
26    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

SYSADMIN(Un)Reliability Budgets
Finding Balance between Innovation and Reliability

M A R K D . R O T H

Mark Roth has been a Site
Reliability Engineer at Google’s
Mountain View office for over
a decade. He has worked
on a variety of projects,

including Gmail, Google Accounts, Monitoring
Infrastructure, and Compute Resource
Management. Before coming to Google, he
managed production UNIX systems at the
University of Illinois at Urbana-Champaign,
where he authored a number of open-source
software packages. roth@google.com

G oogle is constantly changing our software to implement new, use-
ful features for our users. Unfortunately, making changes is inher-
ently risky. Google services are quite complex, and any new feature

might accidentally cause problems for users. In fact, most outages of Google
services are the result of deploying a change. As a consequence, there is an
inherent tension between the desire to innovate quickly and to keep the site
reliable. Google manages this tension by using a metrics-based approach
called an unreliability budget, which provides an objective metric to guide
decisions involving tradeoffs between innovation and reliability.

Structural Tension
The tension between innovation and change is reflected most strongly in the relationship
between the SRE team and the corresponding Product Development team for any given
application. This is partly due to the inherent conf lict between the two teams’ goals.
Product Development’s performance is largely evaluated based on product velocity, so they
have incentive to get new code out as quickly as possible. However, SRE’s performance is
evaluated based on how reliable the service is, which means they are generally motivated
to push back against a high rate of change. In addition, there is information asymmetry
between the two teams. The product developers have more visibility into the time and
effort involved in writing and releasing their code, while the SREs have more visibility into
the service’s reliability.

This inherent structural tension between Product Development and SRE manifests itself in
disagreements in a number of areas where it is important to find the right balance between
innovation and change. Here are some of the areas:

Software Fault Tolerance. When writing software, it’s important to anticipate the possible
failure modes and ensure that the software will handle them. However, there are an almost
infinite number of ways in which software can fail, and product developers do not have an
infinite amount of time to address those cases. Spending too little time on this results in
brittle software, thus increasing outages; spending too much time on this means that it takes
longer to finish the software, thus decreasing innovation. What is the right balance?

Testing. Too little testing results in bad, unreliable software. Too much testing can delay
the software from ever being released and increase ongoing code maintenance costs due to
the additional tests. Google product developers have many software testing tools at their
disposal, but how much testing is enough?

Push Frequency. Some teams prefer to push a new software release monthly or weekly. Oth-
ers would rather push daily or multiple times each day. Even if a push is mostly automated, it
may still require work on the part of the SREs. Each push is risky. A bad push can result in a
user-visible outage. Even without a user-visible outage, there may be a reduction in reliability
during the push due to the fact that while some systems are upgraded, the others take on the
additional load, possibly affecting latency. What’s the best frequency for the application?

http://www.usenix.org
mailto:roth@google.com

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  27

SYSADMIN
(Un)Reliability Budgets: Finding Balance between Innovation and Reliability

Canary Duration and Size. When pushing new software, most
teams first push to a small subset of the total number of deployed
instances, so that if there is a problem, it will only affect a subset
of users. This is referred to as a “canary,” named after the prac-
tice of using a canary to detect carbon monoxide in coal mines.
Only after the code is deemed stable for some period of time in
canary will it be pushed out to the rest of production. But how
long should a change be canaried before it is deemed safe for
the rest of production? Too little time and we risk not catching
problems before they go to the rest of production; too much time
and we decrease the rate at which changes can be deployed.
Also, how large of a subset should the canary be? Too small and
we risk not having a large enough sample size to catch problems
before they go to production; too large and we risk any potential
problems causing too large of an impact before they are caught.
What is the right balance for the application?

Push Retry Methods. Sometimes a bad push is discovered
and the service is reverted to the previous release. When this
happens there is a temptation to make a quick fix and try again.
Often these quick fixes are not as well tested, and the risk is
increased. Alternatively, some groups prefer to wait for the next
push cycle, whether weekly or daily. We find that both methods
result in the same rate of new features making it into production,
but the former method results in many more pushes and reverted
bad pushes, which creates work and stress for the SREs. Is it bet-
ter to fix something quickly or do a full suite of tests?

The two teams need to negotiate to find the right balance in
these areas. However, we don’t want this negotiation to be driven
based on the negotiating skills of the engineers involved. We
also don’t want this to be decided by politics, personal feelings,
or just plain hope. (Indeed, SRE’s unofficial motto is “Hope is
not a strategy.”) Instead, we want an objective metric, agreed
upon by both sides, that can be used to guide the negotiations
in a reproducible way. Google is a data-driven company, and
we want the decision to be based on hard data.

Unreliability Budgets
For these decisions to be made based on objective data, the two
teams jointly define a quarterly unreliability budget based on the
service’s SLO (service level objective, or the goal of how reliable
a service should be). The unreliability budget provides a clear,
objective metric that determines how unreliable the service is
allowed to be within a single quarter. This takes the politics out
of the negotiation between the SREs and the product developers
when deciding how much risk to allow.

The unreliability budget works as follows: Product Management
sets a “Quarterly SLO goal,” which sets an expectation of how
much uptime the service should have. The actual uptime is
measured by a neutral third party, our monitoring system. The

difference between these two numbers is the “budget” of how
much “unreliability” is remaining for the quarter. As long as the
uptime measured is above the SLO, new releases can be pushed.

As a hypothetical example, let’s imagine that a service’s SLO is
that it will successfully serve 99.999% of all queries. This means
that the service’s unreliability budget is that it can fail 0.001% of
the time within a given quarter. So if a given problem causes us
to fail 0.0002% of the expected queries for the quarter, we would
consider that it used up 20% of the service’s unreliability budget
for the quarter. Once the unreliability budget for the quarter has
been spent, no more changes will be deployed (other than critical
bug fixes), since they could cause unreliability that the service
can’t afford.

The actual SLO for a given application may actually be a much
more complicated calculation involving latency, data freshness,
and other factors. In some cases, a successful push may reduce
the SLO slightly even though no downtime is visible to the users.
For example, while some servers are being upgraded, others take
on the extra traffic, and thus latency may increase.

Benefits
The main benefit of an unreliability budget is that it provides a
common incentive that allows both Product Development and
SRE to focus on finding the right balance between innovation
and reliability.

For example, if Product Development wants to skimp on testing
or increase push velocity and SRE is resistant, the unreliability
budget guides the decision. When the budget is big, the prod-
uct developers can take more risks. When the budget is nearly
drained, the product developers themselves will push for more
testing or slower push velocity, because they don’t want to risk
using up the budget and stall their launch. In effect, the Product
Development team becomes self-policing. They know the budget
and can manage their own risk.

The unreliability budget also largely eliminates tension between
Product Development and SRE, because SRE no longer needs
to be in the position of making subjective judgment calls on
individual push requests from product developers or adopting
blanket and increasingly arbitrary rules such as “new releases
are pushed if and only if Product Development wins a game of
fizzbin when the moon is full” [1] in an attempt to prevent repeti-
tion of previously encountered outages. Instead, SRE just needs
to measure and enforce the agreed upon unreliability budget.
If they need to say no, they can point at an objective metric that
Product Development has already agreed to and cannot argue
with. Thus, instead of viewing SRE as an obstacle, the Product
Development team partners closely with SRE on ensuring appro-
priate velocity/reliability tradeoffs.

http://www.usenix.org

28    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

SYSADMIN
(Un)Reliability Budgets: Finding Balance between Innovation and Reliability

What happens if a network outage or datacenter failure reduces
the measured SLO? Yes, events like that consume the budget,
too. As a result, the number of new pushes may be reduced for
the remainder of the quarter. The entire team is okay with this
because everyone shares the responsibility for uptime. No one
person is to blame for such an incident. On the other hand,
Google has mechanisms to “route around” such outages so they
are invisible to our users. If such an event actually does affect
the service, the team can focus on improving their use of the
redundancy and failover mechanisms rather than waste time
finger-pointing.

Finally, because the unreliability budget is defined in terms of
the application’s SLO, it also helps to highlight some of the costs
of overly high reliability targets, in terms of both inflexibility
and slow innovation. If the team is having trouble getting new
features out, then they may elect to loosen the SLO (thus increas-
ing the unreliability budget) in order to increase innovation. At
Google, doing a little better than the SLO is good, but exceeding
it greatly is not considered something to be proud of; instead, it is
an indication that the team is not taking enough risks or the ser-
vice is over-provisioned. Google encourages smart risk-taking to
increase innovation, and the unreliability budget helps us make
sure that we’re doing that.

Conclusion
When two groups work as a team and share responsibility for the
uptime of a service, it is important to have a neutral, non-polit-
ical way to guide decisions of balance. Whether it is how much
testing is enough, how often to push, or how to recover from
failed pushes, these are not easy decisions to make. While prod-
uct developers are under pressure to advance their products rap-
idly and SREs are always mindful of stability, the unreliability
budget gives the team a neutral, non-political, and data-driven
way to find balance in all these areas and more. The result is a
team that works better together and more effectively.

Acknowledgments
Thank you to Tom Limoncelli, now at Stack Exchange, Inc., for
contributing to an early draft, Dave O’Connor for his invalu-
able comments, and Carmela Quinito for editorial review of this
article.

Reference
[1] Fizzbin: http://www.imdb.com/title/tt0708412/quotes.

http://www.usenix.org

JESA: Journal of Education in System Administration
Submissions due: August 14, 2015
www.usenix.org/jesa/cfp
USENIX is proud to announce the creation of a new Journal
of Education in System Administration (JESA). JESA brings
together researchers, educators and experts from a variety
of disciplines, ranging from informatics, information technol-
ogy, computer science, networking, system administration,
security and pedagogics. JESA seeks to publish original
research on important problems in all aspects of education
in system administration. The mission of JESA is therefore to
be a body of peer-reviewed, high-quality work addressing
the challenges in system administration education.

URES ’15: 2015 USENIX Release Engineering Summit
November 13, 2015, Washington, D.C.
Submissions due: September 4, 2015
www.usenix.org/ures15/cfp
At the third USENIX Release Engineering Summit (URES ’15),
members of the release engineering community will come
together to advance the state of release engineering, discuss
its problems and solutions, and provide a forum for commu-
nication for members of this quickly growing field. URES ’15
is looking for relevant and engaging speakers for our event
on November 13, 2015, in Washington, D.C. We are excited
that this year LISA attendees will be able to drop in on talks
so we expect a large audience.

URES brings together people from all areas of release
 engineering—release engineers, developers, managers,
site reliability engineers and others—to identify and help
propose solutions for the most difficult problems in release
engineering today.

NSDI ’16: 13th USENIX Symposium on Networked
Systems Design and Implementation
March 16-18, 2016, Santa Clara, CA
Paper titles and abstracts due: September 17, 2015
Complete paper submissions due: September 24, 2015
www.usenix.org/nsdi16/cfp
The 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’16) will focus on the design
principles, implementation, and practical evaluation of
networked and distributed systems. Our goal is to bring
together researchers from across the networking and sys-
tems community to foster a broad approach to addressing
overlapping research challenges.

NSDI provides a high quality, single-track forum for
 presenting results and discussing ideas that further the
knowledge and understanding of the networked systems
community as a whole, continue a significant research dialog,
or push the architectural boundaries of network services.

FAST ’16: 14th USENIX Conference on File and
Storage Technologies
February 22-25, 2016, Santa Clara, CA
Submissions due: September 21, 2015
www.usenix.org/fast16/cfp
The 14th USENIX Conference on File and Storage Technolo-
gies (FAST ’16) brings together storage-system researchers
and practitioners to explore new directions in the design,
implementation, evaluation, and deployment of storage
systems. The program committee will interpret “storage
systems” broadly; everything from low-level storage devices
to information management is of interest. The conference
will consist of technical presentations including refereed
papers, Work-in- Progress (WiP) reports, poster sessions,
and tutorials.

The program committees of the following conferences are seeking submissions. CiteSeer ranks the USENIX
 Conference Proceedings among the top ten highest-impact publication venues for computer science.

Get more details about these Calls at www.usenix.org/cfp.

www.usenix.org/cfp

Publish and Present Your Work
at USENIX Conferences

http://www.usenix.org/jesa/cfp
http://www.usenix.org/ures15/cfp
http://www.usenix.org/nsdi16/cfp
http://www.usenix.org/fast16/cfp
http://www.usenix.org/cfp
http://www.usenix.org/cfp

