
www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  43

1975–2015

HISTORY

UNIX News
Number 10, October 1976

Security Patch
The following patch to the “su” command should be installed
as soon as possible at all installations. The bug it fixes
allows an unprivileged user to become super-user under rare
circumstances.

 ed s2/su.c

 /bad pass/a

 goto error;

 .

 w

 q?

 cc –c –0 s2/su.c

 chmod 06711 a.out

 mv a.out /bin/su

Software Distribution
A second distribution from Chicago Circle will be prepared
during November. Those with items to submit should send
them immediately. Those who wish the distribution should
send magnetic tapes immediately.

John Lions’ point about the difficulty and expense of ship-
ping tapes overseas is well taken. While there may be some
problems vis-a-vis Bell with respect to their software, the
agreement does not preclude our having software distribution
center satellites overseas. Accordingly, we invite offers from
an installation in Great Britain to act as a center for Europe
and Israel and from an installation in Australia to service
that continent. The centers would receive submissions from
within their spheres of influence, submit a single tape to Chi-
cago and get a single tape in return.

University of New South Wales
From John Lions

On August 27th a group of more than 30 persons gathered at
the University of New South Wales for our first local Users
meeting.

David Morrison reported on the initial experience of the Uni-
versity of Newcastle with UNIX. They are currently heavily
committed to using Basic Under RSTS on a PDP 11/45, and
it was the quality of UNIX Basic which principally colored
their reaction. They will undoubtedly be happier after trying
the Harvard Software which was described to the meeting by
Peter Ivanov.

Ian Johnstone spent some time discussing the security of
UNIX. At the School of Electrical Engineering at the Univer-

sity of New South Wales the PDP 11 is run as an open shop staffed by
casual, volunteer student operators. It is almost impossible to set up
file access permissions in such a way that routine operations can be
carried out safely (e.g. killing recalcitrant programs before shut-down)
without leaving a loop-hole for the self-aggrandisement of users to
super-users. A number of other modifications have been found neces-
sary; groups have been disabled and “cron”, for example, as a willing
accomplice in crime, as been banished. However as long as the system
console is accessible the most determined users cannot be prevented
from patching the “suser” route directly. Setting the code for this rou-
tine into ROM would be a step in the right direction.

A UNSW implementation of Pascal “S” by John
O’Neill, a final year undergraduate, was dis-
cussed and the meeting diverted on for a short
while onto the subject of “Pascal” in general.

UNIX News, Number 10, was published in October 1976 by Professor Melvin
Ferentz of Brooklyn College of CUNY. We have included excerpts from that issue
and have reproduced the text as it appeared in the original, including any typo-
graphic errors. Note: We have not included the mailing list and other addresses
and telephone numbers that appeared in the original issue.

http://www.usenix.org

44    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

1975–2015

HISTORY
UNIX News

Most participants felt that the meeting was a success and
another meeting has been planned for February 18th, 1977. It
was agreed that there is a real need for cooperation between
UNIX users in view of the unconventional nature of UNIX
support.

Particular concern was expressed regarding the co-operative
acquisition of software from overseas. Because of the distances
involved this presents some difficulties and expense and it
would certainly be more convenient for us if one local UNIX
licensee, having acquired some item of software could distribute
it to other local licensees (subject of course to completion of any
required non-disclosure agreements production of DEC licenses,
etc.). We have already attempted to raise this matter with West-
ern Electric but so far have received no response.

Beware of icheck –s (or Change It)
From George Rolf, Katholieke Universiteit

I have been vaguely wondering for a while why everything I
wrote seemed so much slower than the commands that came
with the Unix system (version 6). Now I know why. Icheck –s will
rearrange the freelist of a file system in the order of ascending
block numbers, where mkfs initializes the freelist with con-
secutive entries 3 blocks apart on an RK disk, or 4 blocks on an
RP. After I dumped the system and restored it onto a fresh file
system I felt much happier.

I have also replaced the routine makefree() in icheck.c with the
code reproduced below, which I borrowed from mkfs.c. Note
that the change described in Unix Newsletter number 8 (August
1976) has been taken into account. Also note that this icheck –s
produces an optimized lay-out for an RF disk, which the original
mkfs does not. Our mkfs does of course.

I stumbled upon this discrepancy between mkfs and icheck
while doing some measurements to find out what an optimal lay-
out of the disk might be. I found myself reinventing the wheel.
The measurements were the following. I made an executable file
of 24 blocks (and one indirect block), and put it in various ways
on one cylinder of an RK disk, with the indirect block in an adja-
cent cylinder. Exactly the same lay-outs were tried out on the RF
disk (with 24 block “cylinders” instead of 8 blocks). I then timed
read commands of the whole file at once, as well as exec-s on the
file. For both devices the optimum is at a distance of 2 between
consecutive file blocks. With both tests running at the same
time, a distance of 3 blocks on both devices gave the best results,
so those were the numbers I took.

I don’t know why the Unix system as it is distributed doesn’t have
a special lay-out for the RF disk. At our installation, we have put
the /tmp files on the RF disk, which appears to be a good idea.
We have to keep the file system on the second RK drive inter-
changeable, and our RF disk has only one platter, which makes it
a bit inconvenient to put the root directory there.

The only relevant measurements for this sort of questions are
of course those obtained from heavy standard loads, or bench
marks simulating such a load. We don’t have either. Further-
more, the situation might be altogether different with differ-
ent or more controllers, or for example with a 60 cycle RF disk,
which runs 20% faster than ours. If anyone has any further
ideas or other experimental results, I will be very anxious to
learn of them.

in routine check():

change makefree(); to makefree(file);

freebl(i)

int i:

{

 if ((baab[i>>4)&07777] & (1<<(i&017))) == 0)

 free(i);

}

makefree(file)

char *file;

{

 register char *i, *j;

 char *n, *m;

 char *high, *low;

 static char adr[100], flag[100];

 for(j = file; j[0]; j++)

 if(j[0] == ‘r’)

 switch (j[1]){

 case ‘k’:

 n = 24;

 m = 3;

 break;

 case ‘p’:

 n = 10;

 m = 4;

 break;

 case ‘f’:

 n = 8;

 m = 3;

 break;

 default: ;

 }

http://www.usenix.org

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  45

1975–2015

HISTORY
UNIX News

 if (n > 100) n = 100;

 for(i = 0; i < n; i++)

 flag[i] = 0;

 j = 0;

 for(i = 0; i < n; i++) {

 while (flag[j])

 j = (j + 1) % n;

 adr[i] = j;

 flag[j]++;

 j = (j + n) % n;

 }

 sblock.s_nfree = 0;

 sblock.s_ninode = 0;

 sblock.s_flock = 0;

 sblock.s_ilock = 0;

 sblock.s_faod = 0;

 high = sblock.s_fsize - 1;

 low = sblock.s_isize + 2;

 free(0);

 for(i = high; lrem(0, i+1, n); i--) {

 if (i < low)

 break;

 freebl(i);

 }

 for(; i >= low + n-1; i =- n)

 for (j = 0; j < n; j++)

 freebl(i-adr[j]);

 for(; i >= low; i--)

 freebl(i);

 bwrite(1, &sblock);

 close(fi);

 sync();

 return;

}

Southern Illinois University at Carbondale
From Ray Kohring

Our department has been receiving the UNIX News since this
Spring (issue #5 was the first one we received). What we have
found most useful are the patches to the software which have
been printed. In this light we would like to know if it would be
possible to get any back issues that we missed. Any of them
would be appreciated.

Our department owns a CAL DATA 135 which is emulating a
PDP 11/40 on which we are running UNIX. In General, UNIX
has ran well on our setup (exluding finding a missing wire on the
MMU), but there are a couple of things which I felt were worth
mentioning.

The first has to do with what happens when the user’s stack-
pointer is odd (that is not even, as opposed to unusual). What
happens is the CPU goes through the stack error routine (specifi-
cally, red-stack limit) upon a buss-error, which clears the kernel

stack-pointer (even though it was a user-mode error). This locks
UNIX into a very tight loop (about 8 instructions long) which is
retrapping on every attempt to stack something. I cured this by
adding the code on the next page to m40.s. I haven’t been able to
determine if this happens on DEC CPUs also, but an easy check
would be to run

	 dec	 sp

	 mov	 $1,-(sp)

and see if it loops.

The second problem is unique to CAL DATA systems with the
micro-programming option. Accidently executing op-codes 7-17
(octal) causes all sorts of wonderous things to happen, since
these are the spare op-codes (including EFM). The easy (?)
cure is to load the appropriate ACM locations with a branch to
the illegal instruction trap routine and enable it to replace the
second page of control memory. A second alternative is to load
routines to do common tasks, such as csav and cret, and modify
the c-compiler to use those op-codes. One of our people (Carl
Ebeling) has been working on this idea so if anybody wants to try
it we could send you what he has done so far.

Note: This patch tests the stack pointer (kernel) to see if it is
zero. If it is, it resets it to the top of the user block (where it prob-
ably should be) and copies the ps-pc from 0 to the correct stack
locations. If it really is a kernel stack error, there will still be a
panic.

ed m40.s

/trap:/

+

a

 tst sp /is the stack pointer zero?

 bne lf /no, we’re still safe

 clr 177774 /stack limit register, the ps

 /was put here by accident

 mov $142000,sp /restore the sp

 mov 2,-(sp) /restack ps

 mov 0,-(sp) /restack pc

 clz|clc /reset cc’s to show buss-error

 mov ps,-4(sp) /redo properly

1:

.

http://www.usenix.org

46    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

1975–2015

HISTORY
UNIX News

The Pennsylvania State University
From Edward C. Horvath

I was directed to you by the UNIX documentation as a contact
point for the UNIX user’s group. If that is no longer appropriate,
please forward this letter to whomever now fills that role.

The Computer Science Department here at Penn State recently
acquired a PDP-11/34 and the UNIX system, and we are inter-
ested in hearing of and/or participating in the activities of the
UNIX user’s group.

Our system consists of an 11/34 (which includes memory man-
agement but no stack limit option), 96Kb core, a dual-drive RK11,
RX11 floppy disk, and an 8-line DZ11 mux. This is a one-cabinet
configuration which prices out (after haggling) at around $36K
(circa June 1976). We are currently running only two typewrit-
ers (console and one DL11) and are in the process of constructing
drivers for the RX and DZ. We soon expect to be running 6-8
users, and to expand core to 128K. We also have a 120 1/m Potter
printer which we hope to interface to the DZ.

I should mention that UNIX (specifically rk unix) will not boot
directly on the 11/34; there are minor programming differences
between the 11/40 and the 11/34, none of which seem to surface
when the system runs. However, the 11/34 comes standard with
a blank front panel—an on/off switch, but no switch register.
This drives the system into an infinite bus timeout trap loop
when it tries to print the ‘mem=’ message. We were able to over-
come this by laboriously hand-patching the system, a process
which I will be happy to coach any new user on; I have attached a
copy of the procedure to this letter for your files. We have not, to
date, had any other problems with incompatibilities, but I will so
inform you if they arise.

First, you can register us in the UNIX user’s group.

Second, you can put us in contact with any other users who
have constructed/are constructing drivers for the RX or DZ.
We would be happy to share ideas and/or software; if we are
the first and only developers for either device we will be happy
to contribute any software we develop when it becomes avail-
able. Please inform me of any format restrictions or distribution
clearing houses.

For your information, I have already informed Ken Thompson at
BTL of the switch register problem; I’m not sure what steps he
will take.

Thank you for your assistance; I look forward to your
correspondence.

Bringing up UNIX (specifically rkunix) on the PDP-
11/34
This document is for users who wish to run UNIX (6th Ed.) on
the standard 11/34—i.e., with the standard front panel. If you
have a switch register, the procedure described in ‘setting up
UNIX’ should work just fine. In any case, this document is a
supplement to ‘setting up UNIX’.

First, generate the binary code RK05 pack. We cannot vouch for
the procedures in ‘setting up UNIX’ for doing this from magtape,
as we received the system already on RK05’s.

Next, you have to locate the first block of ‘rkunix’ on the pack.
‘rkunix’ is a son of ‘root’, which is the root of the directory tree.
(See File System (V) in the UNIX Programmer’s Manual). ‘rku-
nix’ is described by i node 193 (base 10), which is the 6th i node
of the 13th block of the i node list, which starts at byte 240 (base
8) of logical block 16 (base 8) of the RK05 pack (magic number
21). Note that ‘rkunix’ is a large file, so addr 0 points not at the
first block of ‘rkunix’, but rather at the block of block pointers for
‘rkunix’. On our distribution pack, addr 0 is 2723 (base 8). This
converts to a ‘magic number’ for the RK11, namely 3703 (base 8),
which may be deposited in the RKDA register to read the block
of pointers. Again, on our distribution pack, the first pointer
has value 2675 (base 8), which has magic number 3645 (base
8). If your pack disagrees in any way, calculate your own magic
numbers! (Use the RK11 description of RKDA in the peripherals
manual).

By the way, for magic number xxxx, the following console emula-
tor sequence reads the desired block into core locations 0:777.

	 L 177406

	 D 177400

	 D 0

	 D xxxx

	 L 177404

	 D 5

Once you have the first block of rkunix loaded in this way, per-
form the following sequence:

	 L 346

	 D 0

	 L 277406

	 D 177400

	 D 0

	 D xxxx (magic number for first block)

	 L 177404

	 D 3

The above places a halt instruction in the trap sequence, and
writes the block back out.

Steps thus far need only be done once; what follows is the new
boot sequence:

http://www.usenix.org

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  47

1975–2015

HISTORY
UNIX News

1. �Type OK, advance the paper, and hit return. The system should
respond with 0.

2. �Type ‘rkunix’ and hit return. The system will flutter a bit, then
halt.

3. �Hit the boot switch to bring in the emulator, and enter the fol-
lowing sequence:

	 L 176

	 D 100000

	 L 326

	 D 5767

	 L 12340

	 D 176

	 L 41236

	 D 176

	 L 0

	 S

The above sequence modifies the system to look at location 176
(base 8) for the contents of the switch register, loads 176 with
100000 (for a single user system, L 176 should be followed by D
173030), repairs the damage we did to the version on the pack,
and finally restarts. The sequence described in ‘setting up
UNIX’ now applies.

All of the above nonsense can, of course, be obviated if you can
beg or etc. a couple of hours on a 40 or 45, or even get a ‘loaner’
front panel from your friendly DEC repairman, or, best of all,
already have a running UNIX system. In any case, to avoid fur-
ther heartache, you’ll want to recompile the system to boot clean.
In addition to the steps indicated in /usr/sys/run (watch out for
ar!), you should:

Edit /usr/sys/param.h to change the value of SW to 0176

Make sure /usr/sys/ken/prf.c and user/sys/ken/sys4.c get
recompiled and replaced in /usr/sys/libl.

The new system should come up clean (ours did!).

http://www.usenix.org

