
42    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

COLUMNSPractical Perl Tools
Oh Say Can You CPAN?

D A V I D N . B L A N K - E D E L M A N

Every once in a while I get asked to join a conference panel about
scripting languages. It will be me, a Pythonista, a Rubyist, and a
PHP developer (do they have a cute name?) all onstage together. In

most cases, I think the organizers are hoping for the equivalent of a steel
cage match in professional wrestling—the fewer participants standing at
the end, the better. In these scenarios, I’m almost always a disappointment
because I come to praise the other languages, not to bury them. I have a deep
appreciation for the other languages, and I’m not afraid to state it even while
I’m representing Perl. One of the key reasons I can say “I dig all of the other
languages, but I choose to stick with Perl most of the time” is CPAN. This col-
umn will focus on CPAN, how to cope with both its triumphs and shortfalls,
and some of the ways to interact with it that you may not have encountered
before. There probably won’t be any code in this issue’s column but that’s
okay because you’ll be learning ways to have other people write Perl code for
you. We’re going to focus on how to consume content from CPAN; discussion
about how to contribute to it will have to wait for a future column.

What Is CPAN and How Do I Get Me Some?
I would be really surprised if there are Perl programmers who have never heard of CPAN, but
I’ve been surprised before so pardon me as I go over the basics. CPAN is short for the Com-
prehensive Perl Archive Network. This is a massive repository of Perl code (largely modules
meant for use in other people’s code) that has been online since 1995 or so. How massive? As
of this writing, cpan.org says:

The Comprehensive Perl Archive Network (CPAN) currently has 138,392 Perl modules in
30,406 distributions, written by 11,739 authors, mirrored on 254 servers.

All of this code has been uploaded so other people may make use of it, so it can be a tremen-
dous resource. Any time you have a problem or a task that sounds like someone else may have
solved it, it always behooves you to search CPAN first. We’ll talk about ways to do this in a
moment.

The plus of having such a massive store of donated code to draw upon is that you often can
find someone else has already written (almost) exactly what you need. The minus of having
this massive store is some percentage of it is (to be charitable) duplicated effort, and (to be
less charitable) some of it is crap. I’ll offer tips about this problem later in this column as well.

Deep CPAN Diving
So how do you find what is available on CPAN? Many people start with the search.cpan.org
engine. This Googley-looking search engine returns a page like the one in Figure 1.

An experienced CPAN spelunker will scan the returned list of modules and look not just at
the description to determine whether a module is appropriate for the task at hand, but also at
the metadata. For example, has the module been updated recently? Does it have any reviews

David N. Blank-Edelman is
the Director of Technology at
the Northeastern University
College of Computer and
Information Science and the

author of the O’Reilly book Automating System
Administration with Perl (the second edition of
the Otter book), available at purveyors of fine
dead trees everywhere. He has spent the past
24+ years as a system/network administrator
in large multi-platform environments, including
Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was
the program chair of the LISA ‘05 conference
and one of the LISA ‘06 Invited Talks co-chairs.
David is honored to have been the recipient
of the 2009 SAGE Outstanding Achievement
Award and to serve on the USENIX Board of
Directors beginning in June of 2010.  
dnb@ccs.neu.edu

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  43

COLUMNS
Practical Perl Tools: Oh Say Can You CPAN?

and are they positive? Is the module part of a distribution I
recognize? Is the module author well known in the Perl commu-
nity?, etc.

When you click on the module name, you’ll be greeted with the
documentation for that module. More often than not, I will click
on the breadcrumb link that brings me to the page for the whole
distribution (Figure 2).

I do this for two reasons: First, I often want to poke around
in a module’s code (especially looking at the test code in it for
examples of how to use the module). This can be done from the
Browse link. Second, I might be curious about bugs filed against
the module (“View/Report Bugs”) or what other modules this
module depends on (“Dependencies”—we’ll talk more about that
soon). Some of these links can be reached from the search results
or the first page linked off the search results, but I’m so used
to using the Browse link that going to the distribution page is
habitual at this point.

Another way you can search for modules on CPAN is to use
metacpan.org. MetaCPAN attempts to be an even spiffier search
engine. Figure 3 shows the same search from before, this time
run at MetaCPAN.org.

First, let’s talk about what is spiffier on the service. When I
first started typing “Readonly” into the search box, it attempted
to auto-complete my query. Next, not only are Readonly and
Readonly::XS next to each other, but at the bottom of the results
you can see MetaCPAN has bunched together related modules in
a distribution. When I click on the first module link on this page,
I see the page that begins like Figure 4.

Figure 1: A screenshot of search.cpan.org showing some results

Figure 2: Clicking on the breadcrumb link brings up the page for the whole
distribution.

Figure 3: Using MetaCPAN as your search engine

44    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

COLUMNS
Practical Perl Tools: Oh Say Can You CPAN?

I’d like to call your attention to a few of the things in the left
and right sidebars. On the left sidebar, I have the “Browse” link
I crave, an easy way to look at the Changelog, pointers to the Git
repo, the Bug tracker page for the module, reviews, test results
(more on this later), a link to an automated system for determin-
ing module quality (“Kwalitee”), an indication how active the
development is of the module, and even a way to download the
module doc in several ebook formats plus a bunch more stuff.
On the right sidebar, we see the dependencies of the module and,
perhaps even cooler, a way to see the reverse dependencies (i.e.,
which modules depend on this one). Super cool.

These are just some of the immediately visible features of
MetaCPAN. One thing you probably can’t see is a key underly-
ing building block. The search being run on metacpan.org is
actually the output of calls to api.metacpan.org (documented
here: https://github.com/CPAN-API/cpan-api). If you’d like to
create your own client, the API is open, and example code to
use it is freely available. As you can probably guess, metacpan.
org is my usual “go-to” search method for searches. I even use
this template from within one of my OS X helper applications

(Launchbar) to make looking up module documentation quick
and easy: https://metacpan.org/search?q=*

Separating the Wheat from the Chaff
Now that you know how to find more modules than you can
shake a stick at, how do you figure out which are the good ones?
I’ve mentioned a couple of ideas already in passing, but let’s take
a closer look at this question.

First, I think it is worthwhile to favor modules that appear to be
actively maintained. This increases the likelihood that there is
an author out there improving the module and also available to
fix issues should you find any. The last release date is a good hint
about this, the activity indictor provided by metacpan.org is an
even better indication.

Second, closely related to the first idea is the number of bugs
opened against the module. I don’t believe zero active bugs is
necessarily a good thing. I’d much rather see a few open bugs
(shows community involvement) alongside a number of closed
bugs (shows author involvement and responsiveness). A queue
full of unresolved bugs is also a great red flag that may indicate
an orphaned module. Use this as one of your parameters for judg-
ment but not the only one.

Third, consider whether the module appears to actually work.
One way to determine this is to look at the Testers link off of
the metacpan module page for a module. To return to the panels
I mentioned at the beginning of the column, another thing I
believe Perl can be proud about is the strong cultural inclination
towards testing in the community. One way this manifests is
that every version of every module that gets submitted to CPAN
gets “smoke tested” on close to a thousand different combina-
tions of Perl versions and operating systems. If a module includes
tests (and indeed, every module is encouraged to have as com-
plete a test suite as possible), these tests are run in each of these
environments and the results reported back to the central test
result repository for you to peruse. This gives you a good indica-
tion (again, if the test suite is decent) of how portable and how
fragile the module code is likely to be. I’ve mentioned a couple
of times that a good test suite makes this metric useful, and I’d
recommend using the Browse link to see what sort of tests are
included with a module. Similarly, if you browse and find the
module has a README that contains boilerplate that the author
hasn’t bothered to change along the lines of:

The README is used to introduce the module and provide
instructions on how to install the module, any machine dependen-
cies it may have (for example, C compilers and installed librar-
ies) and any other information that should be provided before the
module is installed….

(which is how the boilerplate provided by Module::Starter begins),
that’s generally a bad sign. There are other signs of slapdashery

Figure 4: Clicking on the first module link after searching at MetaCPAN

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  45

COLUMNS
Practical Perl Tools: Oh Say Can You CPAN?

you can find in module land, but this is one of my favorite
indicators.

Fourth, pay attention to both the dependency and reverse-
dependency hints provided by metacpan.org. Looking at the
dependency list for a module can give you some sense of things
such as how hard it will be to get a module to install (do you
already have the dependencies installed?), does the author tend
to use already existing code (which can be good or bad) or prefer
to rewrite everything from scratch, and in general what modules
that author trusts.

I find the list of reverse dependencies to sometimes be an even
more useful metric for module trustworthiness. Using the same
basic underlying principle of Google PageRank, if lots of other
modules depend on a module you are considering installing,
that’s almost always a really good thing. If there’s a problem
with the module, a whole bunch of other module authors have
an incentive to see that problem resolved. Similarly, those
authors are also invested in the continued stability and incre-
mental improvement of the module you are considering. In case
you are curious, according to the CPAN Top 100 site (http://
ali.as/top100/), the module with the most dependencies is
App::Munchies (a Catalyst demonstration Web app), and the
module that the most other modules depend on is Test::Harness.

Fifth, and my last tip for picking good modules, is to find an
opinionated author/expert you trust and follow their advice. Two
examples of this are Damian Conway’s Perl Best Practices (full
disclosure, published by the same publisher as my book) and the
Task::Kensho module. This module is basically a list of recom-
mended modules, or as their doc puts it:

Task::Kensho is a list of recommended modules for Enlightened
Perl development. CPAN is wonderful, but there are too many
wheels and you have to pick and choose amongst the various com-
peting technologies.

The list looks very solid to me, so I think you can’t go wrong at
least consulting it as part of your decision process.

Gimme, Gimme
Now that you’ve found the module of your dreams, how do you go
about using it? There’s a decision tree here that many a sysad-
min has argued about in the past, namely do you install modules
using the language native method or do you strictly only use pre-
built packages in the context of the package management system
your operating system uses (even if you have to build the package
yourself). Let’s look at both roads.

Back in the early days, people used a module called CPAN.pm
to install their Perl modules. Later on, a spiffier version was
created called CPANPLUS, and that’s a fairly common way
to install modules. It installs a command-line program called
“cpanp” that you can run and use like this:

$ cpanp

CPANPLUS::Shell::Default -- CPAN exploration and module

installation (v0.9121)

*** Please report bugs to <bug-cpanplus@rt.cpan.org>.

*** Using CPANPLUS::Backend v0.9121. ReadLine support

enabled.

*** Type ‘p’ now to show start up log

CPAN Terminal>i Readonly

This will search for and install the Readonly module (and all of
the dependencies it has). By default it is fairly interactive, ask-
ing you each step of the way whether you want to install each
dependency. This isn’t my current method for module installa-
tion, but before I move on to what I prefer, let me mention one
thing CPANPLUS does that is valuable. Instead of using the “i”
command for install, typing “o” will output a list of the outdated
modules on your system. Sort of like this:

1	 1.5701	 1.61	 App::Cpan	 BDFOY

2	 0.58	 0.68	 Archive::Extract	 BINGOS

3	 1.82	 1.90	 Archive::Tar	 BINGOS

4	 5.72	 5.73	 AutoLoader	 SMUELLER

5	 1.17	 1.18	 B::Debug	 RURBAN

6	 1.14	 1.17	 B::Lint	 RJBS

7	 1.52	 1.59	 CAM::PDF	 CDOLAN

8	 3.59	 3.63	 CGI	 MARKSTOS

...

The second column is the version you have installed, the third is
the latest version found on CPAN. This can be very handy if you
like to keep current.

My use of CPAN.pm and CPANPLUS has almost entirely been
supplanted by a package called CPANMINUS. I typically use it
in conjunction with the perlbrew system (http://perlbrew.pl),
which allows you to have multiple versions of Perl installed on
your system without conflict (including conflict with the one
that ships with your operating system). If you are using perlbrew,
“perlbrew install-cpanm” will install it for you. If you are not
using perlbrew, there are a number of ways to install it, including
this scary, scary way:

$ curl -L http://cpanmin.us | perl - App::cpanminus

See http://cpanmin.us for more details.

Once you have CPANMINUS installed, you will have a “cpanm”
command. “cpanm” can take a few flags to modify its behavior,
but more often than not, you’ll just be typing:

$ cpanm {module name}

as in

$ cpanm Readonly

46    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

COLUMNS
Practical Perl Tools: Oh Say Can You CPAN?

CPANMINUS will install the module and any dependencies it
has lickety-split with basically no interaction and no fuss. It is
really written for the “I want the thing. Thing is now installed.”
experience and does it very well.

So that’s how you would install things independent of any pack-
age management system your operating system uses. Some find
this to be fine; others feel it is reckless and contrary to the reason
one has a package management system. If you want to stick to a
package system, I do know that in addition to package manager-
specific tools like dh-make-perl, the awesome FPM tool (https://
github.com/jordansissel/fpm) by Jordan Sissel can also help
create packages for you.

So, with that, we’ve learned how to find good Perl modules and
install them easily. Let’s leave it there. Take care and I’ll see you
next time.

