
22    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

SECURITY

Code Testing through Fault Injection
P E T E R G U T M A N N

Several years ago a friend of mine did some robustness testing on a
widely used OpenSource Software Library. He instrumented the
malloc() call so that it would fail (return a NULL pointer/out-of-

memory error) the first time that it was called. On the second program run
it would fail the second time that it was called, on the next run the third
time, and so on. Then he fired up a test suite wrapper for the library and
ran it using the fault-inducing malloc().

Luckily, he’d had the foresight to hard-limit the script he was using to stop after a thousand
core dumps rather than running through the full test suite wrapper. The hard drive on his
computer still hasn’t forgiven him for the thrashing it got, though. So why did something as
simple as a memory allocation failure cause such havoc?

Why
Most developers have heard that writing unit tests for their code is a Good Thing, and some
of them even include the odd one to substantiate this. What these tests invariably do, though,
is exercise the standard code paths, the ones that get taken in the presence of normal input
and normal operations by other parts of the system. The code paths that handle exception
conditions, for example, memory allocation failures, never get tested. It’s exactly these condi-
tions that the instrumented malloc() exercised, and as the results show, the performance of
the never-tested code in these paths was pretty dire.

The instrumented malloc() is an example of a testing technique called fault injection, which
tests how well (or, more typically, how poorly) code handles exception conditions. The most
commonly encountered type of fault injection is fuzz testing or fuzzing, which throws
random input at a program to see how it handles it. One of the first instances of fuzz testing
looked at the reliability of UNIX utilities in the presence of unexpected input, finding that
one-quarter to one-third of all utilities on every UNIX system that the evaluators could get
their hands on would crash in the presence of random input [1]. Unfortunately, when the
study was repeated five years later the same general level of faults was still evident [2]. While
this shows admirable consistency, it’s probably not the result that was desired.

Other studies have looked at the behavior of GUI rather than command-line applications in
the presence of unexpected input. One such study examined 30 different Windows appli-
cations from a mix of commercial and non-commercial vendors. Of the programs tested,
21% crashed and 24% hung when sent random mouse and keyboard input, and every single
application crashed or hung when sent random Windows event messages [3]. Before everyone
rolls their eyes and mumbles things about Windows, a related study on the reliability of GUI
applications under OS X found them to be even worse than the Windows ones [4].

A second type of fault injection involves inducing specific execution failures. One way of
doing this is through instrumented system calls like the malloc() example given earlier.
The late Evi Nemeth of the University of Colorado used to have her students link their pro-
gramming assignments against a custom stdlib/libc in which certain function calls didn’t

Peter Gutmann is a researcher
in the Department of Computer
Science at the University of
Auckland working on design
and analysis of cryptographic

security architectures and security usability.
He is the author of the open source cryptlib
security toolkit, and an upcoming book on
security engineering. In his spare time he
pokes holes in whatever security systems
and mechanisms catch his attention and
grumbles about the lack of consideration of
human factors in designing security systems.
pgut001@cs.auckland.ac.nz

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  23

SECURITY
Code Testing through Fault Injection

always succeed unconditionally. Most developers know that you
need to check whether a read()/fread() actually managed to
read the data that it was supposed to, but how many check an
lseek()/fseek()?

Think of this as a type of control-flow fuzzing rather than the
standard data-based fuzzing. Using modified libraries that ran-
domly report failures for system calls that could reasonably be
expected to fail, typically implemented as wrappers for standard
libraries, makes for a useful testing tool. Some work has already
been done in this area, generally looking at ways of automating
the creation of fault-injection wrappers for different libraries [5].

The other type of instrumentation that you can use for fault
injection is to modify the code itself to inject failures, such as a
bit being flipped in digitally signed data, so that the signature
check on your SSL handshake fails and your application warns
you that the data has been tampered with. If you’re thinking
“goto fail” or the GnuTLS equivalent at this point, then you’ll
understand why this type of testing is important.

Implementing this type of fault injection is a bit more laborious
than straight fuzzing of either input data or system calls, which
rely on the fact that if you make random changes and rerun the
code under test often enough then you’ll eventually trigger a fault
condition.

Statistical fuzzing only works most of the time. If the input data
is highly structured, using a tag/length/value or TLV encoding,
for example, then any change in the tag or length will be quickly
detected and rejected, at least by a properly implemented parser,
and any change in the value is irrelevant. To fuzz data like this,
you need somewhat exotic and protocol-specific smart fuzzers
[6], but that’s getting a bit beyond the scope of this article.

What
So if you’re trying to catch “goto fail”-style problems, which sorts
of faults do you inject and where do you inject them? If what
you’re implementing conforms to some standard or specifica-
tion, then the process is, at least in theory, relatively straightfor-
ward: You look for any location in the specification where you’re
required to report an error (e.g., due to a signature check failure)
and then inject a fault of that type. If the implementation doesn’t
detect and report an error, then there’s a problem.

The reason why I’ve said that this works in theory is because
most standards seem to focus excessively on the format of mes-
sages rather than their semantics. So a standard will describe in
minute detail the layout of data elements down to the individual-
bit level, but then neglect to mention that if some particular
processing step fails you shouldn’t continue. For example, here’s
what the specification for a PKI standard has to say about values
that protect against replay attacks:

The [values] protect the PKIMessage against replay
attacks. The [value] will typically be 128 bits of
(pseudo-) random data generated by the sender,
whereas the recipient [value] is copied from the sender
[value] of the previous message in the transaction. [7]

That’s the entire description (or non-description) of the replay-
protection mechanism. Note how the text carefully describes the
size of the value and how it’s copied around, but never says any-
thing about checking it, or what to do if the check fails. It’s pos-
sible to create a fully standards-compliant implementation that
has no protection whatsoever against replay attacks because
the spec never tells you to use the value to defend against these
attacks. And if you’re relying on using the specification to deter-
mine locations for fault injection, you have to infer what you’re
supposed to do from the comment that the values “protect the
PKIMessage against replay attacks.”

This problem is widespread among security standards. The
OpenPGP specification, which devotes a full 15 pages to the
minutiae of the formatting of signatures and signature data,
completely omits what exception conditions need to be checked
for when processing signatures or how to respond to them. The
only comment in the standard that I could find was a statement
that “if a subpacket is encountered that is marked critical but
is unknown to the evaluating software, the evaluator SHOULD
consider the signature to be in error” [8].

The standards that cover SSH are no better, with the sole check
that’s required being that “values of [Diffie-Hellman parame-
ters] that are not in the range [Diffie-Hellman prime size] MUST
NOT be sent or accepted by either side” [9].

As long as an implementation checks those parameters, it
can ignore the signature validity check and be completely
standards-compliant.

This lack of information unfortunately means that you’ll need to
go through and annotate the specification to indicate fault con-
ditions that need to be checked at various locations. This can get
somewhat tedious, because many specifications are presented
more as a catalog of message types (one side sends message A
with the following format, the other side responds with message
B in the following format, and so on) than a description of the
control flow of the protocol.

An additional complication arises because a particular type of
failure, and again I’ll use the “goto fail” signature-check flaw as
the poster child, can have a number of different causes. In this
case a signature check could fail because of any corruption/modi-
fication of the signed data, incorrect calculation of the hash value
that’s signed, corruption/modification of the signature value, and
incorrect computation of the signature value. So a full-coverage
test needs to inject each of these faults in order to verify that the
signature-check code will catch all of the different error types.

24    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

SECURITY
Code Testing through Fault Injection

When you’re thinking about what sorts of faults to inject, you
also have to know when to stop. For example, what if you’re wor-
ried that the code that hashes the data to be signed can detect
corruption at the start of the data but not at the end, or a high
bit flipped but not a low bit? Eventually, you need to make some
assumptions about the correct functioning of standard opera-
tions before you start developing an urge to inject faults down at
the atomic level.

An alternative strategy that you can use to determine what sorts
of faults to apply is to look through the code and make sure that
you inject ones that exercise every error path. This isn’t such
a good approach, though, because it’s not certain that the code
that you’re using as a template to generate your faults is actually
checking for all of the error conditions that it’s supposed to. This
can arise either due to a coding error (the programmer intended
to check for an error condition but forgot to add the necessary
code, or added the code but got it wrong) or because of a design
error (the programmer never even knew that she was supposed
to be checking for an error condition). In either case, if the code
isn’t obviously checking for a fault, you don’t know that you
should be injecting one.

Figuring out where to inject faults, and what sorts of faults to
inject, is by far the hardest part of the process. Once you’ve done
that, you can then get down to implementing the fault injection.

How
Now that you’ve identified what sorts of faults you want to inject,
how do you do it? The most straightforward, but probably also
the ugliest, approach is to insert chunks of code inside #ifdefs
that inject faults at appropriate locations. Eventually, you’ll
end up with the code encrusted in a mass of #ifdefs controlling
conditional compilation, and you’ll be hard-pressed to resist tak-
ing your former Mona Lisa, now turned into the equivalent of a
spray-painted bathroom stall, outside and setting fire to it.

A less inelegant way to handle this is to hide the mess behind
a macro, or whatever equivalent your programming language
gives you. I use #define INJECT_FAULT, taking as argument two
parameters, an enum that defines which fault to inject and the
code to use to inject the fault. The macro invocation:

INJECT_FAULT(FAULT_SIGCHECK, FAULT_SIGCHECK_CODE);

expands to:

if(faultType == FAULT_SIGCHECK)

 {

 fault code defined in FAULT_SIGCHECK_CODE;

 }

where faultType is a global variable that’s set to the appropri-
ate fault to inject, and the fault code itself is just a macro-based
paste of whatever you need to use to inject the fault. You’ll still
get a mass of random code to handle the fault injection, but now
it’s all squirreled away in a header file where you can’t see it
anymore, or at least where it isn’t obviously plastered all over
your Mona Lisa.

Finally, you need to exercise your newly added fault-injection
capability. This is pretty straightforward: You run your normal
test routines, but this time inject one of the faults that you’ve set
up, for example with setFault(FAULT_SIGCHECK). If your test
routine still reports success (or if your code simply crashes), then
you’ve got a problem that needs to be addressed. Do this for each
fault in turn and make sure that the error is detected.

So that’s how you can test your software using fault injection. It
won’t catch every problem, but it will help you avoid going to fail.

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  25

SECURITY
Code Testing through Fault Injection

References
[1] Barton Miller, Lars Fredriksen, and Bryan So, “An Empiri-
cal Study of the Reliability of UNIX Utilities,” Communica-
tions of the ACM, vol. 33, no. 12 (December 1990), p. 32.

[2] Barton Miller, David Koski, Cjin Pheow Lee, Vivekananda
Maganty, Ravi Murthy, Ajitkumar Natarajan, and Jeff Steidl,
“Fuzz Revisited: A Re-examination of the Reliability of UNIX
Utilities and Services,” University of Wisconsin-Madison
Computer Sciences Technical Report #1268, April 1995.

[3] Justin Forrester and Barton Miller, “An Empirical Study of
the Robustness of Windows NT Applications Using Random
Testing,” Proceedings of the 4th USENIX Windows Systems
Symposium (WinSys ’00), August 2000, p. 59.

[4] Barton Miller, Gregory Cooksey, and Fredrick Moore, “An
Empirical Study of the Robustness of MacOS Applications
Using Random Testing,” SIGOPS Operating Systems Review,
vol. 41, no. 1 (January 2007), p. 78.

[5] Paul D. Marinescu and George Candea, “LFI: A Practical
and General Library-Level Fault Injector,” Proceedings of the

Intl. Conference on Dependable Systems and Networks (DSN),
June 2009: http://dslab.epfl.ch/pubs/lfi.pdf.

[6] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz
Khurshid and Vitaly Shmatikov, “Using Frankencerts for
Automated Adversarial Testing of Certificate Validation
in SSL/TLS Implementations,” Proceedings of the 2014
Symposium on Security and Privacy (S&P ’14), May 2014,
p. 114.

[7] Carlisle Adams, Stephen Farrell, Tomi Kause, and Tero
Mononen, “Internet X. 509 Public Key Infrastructure Cer-
tificate Management Protocol (CMP),” RFC 4210, September
2005.

[8] Jon Callas, Lutz Donnerhacke, Hal Finney, David Shaw,
and Rodney Thayer, “OpenPGP Message Format,” RFC 4880,
November 2007.

[9] Tatu Ylonen and Chris Lonvick, “The Secure Shell (SSH)
Transport Layer Protocol,” RFC 4253, January 2006.

