
2    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I first encountered Sergey Bratus in a dingy stairwell in a Westin hotel in

San Francisco. We were attending the 20th USENIX Security Sympo-
sium, and Sergey was a co-author of two WOOT papers. I could tell that

an article pitch was coming and listened carefully as Sergey expounded on
weird machines, unplanned-for VMs that exist in most code.

Sergey’s student, James Oakley, had won the Best Student Paper award for showing how
gcc’s exception handling format (DWARF) was rich enough to provide a complete execution
environment. While this notion appeared a bit obscure to me, even as it was alarming that
DWARF was exploitable, I still wondered just how big the impact was. I have paid attention
to new exploits since I became interested in UNIX security in 1984, and couldn’t recall any
exploits that relied on this particular format.

Sergey, a short, rounded man with a graying comb-over, patiently explained to me that it
wasn’t just this example: weird machines could be found everywhere in code. And the more
Sergey talked, the more I began to see the connection between the exploits I had studied over
many years and what he explained in that dim and echoing stairwell.

Sergey, a Research Associate Professor at Dartmouth, has co-authored many papers and sev-
eral ;login: articles on this topic since that day. He approached me again this year (by email),
asking me if I wanted to attend the LangSec workshop [1] happening as part of the IEEE
Security and Privacy Workshops in May 2015. He also had another article idea, but I wanted
something different: a clear description of the problems caused by weird machines, without
resorting to insider jargon (like the term weird machines). Fortunately for us, Sergey, along
with Meredith Patterson and Anna Shubina, did spend a lot of time writing an article for this
issue. And I believe they’ve done a great job.

If I were to attempt to describe this issue as an elevator pitch (you have just 30 seconds),
here’s what I’d say. There is a programming issue that is the single cause of most exploits, and
while it is possible in many cases to fix this problem, it has been ignored. This issue can be
fixed by using programming techniques, many over 40 years old, that get ignored by program-
mers who write exploitable code instead. But there are cases where proper coding cannot help
you, because the protocols involved are too complex by design. And some of those impossibly
complex protocols include some of the foundations for the security of the Internet, like TLS
and HTML5.

While fixing problems with input parsing, the appropriate place in any program, won’t solve
all security issues, this single type of fix would do more to improve the security of our com-
puters, cars, smartphones, and devices than would any other change. In fact, any software-
controlled device that accepts input beyond a simple on-and-off switch will never be secure
without observance of the principles described in Sergey’s article. Those principles are based
on both research as well as years of observation into exploitable software, and the conversion
to having parsers that can be proven to be correct will have more impact than anything else
we could possible do to improve security today.

http://www.usenix.org
mailto:rik@usenix.org

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  3

EDITORIAL
Musings

Our computers are flexible by design—that’s what makes them so
useful for doing a huge variety of tasks. If we expose our comput-
ers through the use of complex parsers or protocols to Turing-
complete input languages, we must expect that our software, and
our devices, can never be made secure. Attackers will continue
to make our devices dance.

The Lineup
I’ve already provided an introduction to the first article, so let’s
consider the second. Sun et al. wrote a HotOS workshop paper
about their research into unreliable operating systems. Their
insight is that many exploits are brittle, and providing some ran-
domness to the responses of the operating system to programs
that aren’t whitelisted will disrupt their behavior.

Zhuang et al. have built an environment that supports the col-
lection of sensor data from smartphones. Their solution must
overcome both privacy concerns and security issues involved in
running software on strangers’ phones.

I interviewed Marc Maiffret, a self-educated man who founded
a successful security company at age 17 after a bit of a rough
start. Marc has a unique viewpoint into the world of Microsoft
security, having helped to prod Microsoft into a better security
posture.

Mark D. Roth explains how Google uses an unreliability budget
to provide more reliable services. This is a neat idea, one I first
heard about during SREcon in 2014, and am happy that the un-
reliability budget has finally been clearly explained.

Andy Seely continues his series on managing with an article
looking at the seven levers that can be used to help retain tal-
ented employees.

Gunawi et al. have shared their ongoing research into the causes
of failures in distributed applications, such as HDFS and Cas-
sandra. Some of the problems only appear at large scale, making
them difficult to test, while others are more tractable.

David Beazley continues his two part series on concurrency in
Python by explaining coroutines. Coroutines rely on application-
level programming to provide a form of concurrency, using yield,
but still have the Global Interpreter Lock to deal with.

David N. Blank-Edelman also has a second part in his own series
about concurrency in Perl, using the Coro modules. Coro uses
cede to yield control to other threads, and this can be done using
semaphores, or by using other modules, like AnyEvent.

Dave Josephsen shares his experience in determining Key Per-
formance Indicators (KPI), in particular, by choosing the laten-
cies measured between the components of a service.

Dan Geer and HD Moore have taken a measured look at the num-
ber of IPv4 addresses that you can actually probe, and it appears
that there are huge enclaves of devices that are hidden, generally
by mobile broadband providers. There are also, of course, devices
that we wish were hidden, provided mostly by cable companies.

Robert G. Ferrell muses about the future of quantum computing.
Specifically, just how will we write scripts to manage systems
where each test value can be both true and false at the same time.

Mark Lamourine has written two book reviews for this issue.
His first covers a book on Swift, Apple’s new language for apps.
Mark takes a look at a book on programming in Python on the
Raspberry Pi for his second review.

I started this column discussing a topic, input parsing, that is
actually not as simple as I might have implied. I doubt that many
programmers today have even heard of the Chomsky hierarchy
of formal languages [2], first described by Noam Chomsky in
1956. And even if programmers are aware of this hierarchy,
grasping the difference between context-free and context-
sensitive grammars will be far beyond what we should expect
of people writing Web applications in PHP or JavaScript.

But I certainly believe that computer scientists and members
of industry who are responsible for protocols, such as HTML5,
TLS, X.509, XML, and IPv6, should be aware of the implications
of designs that require nondeterministic Turing machines, that
is, ones that cannot be proven to be correct, to interpret them.
When we base our technological future on systems that are
insecure by design, we should not be surprised by that very lack
of security that surfaces daily.

References
[1] Second Workshop in LangSec (Language Security): http://
spw15.langsec.org/; first workshop: http://spw14.langsec.org/.

[2] The Chomsky Hierarchy: https://en.wikipedia.org/wiki/
Chomsky_hierarchy.

http://www.usenix.org
http://spw15.langsec.org/
http://spw15.langsec.org/
http://spw14.langsec.org/
https://en.wikipedia.org/wiki/

