
12    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

SECURITY

The Case for Unpredictability and Deception
as OS Features
R U I M I N S U N , M A T T B I S H O P , N A T A L I E C . E B N E R , D A N I E L A O L I V E I R A , A N D
D O N A L D E . P O R T E R

The conventional wisdom is that OS APIs should behave predictably,
facilitating software development. From a system security perspec-
tive, this predictability creates a disproportionate advantage for

attackers. Could making OSes behave unpredictably create a dispropor-
tionate advantage for system defenders, significantly increasing the effort
required to create malware and launch attacks without too much inconve-
nience for “good” software? This article explores the potential benefits and
challenges of unpredictable and deceptive OS behavior, including prelimi-
nary measurements of the relative robustness of malware and production
software to unpredictable behavior. We describe Chameleon, an ongoing
project to implement OS behavior on a spectrum of unpredictability and
deceptiveness.

Introduction
The art of deception has been successfully used in warfare for thousands of years. Strate-
gists such as Sun Tzu, Julius Caesar, and Napoleon Bonaparte advocated the use of unpre-
dictability and deception in conflicts as a way to confuse and stall the enemy, sap their
morale, and decrease their maneuverability. A “holy grail” for system security is to put
system defenders in a situation with more options than the attacker.

Unfortunately, current systems are in the exact opposite situation. System defenses generally
do not adapt well to new conditions, whereas motivated attackers have effectively unlimited
time and resources to find and exploit weaknesses in computer systems.

This situation is rooted in the fact that predictability is a first-class system design goal.
Predictability simplifies application engineering and usability issues, such as compatibility
among different versions of the system. The downside of predictability is a computer system
monoculture [1], where vulnerabilities become reliably exploitable on all systems of the same
type. With so few operating system kernels, libc implementations, or language runtimes
deployed in practice, any predictable exploit applies to a significant fraction of computers in
the world.

The Need for Unpredictability
At the system level, approaches to unpredictability generally involve limited randomness.
For example, address space layout randomization (ASLR) randomizes the placement of pages
of a program in memory during execution. An attack relying on a buffer overflow causing a
branch to a library function or gadget will fail, as the address of that target will vary among
instances of an operating system. But this randomization is often insufficient. In a recent
paper, Bittau et al. [2] demonstrated how, even without specific knowledge of the address
space layout randomization (ASLR) scheme of a Web server, an attacker can quickly identify
and exploit portions of the address space that are insufficiently random.

Ruimin Sun is a first year PhD
student in the Department
of Electrical and Computer
Engineering at the University of
Florida. Her research interest

lies in operating system security and software
vulnerabilities. She’s under the direction of
Dr. Daniela Oliveira. gracesrm@ufl.edu

Matt Bishop is a Professor in
the Department of Computer
Science at the University of
California, Davis. He does
research in many areas of

computer security, including data sanitization,
vulnerabilities analysis, attribution, the insider
problem, and computer security education.
mabishop@ucdavis.edu

Natalie C. Ebner is an Assistant
Professor in the Department of
Psychology and adjunct faculty
in the Department of Aging
and Geriatric Research at the

University of Florida in Gainesville, Florida. Her
research adopts an aging perspective on affect
and cognition. She conducts experimental
research using a multi-methods approach
that integrates introspective, behavioral, and
neurobiological data. natalie.ebner@ufl.edu

http://www.usenix.org
mailto:gracesrm@ufl.edu
mailto:mabishop@ucdavis.edu

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  13

SECURITY
The Case for Unpredictability and Deception as OS Features

Daniela Oliveira is an Associate
Professor in the Department
of Electrical and Computer
Engineering at the University
of Florida. Her main research

interest is interdisciplinary computer security,
where she employs successful ideas from
other fields to make computer systems more
secure. Her current research interests include
employing biology and warfare strategies
to protect operating systems. She is also
interested in understanding the nature of
software vulnerabilities and social engineering
attacks. daniela@ece.ufl.edu

Donald E. Porter is an Assistant
Professor of computer science
at Stony Brook University in
Stony Brook, New York. His
research aims to improve

computer system efficiency and security. In
addition to work in system security, recent
projects have developed lightweight guest
operating systems for virtual environments as
well as efficient data structures for caching and
persistent storage. porter@cs.stonybrook.edu

Although fixes to ASLR may mitigate this specific attack, this attack shows that variation
without unpredictability is not enough. Unpredictability by half-measure leaves sufficient
residual certainty that allows adversaries to craft reliable attacks even across multiple, dif-
ferently randomized instances of the system.

Strategies for less predictable operating systems are constrained by concerns for efficiency
and reliability. Yet consider what “efficient” and “reliable” mean for an operating system.
An operating system’s job is to manage tasks that the system is authorized to run, where
“authorized” means “in conformance with a security policy.” For unauthorized tasks, such as
those an attacker would execute to exploit vulnerabilities or otherwise misuse a system, the
operating system should be as inefficient and unreliable as possible. So for “good” users and
uses, the operating system should work predictably, but for “bad” users or uses, the system
should be unpredictable. The latter case challenges efficiency and reliability. An extension
is a spectrum of predictability, where the less that actions conform to the security policy, the
more unpredictable the results of those actions should be.

Software Diversity
One specific, limited form of unpredictability is diversity. The intent of diversity is inde-
pendence, which means that multiple instances yield the same result but in such a way that
the only common factor is the inputs. Most fault-tolerant system designs require sufficient
software diversity that faults are independent and can be masked by voting or Byzantine
protocols. In practice, the barrier to implementing multiple, complete, monolithic OSes has
been insurmountable.

One insight of this work is that diversifying the system implementation becomes easier as
more of the system is moved to user space. Several research systems have demonstrated the
value of pushing more system-level functionality into user-level libraries, such as moving
I/O into user space for higher performance [3] or to reduce virtualization overheads for a
single application [4]. Our vision is to mix-and-match different implementations of different
components, such that one can run many instances of an application, such as a Web server,
and only a few instances will share the same combinations of vulnerabilities. When the
implementation effort is smaller and well defined, a small group of developers could easily
generate dozens of functional implementations of each subsystem.

Application robustness can also be improved when system-level diversity is incorporated
into the development and testing process. Even within POSIX, mature, portable software
packages already handle considerable variations in system call behavior. Most of this matu-
rity is the product of labor-intensive testing and bug reports across many platforms over a
long period. Rather than require a software developer to manually test the software on mul-
tiple platforms, a spectrum-behavior OS would allow developers to more easily test software
robustness, running the same test suite against different operating system behaviors.

Consistent versus Inconsistent Deception
Deception has been used in cyberdefense to a limited extent, primarily via consistent decep-
tion strategies, such as honeypots or honeynets. Consistent deception strategies make the
deceiver’s system appear as indistinguishable as possible from a production system. This
means the deceptive system is just as predictable as the system it is impersonating. The idea
of inconsistent deception [5], on the other hand, forgoes the need to project a false reality and
instead creates an environment laden with inconsistencies designed to keep the attacker from
figuring out characteristics of the real system. So long as the attacker is confused and fails to
learn anything of value, the deception is successful, even more so if the attacker desists.

http://www.usenix.org
mailto:daniela@ece.ufl.edu
mailto:porter@cs.stonybrook.edu

14    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

SECURITY
The Case for Unpredictability and Deception as OS Features

Iago attacks [6] are a good example of how inconsistent decep-
tion might work in practice. An Iago attack occurs when an
untrusted system attacks a trusted program by returning system
call results that the trusted program cannot robustly guard
against, ultimately causing the trusted program to violate its
security goals. We believe similar techniques can be employed
for active system defense.

Unpredictability on Malware
We performed a case study on common malware, showing that
malware can be quite sensitive to relatively minor misbehavior
by the operating system. We used ptrace to alter the informa-
tion returned by system calls invoked by a keylogger and botnet,
introducing unpredictable behavior into their execution. In these
cases, the malware ran without crashing, but some I/O were
corrupted. Most I/O corruptions were within the specification of
the network or potential storage failure modes; a robust applica-
tion would detect most issues with end-to-end checks such as
checksums or, in other cases, checks designed to shield against a
malicious OS, such as MAC checks on an encrypted socket.

We selected candidate system calls for spectrum behavior based
on analysis of system call behavior of benign processes and
malware. We compared the system call patterns of 39 benign
applications from SourceForge to 86 malware samples for Linux,
including 17 back doors, 20 general exploits, 24 Trojan horses,
and 25 viruses. We found that malware invokes a system call set
that is smaller than benign software: approximately 50 different
system calls.

In selecting strategies for spectrum behavior, our aim is to
perturb system calls that harm malware, yet allow benign code
to run. We found that a few system calls are critical to process
start-up and execution, and cannot be easily varied; most other
cases lead to non-fatal deviations. For instance, decreasing the
length of a write() will cause a keylogger to lose keystrokes,
silencing a send() might cause a process sending an email to fail,
and extending the time of a nanosleep() will just slow down a
process. We try to balance risks to benign processes with harm
to malware through an experimentally determined unpredict-
ability threshold, which bounds the amount of unexpected varia-
tion in system call behavior.

We studied the following strategies for spectrum behavior:

Strategy 1: Silence the system call. We immediately return a
fabricated value upon system call invocation. This strategy only
succeeds when subsequent system calls are not highly depen-
dent on the silenced action. For example, this strategy worked for
read() and write() but not on open(), where a subsequent read()
or write() would fail.

Strategy 2: Change buffer bytes. We randomly change some
bytes or shorten the length of a buffer passed to a system call,
such as read(), write(), send(), and recv().

This strategy corrupts execution of some scripts, and it can frus-
trate attempts to read or exfiltrate sensitive data.

Strategy 3: Add more wait time. The goal of this strategy is to
slow down a questionable process, such as rate-limiting network
attacks. We randomly increase the time a nanosleep() call yields
the CPU.

Strategy 4: Change file offset. This approach simulates file
corruption by randomly changing the offset in a file descriptor
between read()s and write()s.

We first applied unpredictability to the Linux Keylogger (LKL,
http://sourceforge.net/projects/lkl/), a user-space keylogger,
using strategies 1, 2, and 4. The keylogger not only lost valid key-
strokes but also had some noise data added to the log file.

Next we applied unpredictability to the BotNET (http://
sourceforge.net/projects/botnet/) malware, which is mainly a
communication library for the IRC protocol that was refined to
add spam and SYN-flood capabilities. We used the IRC client
platform irssi to configure the botnet architecture with a bot
herder, bots, and victims. The unpredictable strategies were
applied to one of the bots.

We first tested commands that successfully reached the bot,
such as adduser, deluser, list, access, memo, sendmail, and part.
The bot reads commands one byte at a time, and one lost byte
will cause a command to fail. Randomly silencing a subset of
read() system calls in our unpredictable environment results in
losing 40% of the commands from the bot herder.

Figure 1: Comparison of email bytes sent from bots in normal and unpre-
dictable environments

http://sourceforge.net/projects/lkl/
http://sourceforge.net/projects/botnet/
http://sourceforge.net/projects/botnet/
http://www.usenix.org
http://sourceforge.net/projects/lkl/

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  15

SECURITY
The Case for Unpredictability and Deception as OS Features

We measured the impact of the unpredictable environment on
the ability of the bot to send spam emails, shown in Figure 1. In
the normal environment, nine emails varying in length from 10
to 90 bytes were successfully sent. In the unpredictable envi-
ronment, only partial random bytes were sent out by arbitrarily
reducing the buffer size of send() in the bot process. In the case
of a spam bot, truncated emails will streamline the filtering pro-
cess, not only for automatic filters, but also for the end users.

We also performed a SYN-f lood attack to analyze the effec-
tiveness of the unpredictable environment in mitigating DDoS
attacks. In a standard environment, one client can bring down a
server in one minute with SYN packets. When we set the unpre-
dictability threshold to 70% and applied strategies 1 and 3, the
rate of SYN packets arriving at the victim server decreased (Fig-
ure 2), requiring two additional bots to achieve the same outcome.

Preliminary tests with Thunderbird, Firefox, and Skype running
in the unpredictable environment showed that these applica-
tions can run normally most of the time, occasionally showing
warnings, and with some functionality temporarily unavailable.

A challenge is to dial this behavior in to minimize harm to benign,
but not whitelisted, applications while frustrating potentially
malicious code.

Spectrum-Behavior OS
We are building Chameleon, an operating system combining
inconsistent and consistent deception with software diversity
for active defense of computer systems and herd protection.
Chameleon provides three distinct environments for process
execution (Figure 3): (1) a diverse environment for whitelisted
processes, (2) an unpredictable environment for unknown or
suspicious processes (inconsistent deception), and (3) a con-
sistently deceptive environment for malicious processes. Our

HotOS ’15 paper [7] provides a longer discussion of these issues,
as well as a more extensive discussion of prior work on unpre-
dictability and deception as tools for system security.

Known benign or whitelisted processes run in the diverse oper-
ating system environment, where the implementation of the pro-
gram APIs are randomized to reduce instances with the same
combinations of vulnerable code. In some sense, the diverse
environment combines ASLR and other known randomization
techniques with N-version programming [8], except that Chame-
leon doesn’t run the versions in parallel but, rather, diversifies
them across processes. Our insight is that a modular library OS
design makes the effort of manual diversification more tractable.
Rather than require multiple complete OS implementations, the
Chameleon design modularizes the Graphene library OS [4], and
components are reimplemented at finer granularity and possibly
in higher-productivity languages. The power of this design is
that mixing and matching pieces of N implementations multi-
plies the diversity by the granularity of the pieces.

Unknown processes run in the unpredictable environment,
where a subset of the system calls are modified or silenced.
Unpredictability is primarily implemented at the system call
table or library OS platform abstraction layer. The execution of
processes in this environment is unpredictable as they can lose
some I/O data and functionality.

A malicious process in the unpredictable environment will have
difficulty accomplishing its tasks, as some system call options
used to exploit OS vulnerabilities might not be available, some
sensitive data being collected from and transferred to the system
might get lost, and network connectivity with remote malicious
hosts is not guaranteed.

Unpredictability raises the bar for large-scale attacks. An
attacker might notice the hostile environment, but its unpre
dictable nature will leave her with few options, one of them
being system exit, which from the host perspective is a win-
ning outcome.

Processes identified as malicious run in a deceptive environ-
ment, where a subset of the system calls are modified to deceive
an adversary with a consistent but false appearance, while

Figure 2: Comparison of SYN-flood attacks in normal and unpredict-
able environments. Unpredictability can increase the DDoS resource
requirements.

Figure 3: Chameleon can transition processes among three operating
modes: diverse, to protect benign software; unpredictable, to disturb un-
known software; and deceptive, to analyze likely malware.

http://www.usenix.org

16    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

SECURITY
The Case for Unpredictability and Deception as OS Features

forensic data is collected and forwarded to response teams such
as CERT. This environment will be sandboxed, files will be hon-
eyfiles, and external connections will be intercepted and logged.

Chameleon can adjust its behavior over the lifetime of a process.
Its design includes a dynamic, machine-learning-based pro-
cess categorization module that observes behavior of unknown
processes, and compares them to training sets of known good
and malicious code. Based on its behavior, a process can migrate
across environments.

What About the Computer User?
Sacrificing predictability will introduce new, but tractable,
research questions, especially around usability. For example, a
user who installs a new game with a potential Trojan horse will be
tempted to simply whitelist the game if it isn’t playable. We believe
unpredictability can be adjusted dynamically to avoid interfer-
ing with desirable behavior, potentially with user feedback.

We envision Chameleon’s architecture adopted in desktop
computers for end users. This will allow a common group of
whitelisted applications such as browsers or office software to
run unperturbed and a suspicious application to be quarantined
by Chameleon.

For example, consider Bob, 72, living in a retirement community
in Florida. Bob is not computer savvy and tends to click links
from spear-phishing emails, which might install malware in his
computer. This malware will engage in later attacks compromis-
ing other machines and performing DoS attacks in critical infra-
structure. Bob never notices malware running in his computer
because the malware becomes active only after 1 a.m.

With Chameleon, Bob continues to browse for news, work on
documents from his community homeowner association, or
Skype with family without problems; these applications are
whitelisted, running in the diverse environment. The diverse
environment protects whitelisted applications by reducing the

likelihood of their being exploited. Further, if Bob downloads a
game that also includes a botnet, the unpredictable environment
may cause the game to seem poorly designed, the visual images
showing some glitches here and there, but Bob’s credentials will
be safe. Further, the botnet, which Bob will never notice, will fail
to operate as the attacker wishes.

Part of the evaluation of Chameleon’s success or failure will
include usability studies. Our hypothesis is that Chameleon can
strike a long-sought balance that preserves usability for desir-
able uses but thwarts significantly more compromises without
frustrating users to the point of disabling the security measure.

Conclusions
Today’s systems are designed to be predictable, and this pre-
dictability benefits attackers more than software developers
or cybersecurity defenders. This leads us to have the worst of
both worlds: rather simple attacks work, and both research and
industry are moving towards models of mutual distrust between
applications and the operating system [9, 10].

If applications will trust the operating system less in the future,
why not leverage this as a way to make malware and attacks
harder to write? If successful, sacrificing predictable behavior
can finally give systems an edge over one of the primary sources
of computer compromises: malware installed by unwitting users.

Acknowledgments
We thank the anonymous HotOS reviewers, Nick Nikiforakis,
Michalis Polychronakis, and Chia-Che Tsai for insightful com-
ments on earlier drafts of this paper.

This research is supported in part by NSF grants CNS-1149730,
SES-1450624, CNS-1149229, CNS-1161541, CNS-1228839,
CNS-1405641, CNS-1408695. It is also supported by grants OCI-
1246061 and DUE-1344369.

http://www.usenix.org

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  17

SECURITY
The Case for Unpredictability and Deception as OS Features

References
[1] S. Forrest, A. Somayaji, and D. Ackley, “Building Diverse
Computer Systems,” in Proceedings of the 6th Workshop on Hot
Topics in Operating Systems (HotOS VI), 1997.

[2] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D.
Boneh, “Hacking Blind,” in 2014 IEEE Symposium on Security
and Privacy (SP), May 2014, pp. 227–242.

[3] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krish-
namurthy, T. Anderson, and T. Roscoe, “Arrakis: The Operating
System Is the Control Plane,” in Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI ’14), 2014, pp. 1–16.

[4] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J.
John, H. A. Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter,
“Cooperation and Security Isolation of Library OSes for Multi-
Process Applications,” in Proceedings of the ACM European
Conference on Computer Systems (EuroSys), 2014, pp. 9:1–9:14.

[5] V. Neagoe and M. Bishop, “Inconsistency in Deception for
Defense,” in New Security Paradigms Workshop (NSPW), 2007,
pp. 31–38.

[6] S. Checkoway and H. Shacham, “Iago Attacks: Why the Sys-
tem Call API Is a Bad Untrusted RPC Interface,” in Proceedings
of the ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
2013, pp. 253–264.

[7] R. Sun, D. E. Porter, D. Oliveira, and M. Bishop, “The Case for
Less Predictable Operating System Behavior,” in Proceedings
of the USENIX Workshop on Hot Topics in Operating Systems
(HotOS XV), 2015.

[8] L. Chen and A. Avizienis, “N-Version Programming: A Fault-
Tolerance Approach to Reliability of Software Operation,” in
Digest of the Eighth Annual International Symposium on Fault-
Tolerant Computing, 1978, pp. 3–9.

[9] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del
Cuvillo, “Using Innovative Instructions to Create Trustworthy
Software Solutions,” in Workshop of Hardware and Architec-
tural Support for Security and Privacy (HASP), 2013.

[10] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applica-
tions from an Untrusted Cloud with Haven,” in Proceedings of
the 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’14), 2014, pp. 267–283.

http://www.usenix.org

