
www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  47

COLUMNS

All About That Constant
D A V I D B E A Z L E Y

I’m not sure I’ve ever seen “gravitas” used as a kind of software metric.
However, if there were such a thing, I think it could probably be mea-
sured by the number of predefined constants required to carry out any

sort of task. For example, directly programming with sockets and setting
socket options has a high degree of gravitas. Simply specifying a port number
to a Web framework—not so much. Other examples might include program-
ming OpenGL vs. turtle graphics. Or maybe just about anything involving
OpenSSL. Extra bonus points are earned if such constants can get together
in an unholy bitmask such as O_RDWR | O_CREAT. Yes, constants. Gravitas.

Constants, or shall I say “constants,” have always been relatively easy to define in Python.
Simply create some variables:

AF_UNIX = 1

AF_INET = 2

AF_IPX = 23

AF_INET6 = 30

SOCK_STREAM = 1

SOCK_DGRAM = 2

SOCK_RAW = 3

Then, pass these values along whenever you need to use them:

sock = socket(AF_INET, SOCK_STREAM)

Yes, it’s pretty simple stuff. Of course, all of those constants are really just simple variables.
And they’re not constants either. Go ahead and change them if you dare:

AF_INET = 30

Alas, it’s probably foolhardy to expect any modern high-level language to support the full
power of C preprocessor macros (e.g., #define AF_INET 2). So, people who decide to change
constants probably get what they deserve. I digress.

Problems with Constants
Gravitas aside, constants have always presented a number of weird problems for Python
programmers. For example, suppose you’re using Python 2.7 and you’re trying to perform
debugging and diagnostics. In your code, the constants are merely presented as their cor-
responding value. For example, consider this code:

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com/
ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

48    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

COLUMNS
All About That Constant

from socket import socket

def create_socket(address_family, socket_type):

 log.info(‘Creating socket: family=%s, type=%s’,

address_family, socket_type)

 return socket(address_family, socket_type)

If you call the function using create_socket(AF_INET,

SOCK_STREAM), you’ll get a log message that looks like this:

INFO:Creating socket: family=2, type=1

As you can see, you lose the symbolic names such as AF_INET,
putting the burden on users to perform some kind of reverse
lookup if they want to find out more information. Even doing
that is a bit annoying if you don’t know what you’re doing. For
example, do you simply go through the socket module constants
one-by-one in the interactive interpreter?

>>>AF_UNIX
1

>>>AF_INET
2

>>>SOCK_STREAM
1

>>>

Or, if you’re really stuck, do you pull out some kind of advanced
magic to see all of the possible values?

>>>import socket
>>> sorted((getattr(socket, name), name) for name in
dir(socket)
... if name.startswith(‘AF_’))
...

[(0, ‘AF_UNSPEC’), (1, ‘AF_UNIX’), (2, ‘AF_INET’), (11, ‘AF_SNA’),

(12, ‘AF_DECnet’), (16, ‘AF_APPLETALK’), (17, ‘AF_ROUTE’),

(23, ‘AF_IPX’),

(30, ‘AF_INET6’)]

>>>

Suppose you wanted to add some kind of enforcement of con-
stant values in your code: for example, making sure the user only
provided valid values for the arguments. Maybe you would write
something like this:

from socket import (socket,

 AF_UNIX, AF_INET, AF_INET6,

 SOCK_STREAM, SOCK_DGRAM)

_address_families = { AF_UNIX, AF_INET, AF_INET6 }

_socket_types = { SOCK_STREAM, SOCK_DGRAM }

def create_socket(address_family, socket_type):

 log.info(‘Creating socket: family=%s, type=%s’,

address_family, socket_type)

 if address_family not in _address_families:

 raise ValueError(‘Bad address family %s’ % address_family)

 if socket_type not in _socket_types:

 raise ValueError(‘Bad type %s’ % socket_type)

 return socket(address_family, socket_type)

Such a solution is kind of verbose and annoying. Moreover, it only
“works” until a user comes along and writes the arguments in the
wrong order such as create_socket(SOCK_STREAM, AF_INET). Or
did they write create_socket(AF_UNIX, SOCK_DGRAM)? There’s
really no way to know. The mind boggles.

Constants in Python 3
Starting in Python 3.4, an interesting thing happened to con-
stants. Fire up a Python 3.4 interpreter and take a look at the
socket module:

>>> # This must be done in Python 3.4

>>>import socket
>>>socket.AF_INET
<AddressFamily.AF_INET: 2>

>>>socket.SOCK_STREAM
<SocketType.SOCK_STREAM: 1>

>>>

Notice how the constants now identify themselves by a symbolic
name and value. This is very different. Moreover, this change
affects everything else. For instance, if you print a constant, you
just get the name:

>>>print(socket.AF_INET)
AddressFamily.AF_INET

>>>

This means that in other code, such as the example involving
logging, you’ll now get a log message that looks like this:

INFO:Creating socket: family=AddressFamily.AF_INET,

type=SocketType.SOCK_STREAM

In fact, you can even do a kind of type checking. Consider this
slightly modified version of code:

from socket import socket, AddressFamily, SocketType

def create_socket(address_family, socket_type):

 log.info(‘Creating socket: family=%s, type=%s’,

address_family, socket_type)

 if not isinstance(address_family, AddressFamily):

 raise TypeError(‘Bad address family %s’ % address_family)

 if not isinstance(socket_type, SocketType):

 raise TypeError(‘Bad type %s’ % socket_type)

 return socket(address_family, socket_type)

In this example, AddressFamily and SocketType represent all of
the valid values for the address_family and socket_type argu-
ments, respectively. However, this checking is more than just
values. It will catch errors such as swapped arguments like this:

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  49

COLUMNS
All About That Constant

>>> # Good

>>> s = create_socket(AF_INET, SOCK_STREAM)
>>>

>>> # Bad

>>>s = create_socket(SOCK_STREAM, AF_INET)
Traceback (most recent call last):

...

TypeError: Bad address family SocketType.SOCK_STREAM

>>>

Keep in mind, the value of SOCK_STREAM is perfectly valid
as an address family (it’s the same as AF_UNIX). Yet, the code
caught the error. If you’re like me, you’ll find all of this to be very
interesting.

Enter Enums
Starting in Python 3.4, you can now start defining constants in
the form of an “enumeration” class. There are two different fla-
vors, a standard Enum and an IntEnum. Here are some examples
of enum definitions:

from enum import Enum

class Color(Enum):

 red = 1

 blue = 2

 green = 3

from enum import IntEnum

class AddressFamily(IntEnum):

 AF_UNIX = 1

 AF_INET = 2

 AF_IPX = 23

 AF_INET6 = 30

The first enumeration, Color, simply defines a collection of sym-
bolic constants. To refer to them in your code, you just use the
class name as a prefix like this:

>>>Color.red
<Color.red: 1>

>>>Color.blue
<Color.blue: 2>

>>>

Normally, you will just use these names in your code. However,
should you need to know the name and value, you can obtain
them as attributes as follows:

>>>Color.blue.name
‘blue’

>>>Color.blue.value
2

>>>AddressFamily.AF_INET.value
2

>>>

Such attributes can be useful in situations where you need to
convert an enum into a different format or into a value that you
might use in an external representation (e.g., JSON). To go the
other way, you can use the class name to convert a value back
into an enum:

>>>Color(2)
<Color.blue: 2>

>>>Color(4)
Traceback (most recent call last):

...

ValueError: 4 is not a valid Color

>>>AddressFamily(2)
<AddressFamily.AF_INET: 2>

>>>

As you can see, such conversions are already aware of the valid
enum values. If you try to convert a bad value, you’ll get an error.

If you want to know all of the possible values of an enumeration,
simply turn the class into a list or iterate over it. For example:

>>>list(Color)
[<Color.red: 1>, <Color.blue: 2>, <Color.green: 3>]

>>>for val in AddressFamily:
... print(val)
...

AddressFamily.AF_UNIX

AddressFamily.AF_INET

AddressFamily.AF_IPX

AddressFamily.AF_INET6

>>>

In this example, two different kinds of enums were defined. The
difference between Enum and IntEnum concerns their interac-
tion with the rest of the type system and compatibility with the
integers.

Enum types implement a strict form of type checking that do not
allow any kind of mixing with other types or other enums. For
example:

>>>Color.blue
<Color.blue: 2>

>>>Color.blue == 2 # Notice failed equality

False

>>>Color.blue == AddressFamily.AF_INET
False

>>>Color.blue + 4
Traceback (most recent call last):

...

TypeError: unsupported operand type(s) for +: ‘Color’ and ‘int’

>>>

50    D ECE M B ER 20 14  VO L . 3 9, N O. 6 	 www.usenix.org

COLUMNS
All About That Constant

In fact, the values associated with an Enum type are arbitrary.
For example, it would be perfectly fine to define this:

class Color(Enum):

 red = ‘R’

 blue = ‘B’

 green = ‘G’

Keep in mind that the intended use of the enum would be
through the symbolic names such as Color.red, not the value.
As such, nothing is implied or guaranteed about the capabili-
ties of the enum itself. The value really only becomes useful in
code that needs to convert the enum to/from a different type for
instance.

The IntEnum class, on the other hand, makes an enum compat-
ible with integers. This is especially useful if you’re defining
constants that need to interface with external libraries or legacy
code. Or if the constants need to be used in mathematical opera-
tions. For example:

>>>AddressFamily.AF_INET == 2

True

>>>AddressFamily.AF_INET + 10

12

>>>

IntEnum types are also useful if constants are defined in order
to perform other operations such as the formation of a bitmask.
For example:

>>>class Modes(IntEnum):
... READ = 1
... WRITE = 2
... DELETE = 4
...

>>> a = Modes.READ | Modes.WRITE
>>>a
3

>>>

Making Enums
Perhaps the most obvious way to define an enum is through a
class definition as shown in the example. However, this offers no
help to existing code where a large number of constants might
already exist. Fortunately, there is an alternate interface involv-
ing dictionaries. For example, suppose you have some constants
already populating a dict like this:

colors = {

 ‘red’ : 1,

 ‘blue’ : 2,

 ‘green’ : 3

}

To create an enum, simply call Enum() or IntEnum() as a function
and pass the dictionary like this:

from enum import Enum

Color = Enum(‘Color’, colors)

If you are clever, you can use this to create enumerations from
existing sets of constants. For example, suppose you wanted
to make an enum from all of the flags passed to the os.open()
function. You could simply gather them up using a dictionary
comprehension and pass them to IntEnum() like this:

>>>import os
>>>flagvals = { name:val for name, val in vars(os).items()

... if name.startswith(‘O_’) }
>>>flagvals
{‘O_SYNC’: 128, ‘O_SHLOCK’: 16, ‘O_TRUNC’: 1024, ‘O_CREAT’: 512,

‘O_EXCL’: 2048, ‘O_RDWR’: 2, ‘O_DSYNC’: 4194304, ‘O_NONBLOCK’: 4,

‘O_ACCMODE’: 3, ‘O_WRONLY’: 1, ‘O_ASYNC’: 64, ‘O_RDONLY’: 0,

‘O_APPEND’: 8, ‘O_NOFOLLOW’: 256, ‘O_DIRECTORY’: 1048576,

‘O_NOCTTY’: 131072, ‘O_NDELAY’: 4, ‘O_EXLOCK’: 32}

>>>Flags = IntEnum(‘Flags’, flagvals)
>>>Flags.O_TRUNC
<Flags.O_TRUNC: 1024>

>>>Flags.O_CREAT
<Flags.O_CREAT: 512>

>>>Flags.O_RDONLY
<Flags.O_RDONLY: 0>

>>>

If you were feeling particularly adventurous, you could even
patch the original os module to use the newly created enums:

>>>vars(os).update({f.name:f for f in Flags})
>>>os.O_CREAT
<Flags.O_CREAT: 512>

>>>os.O_RDWR
<Flags.O_RDWR: 2>

>>>

Since IntEnum classes are compatible with integers, everything
should continue to work the same as before except for symbolic
names appearing in the event that a flag value is ever printed or
logged.

The Normal Rules Don’t Apply
Having introduced enums, most Python programmers will find
them to behave in all sorts of ways that are quite different from
normal class definitions. For example, duplicate entries result in
an error:

www.usenix.org	   D ECE M B ER 20 14  VO L . 3 9, N O. 6  51

COLUMNS
All About That Constant

class Color(Enum):

 red = 1

 blue = 2

 red = 3 # An error. Duplicate.

Enum classes always keep their entries in the same order as
listed:

class Color(Enum):

 red = 10

 blue = 9

 green = 8

cols = list(Color) # [Color.red, Color.blue, Color.green]

You can’t inherit from an enum:

class MyColor(Color):

 purple = 4 # Error. Can’t extend Color

And the members of an enum can’t be redefined:

Color.red = 4 # Error. Can’t reassign members

The members of an enum are also instances of the class itself:

>>>isinstance(Color.blue, Color)
True

>>>

All of this unusual behavior is the result of enums being defined
through advanced features of Python metaclasses. It’s not pos-
sible (or really necessary) to dive into the details here, but if
you’ve ever wondered about the power of Python metaprogram-
ming, enums are a good example of what’s possible.

Final Words
As a new Python feature, enums are not something you’re likely
to encounter in much code. However, they are starting to be used
in various places in the standard library and will likely have
increased usage in future Python versions. In my own applica-
tion code, I often find myself defining various sorts of constants
to indicate modes, flags, and similar kinds of functionality. With
the addition of enums, I’m now starting to think that they might
be a useful way to provide improved debugging, type safety, and
other similar features. Although enums first appeared in Python
3.4, the flufl.enum package can be used to add them to earlier
versions of Python including Python 2.7.

Resources
https://docs.python.org/3/library/enum.html (official docu-
mentation for enums).

http://legacy.python.org/dev/peps/pep-0435/ (adding an
Enum type to the Python Standard Library).

https://pypi.python.org/pypi/flufl.enum (an enum imple-
mentation compatible with Python 2.7).

XKCD

xkcd.com

