
56    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

COLUMNS

Practical Perl Tools
Parallel Asynchronicity, Part 2

D A V I D N . B L A N K - E D E L M A N

W elcome back for Part 2 of this mini-series on modern methods
for doing multiple things at once in Perl. In the first part (which I
highly recommend that you read first before reading this sequel),

we talked about some of the simpler methods for multi-tasking like the use
of fork() and Parallel::ForkManager. We had just begun to explore using the
Coro module as the basis for using threads in Perl (since the native stuff is so
ucky) when we ran out of time. Let’s pick up the story roughly where we left it.

Coro
As a quick reminder, Coro offers an implementation of coroutines that we are going to use as
just a pleasant implementation of cooperative threading (see the previous column for more
picayune details around the definition of a coroutine). By cooperative, we mean that each
thread gets queued up to run, but can only do so after another thread has explicitly signaled
that it is ready to cede its time in the interpreter. Thus, you get code that looks a little like this:

 use Coro;

 async { print “1\n”; cede;};

 async { print “2\n”; cede;};

 async { print “3\n”; cede;};

 cede;

The script runs the main thread, which queues up three different threads and then cedes
control of the interpreter to the first queued thread. It cedes control, so the second thread
runs and so on. In this example, we don’t technically need to write “cede;” at the end of each
definition (since each queued thread will cede control simply by exiting), but it is a good habit
to get into. The one place we definitely do need to explicitly write “cede;” is at the end of the
script. If we didn’t cede control at the end of the script, nothing would be printed because the
main thread would have exited without realizing it should cede control to anything else.

We can do some more interesting things with this model, but before we do, it would probably
be useful to understand how one goes about debugging a Coro-based program. When debug-
ging a program like this, it would be a supremely handy thing to have information about the
current state of the program that could tell us just what thread is running and what threads
are queued up to run.

Coro ships with a debugger module that does all of this and more. There are two ways to
make use of it: a non-interactive way and an interactive way. The interactive way works when
used with an event loop-based Coro program like those you might be able to write after read-
ing the last section of the column. But since we are not there yet, let’s look at how to use the
non-interactive method. We add Coro::Debug to the module loads and then insert a line that
runs a debugger command. Let’s modify the dead simple code example from above like so:

David Blank-Edelman is
the Technical Evangelist at
Apcera (the comments/
views here are David’s alone
and do not represent Apcera/

Ericsson) . He has spent close to thirty years
in the systems administration/DevOps/SRE
field in large multiplatform environments
including Brandeis University, Cambridge
Technology Group, MIT Media Laboratory,
and Northeastern University. He is the author
of the O’Reilly Otter book Automating System
Administration with Perl and is a frequent invited
speaker/organizer for conferences in the field.
David is honored to serve on the USENIX
Board of Directors. He prefers to pronounce
Evangelist with a hard ‘g’.  
dnblankedelman@gmail.com

http://www.usenix.org
mailto:dnblankedelman@gmail.com

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  57

COLUMNS
Practical Perl Tools: Parallel Asynchronicity, Part 2

 use Coro;

 use Coro::Debug;

 async { $Coro::current->{desc} = ‘numero uno’;

 print “1\n”;

 cede;

 };

 async { $Coro::current->{desc} = ‘numero dos’;

 print “2\n”;

 cede;

 };

 async { $Coro::current->{desc} = ‘numero tres’;

 print “3\n”;

 Coro::Debug::command ‘ps’;

 cede;

 };

 cede;

We’ve made two changes. First, we’ve added lines to each async
definition to give each one a description. You’ll see how this
comes in handy in just a moment. Second, in the third definition
we’ve inserted a debugger command. When we run this script, it
now prints something like:

 1

 2

This output shows us the status of all of the threads. Let me
cherry-pick the key parts of this output to describe.

The first line is the main thread. It shows that it is [R]eady to
run (the first letter of the SC column), has been scheduled 0
times (USES column) because the main thread doesn’t need
to be scheduled explicitly, and that it is currently running line
20 of the script (the file name is “t”). If we skip the threads that
are part of Coro, we come to the first one we defined (“numero
uno”—now you see why setting a description is useful). It too is
Ready to run (currently at line 9 in the program). “numero dos”
is in a similar state. The final thread we defined is shown as
r[U]nning (“R” was taken by Ready). All of our defined threads
are shown with a 1 in the USES column because they all have
been queued to run once.

More Advanced Coro
In the puny code samples we’ve seen so far, each of the threads
we’ve scheduled has been totally independent. Each printed a
number, a process that didn’t require any coordination (beyond
making sure to be good neighbors by ceding to each other). But
this isn’t the most common of situations. Many (most?) times
threads in a multi-threaded program are all trying to work
towards the same goal by taking on a portion of the work. In
those cases, threads have to work together collectively to make
sure they aren’t stepping on each other’s toes. To do so they need
a way to signal each other and maybe even pass on data in the
process.

Anyone who has done other multi-threaded programming knows
I’m headed towards talking about semaphores because that’s
the classic mechanism for intra-thread signaling. A semaphore
is a shared resource (feel free to think of it as a magic variable)
that the threads can read or attempt to change before they want
to take an action. If a thread’s attempt doesn’t succeed (because
another thread got there first), it can block and wait for the
semaphore to become ready. This seems a little abstract, so let
me show you some code from the Coro doc [1].

 use Coro;

 my $sem = new Coro::Semaphore 0; # a locked semaphore

 async {

 print “unlocking semaphore\n”;

 $sem->up;

 };

 print “trying to lock semaphore\n”;

 $sem->down;

 print “we got it!\n”;

In this case we are seeing a “counting” semaphore (where the
semaphore has a value that can be incremented and decremented)
being used as a binary semaphore (is it “locked” or “unlocked”).

To follow the flow of the program, the main thread defines a
semaphore with a value of 0, queues a separate thread (async{}),
prints a message, and then attempts to decrement the sema-
phore with a call to down(). Since the semaphore is already at 0,
the down() call blocks. In Coro, that blocking action cedes, and
so the first queued thread gets a chance to run. When it runs,
it increments the value of the semaphore and exits. Now that
the semaphore is no longer 0, the down() call succeeds and the
main thread continues to its end. This is a very basic semaphore
mechanism—Coro offers a number of different variations on it so
I recommend you look at the documentation.

Semaphores are a simple and effective way to keep threads from
getting in each other’s way, but what if they actively want to
collaborate? That would entail being able to share information.

PID SC RSS USES Description Where

140252207746400 RC 21k 0 [main::] [t:20]

140252207836704 N- 216 0 [coro manager] -

140252207836680 N- 216 0
[unblock_sub
scheduler]

-

140252207540736 R- 2060 1 numero uno [t:9]

140252208378256 N- 216 0
[AnyEvent idle
process]

-

140252208229104 RC 2600 1 numero dos [t:13]

140533218598712 UC 2600 1 numero tres [t:17] 3

http://www.usenix.org

58    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

COLUMNS
Practical Perl Tools: Parallel Asynchronicity, Part 2

There are lots of ways threads could pass information around
between them, but one built-in way Coro offers is through “chan-
nels.” Channels (in Coro) are described as message queues. Any
thread can add data to the queue, and any (other) thread can
consume that data.

The syntax and method for using channels is as straightforward
as you might hope. You create a new channel:

 my $channel = new Coro::Channel;

write to it (from any thread):

 $channel->put (‘somepieceofdata’);

and read from it (presumably from a different thread):

 my $data = $channel->get;

If there is nothing in the channel, that thread will block and cede
its time (just like a semaphore attempting to down() if the sema-
phore is already 0) until data does become available. Easy peasy.

Event-Based Programming
Let’s move on to the final paradigm of this series. Event-based
programming is yet another way to construct a system where a
program can behave as if it is doing several things at once. There
are a number of flavors of event-based systems, so let me give
a broad generalization of a description that covers what we’re
about to do.

With the event-based programming style we’re about to encoun-
ter, the basic idea is to specify events in the program’s life that
we care about and the code that should run when those events
take place. These events could be external to the program (some-
one clicked on a button in a GUI) or events internal to it (when a
piece of the program finishes). It is this latter case that interests
us most at the moment because it means we can launch a whole
bunch of actions—for example, a ton of DNS requests—and have
them run at the same time.

Unlike your usual program that states “do this, then do this, then
do this” (which means that thing #3 doesn’t happen until #1 and
#2 have completed), event-based programming lets you write
code that says “do all the things, let me know when any of them
finish, and I’ll handle them at that point.” Most of the time this is
described in terms of registering interest in certain events and
then starting an event loop that continuously checks if any of the
events have come to pass. If it finds this has happened, the code
associated with that event (a callback) is executed and then the
loop continues.

There are a whole slew of Perl modules for writing event-based
programs. Some of them are pure Perl; the more performant
ones wrap external event libraries like libevent and libev. For
this final section of the column, let’s use all of them. Well, maybe
most of them. But let’s use them at the same time.

More precisely, let’s use a module that calls itself “the DBI
of event-loop programming.” DBI, for those new to Perl, is a
standard way to program database-related tasks in Perl that lets
the programmer write database code that isn’t tied to a specific
database. AnyEvent aims to do this for event loops. It provides a
uniform way to write code that is event-loop independent. The
module will attempt to probe your system for the presence of
a relatively long list of other event-based modules (including
the performant ones). If it finds one, it will use it (without your
having to know the specifics for the one it finds). If it doesn’t
find one, it will use a Perl-based “backend” that will function
fine even without any of those modules being present. AnyEvent
has proven quite popular in the community and so now a whole
bunch of AnyEvent::Something modules are available for lots of
tasks you might commonly want to do in an event-based/high-
performance fashion.

Because event-based programming can get hairy quickly, we’re
only going to skim the top of AnyEvent to discuss the major ideas
and then show one example of one of the task-specific AnyEvent::*
modules. One other quick note before we move forward: AnyEvent
comes with two different interfaces, a method-based one (Any-
Event) and a function-based one (AE). For example, you can write:

 AnyEvent->timer (after	 => $seconds,

 interval	 => $intseconds,

 cb 	 => ...);

or

 AE::timer $seconds, $intseconds, sub { ... };

The function-based one is more terse but is actually 5–6x
faster with some backends. For this column, I’m going to use
the method interface because I think it is easier for people not
familiar with AnyEvent to read. When you write your own code
and become comfortable with the arguments being passed to the
methods, I encourage you to consider using AE instead so you
can gain the performance increases.

The first concept central to any AnyEvent code is the “watcher.”
AnyEvent provides a set of different kinds of watchers including:

◆◆ I/O—when a file handle is ready to be read/written

◆◆ time—when a certain amount of time has elapsed

◆◆ signal—when we have received a certain signal

◆◆ child—when a child process changed state (completed)

◆◆ idle—when nothing else is happening

Let’s look at a trivial AnyEvent code sample. It uses a time
watcher because people can intuitively understand the idea of
time events taking place (e.g., “Tell me when ten seconds have
elapsed” or “Every two seconds, do the following…”). Here’s a
sample that uses two time watchers:

http://www.usenix.org

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  59

COLUMNS
Practical Perl Tools: Parallel Asynchronicity, Part 2

 use AnyEvent;

 my $enough 	 = 15;

 my $yammer 	 = 0;

 my $c = AnyEvent->condvar;

 my $w;

 $w = AnyEvent->timer(

 after 	 => 2,

 interval 	 => 2,

 cb 	 => sub {

 print “Every 2 (“ . localtime(AnyEvent->now) . “)\n”;

 $yammer++;

 $c->send if ($yammer == $enough);

 }

);

 my $w2;

 $w2 = AnyEvent->timer(

 after 	 => 5,

 interval 	 => 5,

 cb 	 => sub {

 print “Every 5 (“ . localtime(AnyEvent->now) . “)\n”;

 $yammer++;

 $c->send if ($yammer == $enough);

 }

);

 print localtime(AnyEvent->now) . “\n”;

 $c->recv;

 print localtime(AnyEvent->now) . “\n”;

After loading AnyEvent, we specify that we only want 15 lines of
output and define a variable that will be used to track the num-
ber of lines printed. Then we define a condition variable (more
on this in a moment because it is fairly important).

Following this are the actual watchers. For each watcher, we say
when we want AnyEvent to notice the time. For the first one, we
want to notice when two seconds have gone by and then every
time two seconds goes by after that. The second watcher is the
same except it is paying attention to events every five seconds.
When either of the events takes place, they run a tiny callback
subroutine that prints the time, increments the output counter,
and then decides whether to signal that it is okay to end the event
loop (using that mysterious condition variable).

One other small Perl note. You might notice that we did some-
thing a little more verbosely than necessary, namely, defining
a variable and using it as two different lines (which we almost
always do on the same line):

 my $w;

 $w = AnyEvent->timer(

The reason we do this is a little subtle and not apparent in this
sample itself. Each watcher can have a callback subroutine that
gets defined as part of defining the watcher (we do this above). If
a watcher wants to disable itself during the program’s run, let’s
say it decides it has done its duty and wants to shut itself off, it
does so from within the callback. The way it does so is to “undef”
itself. So if the first watcher above wanted to disable itself at any
point, in the callback subroutine it would state “undef $w;”.

The tricky thing here is that Perl doesn’t let you reference a vari-
able in the same statement as the one where it gets defined. We
can’t do the equivalent of this:

 my $var = sub { undef $var };

hence we have to define the variable that is going to represent
the watcher and then create the watcher in two separate steps.
You’ll see this multiple-statement definition being used all over
AnyEvent-based code.

The output of our sample code looks like this:

 Mon Jun 1 10:37:34 2015

 Every 2 (Mon Jun 1 10:37:36 2015)

 Every 2 (Mon Jun 1 10:37:38 2015)

 Every 5 (Mon Jun 1 10:37:39 2015)

 Every 2 (Mon Jun 1 10:37:40 2015)

 Every 2 (Mon Jun 1 10:37:42 2015)

 Every 5 (Mon Jun 1 10:37:44 2015)

 Every 2 (Mon Jun 1 10:37:44 2015)

 Every 2 (Mon Jun 1 10:37:46 2015)

 Every 2 (Mon Jun 1 10:37:48 2015)

 Every 5 (Mon Jun 1 10:37:49 2015)

 Every 2 (Mon Jun 1 10:37:50 2015)

 Every 2 (Mon Jun 1 10:37:52 2015)

 Every 5 (Mon Jun 1 10:37:54 2015)

 Every 2 (Mon Jun 1 10:37:54 2015)

 Every 2 (Mon Jun 1 10:37:56 2015)

 Mon Jun 1 10:37:56 2015

So let’s talk about condition variables (condvar) because they
are one of the most important and the most confounding of
AnyEvent concepts. One way to wrap your head around condvar
is to harken back to the semaphores and channels we dealt with
earlier in the column. Condvars are a way for different parts of
the program to communicate with each other through a magic
variable. This variable starts off as “false” and only becomes true
when another part of the program sends a signal for it to change.
In the interim, anything waiting for that signal will block (and
here’s an important part) while the rest of the event loop con-
tinues on around it. In the code we just saw, after defining the
condvar ($c) and the watchers we say:

 $c->recv;

http://www.usenix.org

60    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

COLUMNS
Practical Perl Tools: Parallel Asynchronicity, Part 2

which says, “Wait around for the condvar to become true during
the event loop before continuing.” This very act of waiting for
something to happen in the event loop actually instructs Any-
Event to run the event loop.

Both of the watchers we defined check during the event loop if
we’ve produced the right number of output lines in their call-
back subroutine. If either one determines this condition has
been reached, they will send() on the condvar, and the program
will stop waiting at the recv(). Since we are no longer waiting
for event loop actions to take place, the loop shuts down and the
program proceeds to its final print statement.

As you can probably guess, there’s a bunch more functionality
available from AnyEvent. For example, condvars can be used
in a transactional way using begin() and end() calls so that the
program can say, “Run an unspecified number of things at once,
but only continue once all of them have completed.” Rather than
dive into more of these features, I want to show one small code
example that makes use of one of the other AnyEvent-based
modules in the ecosystem. This module we’re about to see actu-
ally ships with AnyEvent itself.

Inspired by an example in Josh Barratt’s excellent presentation
on AnyEvent [2], here’s some code that uses AnyEvent::DNS to
check whether a domain exists in each of the current top-level
domains. This version is a little spiffier than Barratt’s because it
pulls down the current list of all possible TLDs from IANA and
checks against that. We’ll talk about some of the pieces of the
code after you’ve had a chance to see it:

 use AnyEvent;

 use AnyEvent::DNS;

 use HTTP::Tiny;

 # receive name to check from command line

 my $name = shift;

 my $domainslist =

 ‘http://data.iana.org/TLD/tlds-alpha-by-domain.txt’;

 my $domainlist = HTTP::Tiny->new->get($domainslist)->{content};

 # ignore the comment and the test TLDs

 my @domains = grep (!/^(\#|XN--)/,

 split(“\n”, $domainlist));

 my $c = AnyEvent->condvar;

 my %domainresults;

 for my $domain (@domains) {

 $c->begin;

 AnyEvent::DNS::a “$name.$domain”, sub {

 $domainresults{$domain} = shift || “did not resolve”;

 $c->end;

 }

 }

 my $start = AnyEvent->now;

 $c->wait;

 print “$#domains domains looked up in “ .

 (scalar AnyEvent->now - $start) . “ seconds.\n”;

The first part of the code pulls down the IANA list. We then
begin to iterate over each top-level domain, creating events
that perform the lookups for us. When we do, we bracket each
event with a condvar-based begin()/end() pair. This is the
“transaction-like” use we mentioned earlier. The initial begin()
records that we’ve started something, the end() indicates that
we’ve finished something. We set the event loop in motion with a
wait() call that basically says, “Run the event loop until all of the
begin()s have had end()s.”

Now, you may be as curious as I was to see just how much faster
an AnyEvent version would be than one which worked its way
through all of the TLDs, one TLD at a time. To test this, I gutted
the AnyEvent watcher part in the middle and instead wrote the
following:

 use Net::DNS;

 ...

 my $reply = $res->search(“$name.$domain”);

 $domainresults{$domain} = “did not resolve”;

 if ($reply) {

 foreach my $rr ($reply->answer) {

 next unless $rr->type eq “A”;

 $domainresults{$domain} = $rr->address;

 }

 }

The version above yielded the following:

 861 domains looked up in 717 seconds.

The AnyEvent version I showed first?

 861 domains looked up in 54 seconds.

So, yes, quite a substantial speedup. I leave it as an exercise to the
reader to write Parallel::ForkManager and Coro versions of the
same program to see how they stack up.

We’ve come to the end of this column, but before I leave let me
just mention that Coro has special support for AnyEvent that lets
you use threads and an event-loop seamlessly. See the doc for
Coro::AnyEvent for more information. And with that, take care
and I’ll see you next time.

References
[1] Coro documentation: http://search.cpan.org/perldoc?Coro/
Intro.pod.

[2] Josh Barratt’s AnyEvent presentation: https://vimeo.com/
17163462.

http://www.usenix.org
http://data.iana.org/TLD/tlds-alpha-by-domain.txt%E2%80%99
http://search.cpan.org/perldoc?Coro/Intro.pod
http://search.cpan.org/perldoc?Coro/Intro.pod
https://vimeo.com/

The USENIX Store
Is Open for Business!

www.usenix.org/store

Want to buy a subscription to ;login:, the latest short topics book,
a USENIX or conference shirt, or the box set from last year’s work-
shop? Now you can, via the USENIX Store!

Head over to www.usenix.org/store and check out the collection
of t-shirts, video box sets, ;login: magazines, short topics books,
and other USENIX and LISA gear. USENIX and LISA SIG members
save, so make sure your membership is up to date.

http://www.usenix.org/store
http://www.usenix.org/store

