripping out its Graphite-specific backend
and replacing it with a modular framework into which any sort of graphing system can be
plugged. And I think you’ll agree that tooting one’s own horn is an excellent and time-hon-
ored reason to talk about anything in general.

As a result, Graphios works as a glue layer between Nagios and any Metrics System that
supports the Carbon, StatsD, or Librato API protocols (which is to say, pretty much every
metrics system today). As depicted in Figure 1, Graphios uses the host_perfdata and
service_perfdata hooks (defined in your nagios.cfg) to read metric data from your perfdata
log, and handles formatting and sending it to systems like Librato, StatsD, and collectd.

Figure 1: Graphios is a glue layer between Nagios and many different metrics systems.

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  47

COLUMNS
iVoyeur: Graphios

Installation
Graphios is a Python program, so the easiest way to install it is
with pip:

pip install graphios

It’s also pretty easy to install Graphios manually. First, get the
most recent version from Git with the following:

git clone https://github.com/shawn-sterling/graphios.git

Then copy the various files to the appropriate locations:

mkdir -p /etc/graphios

cp graphios*.py /usr/local/bin

cp graphios.cfg /etc/graphios/

Configuration Requirements
To get Graphios up and running, you’ll need to manually config-
ure three things:

◆◆ The Nagios config files that deal with host and service checks

◆◆ The nagios.cfg file

◆◆ The graphios.cfg file

If you use pip install graphios, the setup.py script will attempt
to detect and automatically add a commented-out configura-
tion to your nagios.cfg. The setup script does a pretty good job of
this on all but the most bespoke Nagios setups (simply uncom-
ment and restart Nagios), but given the configuration flexibility
of Nagios, it’s possible you’ll need to manually intervene and
modify the nagios.cfg yourself.

What’s in a Name?
Nagios is a standalone monolithic system in that it assumes its
check-command output will never be exported, that no sys-
tem but Nagios will ever need to process it. So Nagios services
generally have very simple names like PING or LOAD. In Nagios,
it should be obvious to the operator what those names refer to
because all of the context is inside the Nagios UI.

Graphing systems like Graphite, however, are not monolithic;
they’re designed to work alongside other monitoring systems
and data collectors. Therefore they necessarily assume that all
data is sourced externally (everything comes from some other
monitoring system), and as a result they use dot-delineated,
hierarchical metric names like Nagios.dc4.dbserver12.LOAD. In
Graphite, a name like LOAD doesn’t tell the operator anything
about what system the metric refers to, much less how it was
collected.

To be an effective glue layer, Graphios gives you a simple, trans-
parent means to translate Nagios’s simple, monolithic service
names into context-rich hierarchical names that can be used by
systems like Librato and Graphite. Specifically, Graphios can

read metric prefixes and suffixes out of your Nagios service and
host definitions using custom attributes. For example, a typical
Nagios service description, excluding the minutiae normally
packed into upper-level templates, looks like this:

define service{

 use generic-service

 hostname box1,box2,box3

 service_description SSH

 check_command check_ssh }

The output of the check_ssh plugin looks like this:

SSH OK - OpenSSH_5.9p1 Debian-5ubuntu1 (protocol 2.0) |

time=0.009549s;;;0.000000;10.

Everything after the pipe is performance data [2]; these are the
metrics Graphios exports. In this case, we have a single metric
called time, which measures the response time of the SSH port
(in this case, the SSH port responded to the check_ssh plugin in
0.009549 seconds). Graphios automatically prefixes the metric
name with the hostname, so without doing anything at all, our
metric name becomes:

box1.time

As I’ve already observed above, box1.time isn’t a particularly mean-
ingful metric name, so we can tell Graphios to put some additional
context in front of this metric name by inserting a _graphite

prefix custom attribute into the service definition like so:

define service{

 use generic-service

 hostname box1,box2,box3

 service_description SSH

 check_command check_ssh

 _graphiteprefix nagios.dc1 }

Graphios will now prepend this prefix to the metric name,
making it:

nagios.dc1.box1.time

This is a little bit better, but we can insert some additional
context about the service between the hostname and the metric
name using a _graphitepostfix custom attribute in our service
configuration like so:

define service{

 use generic-service

 hostname box1,box2,box3

 service_description SSH

 check_command check_ssh

 _graphiteprefix nagios.dc1

 _graphitepostfix sshd.rt }

48    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

COLUMNS
iVoyeur: Graphios

Graphios will now insert this string between the host and metric
name, making it:

nagios.dc1.box1.sshd.rt.time

Now we have a pretty decent metric name for use with systems
like Graphite and StatsD.

Configuring Nagios Perfdata Hooks
Next we need to configure Nagios to export performance data
to a log file in a format that Graphios can understand. If you
installed Graphios using pip install graphios, check the
bottom of your nagios.cfg file for a block of configuration that
begins:

AUTO-GENERATED GRAPHIOS CONFIGS

If you aren’t already using Nagios perfdata hooks for something
else, that is, if your currently running Nagios configuration
contains process_performance_data=0, then you can simply
uncomment this configuration block and restart Nagios.

If you’re already using Nagios perfdata hooks for something
like PNP4Nagios, or one of the other RRDtool-based graphing
systems, chances are you can safely run both Graphios and your
current tool set at the same time. Refer to the Graphios docu-
mentation [2] for instructions on how to set this up. You should

also consult the Graphios setup docs if you don’t see the auto-
generated Graphios config at the bottom of your nagios.cfg, or if
you didn’t use pip to install.

Once you’ve configured Nagios to emit performance data, restart
the Nagios daemon and verify that it’s writing a log file to the
Graphios spool directory (named by the service_perfdata_file
attribute in your nagios.cfg) with a name like service-perfdata
.1418637947. The file should contain lines that look like this:

(Finally) Configure Graphios
Graphios installs its config file in /etc/graphios/graphios.cfg
by default. This file is very well commented and, by and large,
self-explanatory. There is a global configuration section and
one section for each backend plugin that Graphios can write to.
Plugins are generally enabled by setting their enable line to True
and configuring the required attributes for the plugin. Here, for
example. is a working configuration for Librato:

DATATYPE::SERVICEPERFDATA TIMET::1418637938 HOSTNAME::box1

SERVICEDESC::SSH SERVICEPERFDATA::time=0.066863s;;;0.000000;10.000000

SERVICECHECKCOMMAND::check_ssh HOSTSTATE::U HOSTSTATETYPE::HARD

SERVICESTATE::OK SERVICESTATETYPE::HARD GRAPHITEPREFIX::nagios.dc1

 GRAPHITEPOSTFIX::sshd.rta

Figure 2: Lovely data, as if from heaven

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  49

COLUMNS
iVoyeur: Graphios

References
[1] Dave Josephsen, “iVoyeur: Spreading,” ;login:, vol. 40, no. 1,
February 2015 (USENIX): https://www.usenix.org/publications
/login/feb15/josephsen.

[2] https://github.com/shawn-sterling/graphios/blob/master
/README.md.

enable_librato=True

librato_email = dave@librato.com

librato_token =

ecb79ff8a82areallylonggreatbigstringtokenything6b8cb77e8b5

librato_whitelist=[“load”,”rta”,”swap”]

The whitelist attribute bears mentioning since, without it,
Graphios would emit all performance data measured by Nagios
to Librato, which could become expensive. As configured above,
only metrics matching the regular expressions “load”, “rta”, and
“swap” will be emitted to Librato. Here’s a working configuration
for StatsD:

enable_statsd=True

statsd_servers = 192.168.1.87:8125

You may enable multiple backend plugins (Librato AND StatsD)
and even multiple comma-separated instances of the same back-
end plugin (four different StatsD servers and a carbon server),
and Graphios will happily parse out and emit your Nagios Met-
rics to each backend system in turn. At this point you can run
Graphios from the command line and see whether everything
works as expected:

graphios.py --verbose

Now you should start seeing something like what’s found in
Figure 2, beautiful metrics data magically appearing in your
metrics backend of choice.

Daemonizing Graphios
Graphios ships with init scripts for Debian and RPM-based
systems, and these were installed automatically if you ran pip

install graphios on a compatible system.

So How Does This Work Again?
Although its configuration necessarily borders on complex,
Graphios is conceptually a very simple special-purpose log
parser. It runs as a daemon, waking up on a configurable inter-
val, checking for new performance data logs exported by Nagios,
and processing them.

As I’ve already quite proudly mentioned, Graphios has a modular
backend model that allows it to write to multiple metrics
systems. When Graphios finds a new performance data file, it
parses metrics out of it, computes appropriate metric names for
the enabled backend plugins, and then it emits the metrics to
each backend metrics system as required.

If you’re running Nagios today, and you’re still trapped in the
RRDtool era, you owe it to yourself to install Graphios and
experience the future of scalable metrics analysis systems like
Graphite, InfluxDB, and OpenTSDB. One of the nicest features
of Graphios for me has been its support for running multiple
backends in parallel. Graphios makes it painless and simple
to spin up and test new metrics systems, or combinations of
metrics systems, without interrupting your production metric
streams. I hope you find it as useful as I have.

Take it easy.

