
12    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

SECURITY

Sandboxing with Capsicum
P A W E L J A K U B D A W I D E K A N D M A R I U S Z Z A B O R S K I

Very few programmers have managed to successfully use the principle
of least privilege, as found in OpenSSH, Postfix, and djbdns. Capsi-
cum, introduced in 2010, adds a capability model designed to make it

easier for programmers to reason about how to split a program into privileged
and unprivileged portions. In this article, we describe the changes made in
Capsicum since 2010, compare Capsicum to earlier sandboxing techniques,
and look at the new Casperd, which makes it simpler to split programs.

Long ago, people started to recognize that security models proposed by the mainstream
operating systems, including Windows, Mac OS X, and all kinds of UNIX-like systems, are
simply naive: All you need to do is to write programs that have no bugs. That’s indeed naive.
Let’s also state an obvious rule: The more code we write, the more bugs we introduce, some of
which may jeopardize the security of our system. Once we accept this fact, where do we go?
We could only develop very small programs, which are easy to audit, but this again would be
a bit naive.

To reduce the size of the TCB (trusted computing base), the privilege separation model was
introduced. This model splits the program into several independent components, moving all
privileged tasks to a small privileged process, and shifting all the work requiring no privi-
leges but that may be risky (like processing network packets) to a larger process that has
no privileges. In the case of OpenSSH, the unprivileged process is responsible for parsing
all network packets, handling compression, encryption, etc., and the privileged process is
responsible for authenticating credentials extracted by the unprivileged process, starting the
user’s shell, and so on. Those two processes communicate over pipes. Designing the separa-
tion properly is very important. If the unprivileged process would have been responsible
for authentication and would just pass the result to the privileged process, the whole model
would be useless [5, 6].

Global Namespaces
An unprivileged process should be enclosed within some kind of process sandbox. One way
to evaluate how good the sandbox is is to check how many global namespaces it is protecting.
By global namespace, we are referring to a limited area within the operating system, these
areas having some set of names that allow the unambiguous identification of an object [2].
An example of a process sandbox is a Linux kernel mechanism called seccomp. This mecha-
nism allows you to limit a process to a state in which you can’t do any other system calls
than exit, sigreturn, read, and write [3]. It appears to be a very secure approach, but it is also
very restrictive. For example, you can’t, in any situation, open any new file or receive a new
file descriptor. Other mechanisms of process sandboxing are Seatbelt (in Mac OS X) and
Capsicum (in FreeBSD), which will be described later in this article. In Table 1, we present a
full list of the global namespaces in the FreeBSD kernel. One namespace example is the file
paths global namespace, which is nothing more than the list of files, symlinks, and directo-
ries in our computer.

Pawel Jakub Dawidek is a
co-founder and CTO at Wheel
Systems and a FreeBSD
committer who lives and works
in Warsaw, Poland. He is the

author of various GEOM classes, including the
disk-encryption class GELI; he implemented
the Highly Available Storage (HAST) daemon
for distributing audit trail files (auditdistd), and
nowadays is mostly working on the Capsicum
framework and the Casper daemon.
pjd@freebsd.org

Mariusz Zaborski is currently
working as a software
developer at Wheel Systems
and is a student at Warsaw
University of Technology.

He is a successful Google Summer of Code
2013 student. His work is mostly focused on
Capsicum and the Casper daemon. Mariusz’s
relationship with FreeBSD is still young but
very intensive. oshogbo@freebsd.org

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  13

SECURITY
Sandboxing with Capsicum

Table 1 was first published in [4]. Additionally, we would like to
include “routing tables” to this list. In the FreeBSD operating
system, per-process routing tables may be changed using the
program setfib(1).

Security Hacks
In this section, we describe many of the “sandboxing techniques”
(or as we prefer, “security hacks”) that were used before process
sandboxing, and show that creating an isolated environment
wasn’t easy. Programmers try to simulate sandboxes using
portable functions like setuid(2), setrlimit(2), chroot(2), etc. Most
of these functions are part of the POSIX standard, so they should
work on Linux and UNIX operating systems.

setuid(2), setgid(2), and setgroups(2)
It is obvious that unprivileged processes cannot run with root
privileges, so they have to run as some other user. In the past, it
was common to choose the “nobody” user, but if multiple inde-
pendent programs reuse this one UID to drop privileges, it may
become possible to jump from one program to another. We don’t
want that. This is why programs nowadays reserve their own
unprivileged users, like the “sshd” user in the case of OpenSSH.
There are many details you have to do correctly or this won’t
work properly:

◆◆ When changing your UID, don’t forget to change your GID, too.
◆◆ When changing your GID, be sure to do it before changing your

UID or it will fail.
◆◆ When changing your GID, be sure to remove all the other

groups the process owner (root) belongs to, and do it before
changing UID.

◆◆ Be sure to use setgroups(2), setgid(2), and setuid(2) system
calls, or it may be possible to switch back to root.

◆◆ Be sure to verify these operations actually succeed! On some
systems, in some conditions, it is not possible for the root user
to change its UID, for example, and you’ll be left running as root.

◆◆ Be sure to verify that your target operating system’s setuid(2)
and setgid(2) system calls modify real, effective, and saved user
ID and group ID (or use setresuid(2)/setresgid(2) if available).

◆◆ Be sure not to modify effective user ID before calling setuid(2)
or it won’t change saved UID, and it will be possible to switch
back to root.

◆◆ Functions that allow you to change UID, GID, and groups
require root privileges.

In Listing 1, we have provided an example implementation of
this method. It looks easy, doesn’t it? However, there are many
examples of people making some slip-up trying to use this tech-
nique. The most common mistakes with CVE examples are:

Namespace Description

Process ID (PID)
UNIX processes are identified by unique IDs. PIDs are returned by fork and used for signal delivery, debugging,
monitoring, and status collection.

File paths
UNIX files exist in a global, hierarchical namespace, which is protected by discretionary and mandatory access
control.

NFS file handles
The NFS client and server identify files and directories on the wire using a flat, global file handle namespace.
They are also exposed to processes to support the lock manager daemon and optimize local file access.

File system ID
File system IDs supplement paths to mount points, and are used for forcible unmount when there is no valid path
to the mount point.

Protocol address
Protocol families use socket addresses to name local and foreign endpoints. These exist in global namespaces,
such as IPv4 addresses and ports, or the file system namespace for local domain sockets.

Sysctl MIB
The sysctl management interface uses numbered and named entries, used to get or set system information, such
as process lists and tuning parameters.

System V IPC System V IPC message queues, semaphores, and shared memory segments exist in a flat, global integer namespace.

POSIX IPC
POSIX defines similar semaphore, message queue, and shared memory APIs with an undefined namespace: On
some systems, these are mapped into the file system; on others they are simply a flat, global namespace.

System clocks UNIX systems provide multiple interfaces for querying and manipulating one or more system clocks or timers.

Jails The management namespace for FreeBSD-based virtualized environments.

CPU sets A global namespace for affinity policies assigned to processes and threads.

Routing tables A global namespace with routing tables assigned to process.

Table 1: Global namespaces in the FreeBSD operating system kernel [4]

14    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

SECURITY
Sandboxing with Capsicum

◆◆ CVE-2013-4559 for lighttpd—missing checks for setuid(2),
setgid(2), and setgroups(2) failures

◆◆ CVE-2007-0536 for rMake—missing setgroups(2) call
◆◆ CVE-2000-0172 for mtr—seteuid(2) instead of setuid(2)

 #define VERIFY(expr) do { \

	 if (!(expr)) \

		 abort(); \

} while (0)

uid_truid, euid, suid;

gid_trgid, egid, sgid;

gid_tgidset[1];

gidset[0] = pw->pw_gid;

if (setgroups(1, gidset) == -1)

	 err(1, Ünable to set groups to gid”);

if (setgid(pw->pw_gid) == -1)

	 err(1, Ünable to set gid”);

if (setuid(pw->pw_uid) == -1)

	 err(1, Ünable to set uid”);

VERIFY(getresuid(&ruid, &euid, &suid) == 0);

VERIFY(ruid == pw->pw_uid);

VERIFY(euid == pw->pw_uid);

VERIFY(suid == pw->pw_uid);

VERIFY(getresgid(&rgid, &egid, &sgid == 0);

VERIFY(rgid == pw->pw_gid);

VERIFY(egid == pw->pw_gid);

VERIFY(sgid == pw->pw_gid);

VERIFY(getgroups(0, NULL) == 1);

VERIFY(getgroups(1, gidset) == 1);

VERIFY(gidset[0] == pw->pw_gid);

Listing 1: Example code to change UID and GID in a secure fashion

Directory Restrictions
The method just described provides us with some security in
the file path namespace, but our unprivileged process can still
access various files on the system, can fill up file systems like
/tmp/, or perform network communications. To “fix” the file
system problem, we can use the chroot(2) system call, which
limits access to the file system tree.

Again, a few traps await us here:

◆◆ The chroot(2) system call is limited to the root user only, so we
need to do it before changing our UID!

◆◆ Once our root directory is changed we have to chdir(2) to the
new “/” because if the process working directory is outside
of the new root directory, it will remain possible to access all
the files!

◆◆ Be careful not to leave any directory descriptors open or the
process will be able to escape from within our new root directory!

Code which implemented most of these rules is presented
in Listing 2. We skipped over checking every open direc-
tory descriptor and checking every component for ownership;
however, you should be aware that leaving any open directory
descriptor is a big mistake.

/* Check for open directory descriptors */

/* Check for ownership of every component */

if (chroot(dir) != 0)

	 err(1, “Unable to change root directory to \

 %s”, dir);

if (chdir(“/”) != 0)

	 err(1, “Unable to change directory

 to new root”);

Listing 2: Code demonstrating correct use of the chroot(2) function

Some examples of common mistakes, with corresponding CVEs:

◆◆ CVE-2008-5110, CVE-2011-4099—missing chdir(“/”) after
chroot(2)

◆◆ CVE-2005-4532—chroot directory writable by user

P_SUGID
After changing our directory using chroot(2) and dropping privi-
leges using setuid(2), we are no longer running as root, but all our
sandboxes run as the same UNPRIV_USER user, which is not
good. For example, OpenSSH’s sandbox is using the single sshd
user to handle sessions from every user that is logging in, includ-
ing root. Now if we break into such a sandbox we will be running
as sshd user and can mess with other sandboxes, handling other
SSH sessions. What exactly can we do? If we could use ptrace(2)
to attach to a sandbox that handles root’s session, then we could
just modify this sandbox memory and break into root’s SSH
session. This possibility alone would make privilege separation
useless. Fortunately, this is not possible. Because we were run-
ning as root and then dropped our privileges using setuid(2), the
kernel tagged our process with the P_SUGID flag. On FreeBSD,
this prevents another process with the same user ID from being
able to debug us. It also means that only some signals may be
delivered to such a process, but those signals include SIGUSR1,
SIGUSR2, SIGHUP, SIGALRM, etc., so it is still not without risk.

As we mentioned in the introduction to this section, most func-
tions presented here are part of the POSIX standard and should
work on most Linux and UNIX operating systems. Unfortu-
nately, it is not all roses. For example, in 2005, Tavis Ormandy
found out that the setuid(2) function does not set the P_SUGID
flag in the NetBSD operating system [9]. So before sandboxing
your process using all those techniques, be sure to check that
they work properly on your destination operating system.

Very Restrictive Environment
The next thing we shall try to do is to prevent network connec-
tions. If an attacker can break into our program, they could,
for example, run a spam-sending botnet. One way to prevent
network connections is to set the limit on open file descriptors to
zero, which will prevent the opening of any new file descriptors
and raising the limit back.

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  15

SECURITY
Sandboxing with Capsicum

If we are limiting the number of file descriptors, we could also
limit file size and disable forking. If we set the file size limit to
zero, a process may not create any new files. Disabling forking
will prevent any kind of DDoS attacks that involve running a lot
of child processes.

Listing 3 shows example code that sets all of these restrictions.

structrlimitrl;

rl.rlim_cur = rl.rlim_max = 0;

if (setrlimit(RLIMIT_NOFILE, &rl) != 0)

 err(1, “Unable to limit file descriptors”);

if (setrlimit(RLIMIT_FSIZE, &rl) != 0)

 err(1, “Unable to limit file size”);

if (setrlimit(RLIMIT_NPROC, &rl) != 0)

 err(1, “Unable to disallow forking”);

Listing 3: Example code to create a very restricted environment

This method is used, as far as the authors know, only in
OpenSSH. These limits are very restrictive. The process may
not receive any new file descriptors, duplicate any descriptors, or
open any new files in any situation.

Summary of Security Hacks
These four methods are the most interesting methods to sandbox
applications using standard functions. In Table 2, we present
information on which method protects which namespace.

While analyzing the Table 2, please keep in mind that using
setrlimit(2) technique imposes significant restrictions on the
programmer and, in the common case, makes setrlimit(2) very
impractical or even impossible to use.

As you can see, using those techniques leaves a lot of space for
mistakes, without even covering all global namespaces. These
methods also leave a lot of gaps in global namespaces that they
should protect.

Capsicum
Capsicum is a lightweight OS capability and sandbox framework
[7]. In FreeBSD, we can divide the architecture of our process
sandbox system into two modules:

◆◆ Tight sandboxing (cap_enter(2))
◆◆ Capability rights (cap_rights_limit(2))

By “tight sandboxing” we understand that after calling the
cap_enter(2) function, the FreeBSD kernel will disallow access
to any global namespaces. The kernel will still allow access to
any local namespaces, so we can continue to use any references
to any part of the global namespace. For example, in the file path
namespace you can open a directory (e.g., using the opendir(2)
function), and after entering the sandbox you can still open any
file within that directory (e.g., using the openat(2) function).

The second part of Capsicum consists of capability rights,
which allow us to limit even more local namespaces. We have a
lot of flexibility in setting capability rights, which we can limit
to read-only, write-only, or append-only. Many limits are also
namespace specific. For example, three file-specific rights are:

◆◆ CAP_FCHMOD allows change mode (fchmod(2)).
◆◆ CAP_FSTAT allows getting file stats (fstat(2)).
◆◆ CAP_UNLINKAT allows file deletion (unlinkat(2)).

Namespace setuid(1) chroot(2) P_SUGID setrlimit(2) cap_enter(2)

Process IDs Unprotected Unprotected Partial Unprotected Protected

File paths Partial Protected Unprotected Partial Protected

NFS file handle Protected Unprotected Unprotected Unprotected Protected

Filesystem IDs Protected Unprotected Unprotected Unprotected Protected

Sysctl MIB Partial Unprotected Partial Unprotected Protected

System V IPC Unprotected Unprotected Unprotected Unprotected Protected

POSIX IPC Partial Unprotected Unprotected Protected Protected

System clocks Protected Unprotected Unprotected Unprotected Protected

Jails Partial Unprotected Unprotected Unprotected Protected

CPU sets Unprotected Unprotected Unprotected Unprotected Protected

Protocol address Unprotected Partial Unprotected Protected Protected

Routing tables Unprotected Unprotected Unprotected Unprotected Protected
Table 2: Showing which global namespaces are protected by different sandboxing techniques. Partial means the namespace is protected to some extent.

16    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

SECURITY
Sandboxing with Capsicum

We also have socket-specific rights, for example:

◆◆ CAP_ACCEPT accepts connection on socket (accept(2)).
◆◆ CAP_BINDAT assigns a local protocol address to a socket

(bindat(2)).

In the FreeBSD operating system, we have defined around 77
capabilities. A full list of the Capsicum capability rights can be
found in the FreeBSD rights(4) manual page.

Implementation of Capability Rights
In FreeBSD, file descriptors are a carrier of capability rights. In
a previous article about Capsicum [1], the authors wrote that we
wrap a regular file descriptor structure in a special structure
that holds information about rights. That has been changed
twice since then. First, they were changed to remove the wrap-
per structure and add a variable to the filedescent structure
to describe capability rights. The second modification was to
change the type of the variable. Initially, rights were represented
by the uint64_t type, allowing 64 rights to be defined. It turned
out that the maximnt number of rights was too small and the
uint64_t type was changed to a special structure that allows us
to define up to 285 rights (and even more if needed with more
involved changes).

This new structure is presented in Listing 4. The top two bits in
the first element of the cr_rights array contain total number of
elements in the array plus two. This means if those two bits are
equal to 0, we have two array elements. The top two bits in all
remaining array elements should be 0. The next five bits in all
array elements contain an array index. Only one bit is used and
bit position in this five-bit range defines the array index. This
means there can be at most five array elements in the future.
Using only one bit for array index helps to discover ORing rights
from different array elements.

#define CAP_RIGHTS_VERSION_00 0

/*

 * #define CAP_RIGHTS_VERSION_01 1

 * #define CAP_RIGHTS_VERSION_02 2

 * #define CAP_RIGHTS_VERSION_03 3

 *

/

#define CAP_RIGHTS_VERSION CAP_RIGHTS_VERSION_00

struct cap_rights {

 uint64_t cr_rights[CAP_RIGHTS_VERSION + 2]; };

typedefstructcap_rightscap_rights_t;

Listing 4: Current structure that defines Capsicum rights

Changing the type of the cap_rights structure also forces us
to change the interface of the cap_rights_limit(2) function. In
previous implementations to manage rights, we could simply use
logic instructions (e.g., and, or), but now this is no longer pos-
sible. New interfaces are presented in Listing 5.

 /* Interfaces. */

cap_rights_t *cap_rights_init(cap_rights_t *rights, ...);

void cap_rights_set(cap_rights_t *rights, ...);

void cap_rights_clear(cap_rights_t *rights, ...);

bool cap_rights_is_set(constcap_rights_t *rights, ...);

Listing 5: New interfaces for managing capability rights

These functions replace the previous logic instructions. First,
we need to initialize a cap_rights_t structure using cap_rights_
init(2) function. Then we may add new rights using cap_rights_
set(2). Once we finish all the required operation settings, we can
use cap_rights_limit(2) function to limit a file descriptor. All of
these steps are presented in Listing 6.

intfd;

cap_rights_t rights;

cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT);

cap_rights_set(&rights, CAP_FCHMOD);

/* Limit descriptor */

cap_rights_limit(fd, &rights);

Listing 6: Example of new interface usage

Status of the Project
Capsicum was first introduced in FreeBSD 9.0 and from then
was very quickly developed. Currently, there is ongoing work to
port Capsicum sandbox to Linux, OpenBSD, and DragonFlyBSD
[7]. A growing list of programs in the FreeBSD operating system
now use Capsicum:

◆◆ auditdistd(8)
◆◆ dhclient(8)
◆◆ hastd(8)
◆◆ hastctl(8)
◆◆ kdump(1)
◆◆ rwho(1)
◆◆ rwhod(8)
◆◆ ping(8)
◆◆ sshd(8)
◆◆ tcpdump(8)
◆◆ uniq(1)

An up-to-date list can be found on the Cambridge Web site about
Capsicum in FreeBSD [8].

Casper Daemon
Even though Capsicum gives us more flexibility than other
methods, in some cases this is still not enough. Consider the
situation in which you need to open a lot of different directories
(for example, when sandboxing the grep(1) program), or the case
where you need to open some Internet connection, but before

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  17

SECURITY
Sandboxing with Capsicum

entering the sandbox you don’t know what kind of connection
this will be.

The Capsicum framework resolves this problem using a privilege
separation model. Before entering the sandbox you can spawn a
new process which will have more access to global namespaces
or even may not be sandboxed at all. The privileged process
performs some operation like opening files or Internet connec-
tions and passes the file descriptor to the unprivileged process
using UNIX domain sockets. The unprivileged process performs
all other actions. The rwhod(8) utility is an example of a program
that is sandboxed using this method.

This method works pretty well, but there is a lot of code that
would need to be rewritten multiple times for different programs.
To solve this problem, the Casper daemon was introduced.

Daemon Architecture
We can separate the Casper daemon into two parts: the Casper
daemon itself (casperd(8)) and Casper services.

The Casper daemon is a global program in an operating system
that waits for connections from other process. We can establish
a connection with the daemon using the cap_init(2) function.
The Casper daemon automatically spawns a second process
called the “zygote.” The zygote is a lightweight process that
closes all additional descriptors and uses minimal memory.
When a process establishes a connection with the daemon, the
process sends information about which services it will require.
Casper receives that information and clones the zygote pro-
cess, and after this operation, one zygote is transformed (using
execv(2) function) into a service. The process shown in Figure 1
demonstrates these steps.

Casper services are specially written programs that have
specific tasks. In FreeBSD 11-CURRENT, we have five official
services.

◆◆ system.dns allows the use of gethostbyname(3),
gethostbyname2(3), gethostbyaddr(3), getaddrinfo(3),
getnameinfo(3).

◆◆ system.grp provides a getgrent(3)-compatible API.
◆◆ system.pwd provides a getpwent(3)-compatible API.
◆◆ system.random allows obtaining entropy from /dev/random.
◆◆ system.sysctl provides a sysctlbyname(3)-compatible API.

All of these services provide equivalent APIs to the function that
they replace.

References
[1] Robert N. M. Watson, Jonathan Anderson, Ben Laurie,
Kris Kennaway, “Introducing Capsicum: Practical Capa-
bilities for UNIX,” ;login:, vol. 35, no. 6 (December 2010):
https://www.usenix.org/publications/login/december-2010
-volume-35-number-6/introducing-capsicum-practical
-capabilities-unix.

[2] “Namespace,” Wikipedia, accessed September 11, 2014:
http://en.wikipedia.org/wiki/Namespace.

[3] Google Seccomp Sandbox for Linux, 2014: https://code
.google.com/p/seccompsandbox/wiki/overview.

[4] Robert N. M. Watson, Jonathan Anderson, Ben Laurie,
Kris Kennaway, “Capsicum: Practical Capabilities for
UNIX,” 2010: https://www.usenix.org/legacy/event/sec10
/tech/full_papers/Watson.pdf.

[5] Niels Provos, Markus Friedl, Peter Honeyman, “Prevent-
ing Privilege Escalation”: http://niels.xtdnet.nl/papers
/privsep.pdf.

[6] Niels Provos, Privilege Separated OpenSSH: http://www
.citi.umich.edu/u/provos/ssh/privsep.html.

[7] Robert Watson, Cambridge Computer Laboratory Web
page, 2014: https://www.cl.cam.ac.uk/research/security
/capsicum/.

[8] Robert Watson, Cambridge Computer Laboratory Web
page—Capsicum FreeBSD, 2014: https://www.cl.cam.ac.uk/
research/security/capsicum/freebsd.html.

[9] Tavis Ormandy, NetBSD Local PTrace Privilege Escala-
tion Vulnerability, CVE-2005-4741: http://www.security
focus.com/bid/15290/info.

Figure 1: Life cycle of zygote in Casper daemon. On left side, the Casper
daemon has spawned a zygote; on the right side, the zygote has been
attached to the process-requesting service.

