
62    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

COLUMNS

iVoyeur
How Do I Even KPI?

D A V E J O S E P H S E N

Dave Josephsen is the
sometime book-authoring
developer evangelist at Librato.
com. His continuing mission: to
help engineers worldwide close

the feedback loop. dave-usenix@skeptech.org

A s I write this I’m on a plane back from “DevOps Days Toronto,” at
which I had a marvelous time. Probably the highlight of the trip for
me was the “Open Space” on choosing effective KPIs (Key Perfor-

mance Indicators). If you haven’t been at a conference that does Open Spaces,
they’re very much like BoFs, except that they happen during the conference
(not at lunch or after hours), and the selection process is more formal.

Honestly, I used to think they were kind of silly and suspected they were merely a means of
making up for a lack of presenter content, but having spent the last year and a half traveling a
lot more to various conferences, I’ve increasingly come to value them. The format really man-
ages to give you a good feel for what everyone is dealing with in a specific problem domain
(especially if you can manage to attend a few of them in different parts of the country).

The Open Space on the topic of choosing KPIs began with a question from the developer-
turned-architect who had initially proposed the KPI Open Space. He’d just been put in
charge of figuring out how to stabilize the efforts of 68 different development teams (!), and
by stabilize, he meant that their product was behaving erratically, and they were beginning
to have large blocking outages.

It sounded like his teams were all working on different parts of a single, large microservices
architecture, which had grown large enough that the individual development efforts for each
service were growing apart and becoming siloed. Because he was known to be a talented
engineer who’d contributed to many of the services individually, the business had decided to
“DevOps” him—i.e., snap him off from his current team so that he could focus on making the
entire system work together better. He was eager to help but was having a hard time figur-
ing out how to begin. He knew he wanted to get some data that would give him a good feel for
where the problems were, but his question was, what specifically he should measure: “How do
I choose some KPIs from scratch?”

It is a (usually) unwritten rule in programmer forums not to ask the room to do your home-
work for you. I’m not sure whether this applies to Open Spaces, but the architect’s question
certainly flirts with that line. In an Open-Space setting, however, I actually prefer this kind
of discussion to the shallower and more uninformative “what is everyone using for X?” sort
of question that typifies the Open-Space experience. In fact I think it’s fair to say that when
someone commits an oversharing faux pas in an environment like this, it relaxes everyone
else, and puts us all in the mood to overshare a little bit ourselves.

Anyway, it quickly became apparent that many people in the room were having exactly the
same pragmatic problem of not knowing where to begin with choosing metrics to measure.
The first suggestion he got was to implement a policy that mandated filling out a form that
included information like what KPIs should be measured before every deploy to production.
This suggestion was accompanied by a lengthy, and very opinionated, anecdote that at some
point segued into a full-bore anti-continuous delivery rant.

http://www.usenix.org
mailto:dave-usenix@skeptech.org

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  63

COLUMNS
iVoyeur: How Do I Even KPI?

“Best Open Space ever,” I thought to myself as the room launched
itself into a 40-minute long sanctimonious DevOps shame-
splaining party. In the end, though, we were nowhere nearer to
helping out with the original question (although we had a lively
and entertaining discussion about the nature of DevOps versus
“what the business actually needs”).

Believe it or not, I do make an effort to keep my big mouth shut
during the Open Spaces I attend (I rarely succeed). In this case,
however, since no one else had offered any constructive advice, I
ventured to share what has worked for me in the past. And since
it was well received, and the problem seemed so prevalent, I fig-
ured it might make a nice ;login: article this month, so I’ll share it
with you too.

I’m sure I’ve said before in this column that good metrics test
systems hypotheses. They capture the operational limitations
we’ve learned about the things we build. When I say they test
systems hypotheses, I mean that when we think about the sys-
tems we build, and how they should act in certain situations (e.g.,
given 50,000 connections, this round-robin-based load balancer
should send 25k to server A, and 25k to server B), good metrics
confirm our valid assumptions and discredit our biases. They
teach us about how the things we build actually work.

By this yardstick the classic CPU/memory/network triumvirate
is mediocre at best. You may have a meaningful hypothesis about
how much RAM or CPU a process should use, and you may learn
something about your system (or more likely the underlying
interpreter or OS, or garbage collector) if your assumption isn’t
borne out in practice, but metrics that measure things like how

long a particular database call takes, or count the total number
of worker threads, or queue elements, reflect assumptions that
make for a more meaningful understanding of the system you’re
dealing with.

Not only do experienced engineers understand that building a
system is not the same thing as understanding it, they can pretty
quickly intuit how well a system they didn’t build is understood
by the team running it. The evidence is everywhere: in how
deeply we can test our code, in how specifically we monitor
them, in how precisely we can derive our capacity plans, and
even in how repeatably we can deploy them.

The architect who asked this question was an experienced
engineer. He knew that these teams didn’t understand what
they’d constructed, and therefore no amount of asking them to
fill out a form listing their KPIs was going to give him the insight
he needed to make it work better. He had to get his own hooks in,
but the question was where?

Whenever I’m put in charge of a large and churning wad of soft-
ware that I didn’t write, I draw a picture of it, and that picture
inevitably comes out looking something like Figure 1. In fact,
this is one of the actual pictures I drew when I was first hired on
and trying to wrap my head around how Librato’s microservices
architecture works in practice.

Measure the Space between the Services
Normally, we’d focus our attention on the boxes, and in the end
we do want to know, in depth, how each of these services works
so we can derive some metrics that are key indicators of how well

Figure 1: The prototypical (I hope) architecture diagram

http://www.usenix.org

64    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

COLUMNS
iVoyeur: How Do I Even KPI?

they’re doing what they should be doing. However, we’re going to
start by ignoring the boxes completely. In fact, I’m going to delete
all of these box labels and replace them with letters, and in the
place of all the service names, I’m going to label the lines. Above
each line, I’m going to place a label that identifies the protocol
each of those lines represents. This gives us Figure 2.

Check that out, our previously incomprehensible microservices
architecture just became a handful of commodity network
protocols. This, I can pretty easily wrap my head around. Every
application is a balanced equation; it’ll work fine as long as it is
in balance, and eventually we’ll root out all of the things that
can throw it out of whack. But for now, the best way to detect
when it’s out of balance is by timing the interactions between its
component parts—measuring the space between the services.
Our strategy will be to figure out a way to time the interactions
represented by each of these lines.

If I made that sound easy, it’s not. Getting these numbers, which
I collectively refer to as inter-service latency data, is going to
require a lot of engineering know-how. In almost every case,
you’ll have to get into the source and add some instrumentation
that wraps API or DB calls. Sometimes you’ll be need to recon-
figure a set of Web servers or proxies, and every once in a while,
you’ll need to write some glue-code or API-wrappers of your own.

You should wind up with a slew of numbers on the order of tens
or hundreds of milliseconds. When something goes wrong with
the application, these numbers will tell you where the problem
is (in which service on which nodes). Note, this is not the same
thing as telling you what the problem actually is, but we’ll get to
that in a minute.

Of course you’ll need to actually put all of this data somewhere.
That’s the sort of thing I (and many other people) have written
about at length, but it’s worth mentioning here that you’re going
to need a scalable telemetry system to help you store and analyze
all this stuff.

Extract Knowledge from Inter-Service Latency
Play around with these numbers as you get each of them up and
running. Note the baseline values, and search for patterns of
behavior, and things that strike you as odd. Do some service
latencies rise and fall together? Do some appear dependent on
others? Do they vary with the time of day or day of week? As
you discover these patterns, talk to the engineers who run the
services and see whether these patterns confirm their notions of
how that service “should” work. It shouldn’t take long before one
of them squints at your data and says something like “huh.” This
is what scientific discovery sounds like. Dig into that service
behavior with the help of the engineer who runs it, and you’ll
likely encounter a KPI or two.

Figure 2: Figure 1, relabeled to accentuate the space between the services

http://www.usenix.org

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  65

COLUMNS
iVoyeur: How Do I Even KPI?

When something goes wrong, look at the inter-service latency
data and see how early you can identify things going sideways.
The numbers tend to get big upstream of the services that are
actually having trouble. Share your data with the engineers
running those services, and dig into them together to figure out
what went wrong; again, you’ll likely encounter a KPI or two.

If that sounds kind of labor intensive and slow, it is. But before
you know it you’ll have several dozen extremely valuable KPIs.
Until you get into the habit of choosing effective metrics, they
take some time and effort to identify. Each KPI really is a mani-
festation of insight; each teaches you something you didn’t know
about the services you maintain. Each is a thing to be prized,
shared, and talked about.

For Example
As you can probably imagine, we’re pretty good at choosing
effective metrics before we need them at Librato, but we still
regularly encounter valuable metrics that we didn’t anticipate.
For example, we recently encountered a behavior in one of our
newish services that we couldn’t explain. Symptomatically, it
was quite visible in our inter-service latency data as a latency
spike between the service and a MySQL server.

When we dug into it, we found that there was a bug in the
upstream API of a vendor that the service relied on. If we
crafted the API request a certain way (the correct way), the API
returned too many results (all of them, instead of the subset
specified by the query), and we wound up over-taxing our own
MySQL server writing this over-abundance of results back. But
if we used a modified version of the broken-looking example
from the upstream vendor’s documentation, it worked fine.

We reported the bug and commented our code, but found that
every engineer who came across this query had the irrepressible
urge to fix this broken-looking API query, so we began tracking
the number of results returned by this API query as a KPI for
that service. Several months later, when the upstream vendor
fixed their API, we had the opposite problem: we were getting
0 results back from that API (because our broken query, was in
fact, now broken), but since we were already tracking that met-
ric, we immediately saw what the problem was and were able to
very rapidly push a fix for it.

Today, the engineers who were involved in that episode (myself
included) tend to include KPIs like the number of results
returned from interfaces they don’t control as a matter of course.
They probably don’t even remember why. This is one of the many
ways that going through the process of finding and relying on
effective operational metrics changes the culture of engineering
teams. It is a self-sustaining cycle: good data begets reliance on
data, which begets better data.

KPIs that represent insight into the systems that we build give
us a rock to stand on in the midst of uncertainty, and enable
us to act quickly and decisively to protect the uptime of our
services. Without them we don’t really know how the things we
build work. If you’re in that boat, the place to start (IMO) is with
inter-service latency data. Get it, and use it to work your way
into insight.

Take it easy.

http://www.usenix.org

